Proceedings of the 2009 Winter Simulation Conference
M. D. Rossetti, R. R. Hill, B. Johansson, A. Dunkin and R. G. Ingalls, eds.

A SIMPLE EXAMPLE OF SYSML-DRIVEN SIMULATION

Leon McGinnis Volkan Ustun
Sch. of Industrial & Systems Engineering Sch. of Industrial & Systems Engineering
Georgia Institute of Technology Georgia Institute of Technology
Atlanta, GA 3032-0205, USA Atlanta, GA 3032-0205, USA

ABSTRACT

The successful practice of simulation requires a number of capabilities; two key capabilities are creating a conceptual model
of the system to be simulated, and translating the conceptual model to a computational process or simulation program. We
describe how OMG’s new graphical systems modeling language, OMG SysML™ (OMG 2009), can be used to create a con-
ceptual model, and how this conceptual model can be translated automatically to a simulation program. In demonstrating the
process, we use Arena™ as the target simulation language, but the concepts presented are quite general.

1 INTRODUCTION
The practice of simulation requires a set of technical skills, capabilities, and processes. A number of authors have described
simulation practice in terms of a set of steps or processes that must be executed. One example of such a description is sum-

marized in Table 1, which is based on (Nubile, Ambrose and Mackarel 2004).

Table 1: Modeling and simulation workflow

1. Problem Definition. Clearly defining the goals of the study so that we know the purpose,

2. Project Planning. Being sure that we have sufficient and appropriate resources to do the job.

3. System Definition. Determining the boundaries and restrictions

4. Conceptual Model Formulation. Developing a preliminary model either graphically or in pseudo-code
to define the components, and interactions (logic) that constitute the system.

5. Preliminary Experimental Design. Selecting the factors to be varied, and the

6. Input Data preparation. Identifying and collecting the input data

7. Model Translation. Formulating the model in an appropriate simulation language

8. Verification. Does the simulation correctly represent the data inputs and outputs?

9. Validation. Can the model be substituted for the real system for the purposes of experimentation?
10. Final Experimental Design. Designing an experiment that will yield the desired information

11. Experimentation. Executing the simulation to generate the desired data and sensitivity analysis.
12. Analysis and Interpretation. Drawing inferences from the data generated by the simulation runs.
13. Implementation and Documentation. Reporting the results, putting the results to use,

Clearly, the practice of simulation is not as simple as the linear execution of these thirteen steps—there usually is consi-
derable iteration. Our focus is on steps 4 and 7, formulating the conceptual model which describes the relevant aspects of the
system to be simulated, and translating the conceptual model to a suitable simulation language for computation. Traditional-
ly, both these steps have been taught and viewed as the “art” or “craft” of simulation, i.e., as skills that are difficult to teach
because there are few systematic tools to support them.

There is good reason to believe this situation could change. In the software engineering community, model driven archi-
tecture, or MDA, is transforming the way software systems are designed and implemented. Wikipedia describes MDA as
providing “a set of guidelines for the structuring of specifications, which are expressed as models. Model-driven architecture
is a kind of domain engineering, and supports model-driven engineering of software systems.” In other words, the MDA ap-

978-1-4244-5771-7/09/$26.00 ©2009 IEEE 1703

McGinnis and Ustun

proach brings a significant level of formalism to the process of developing the conceptual model of the intended software
system, as well as formal tools that automate a significant portion of the implementation coding.

Can the same results be achieved by applying the MDA approach to the development of simulations? In this paper, we
demonstrate that a tentative answer is “yes” by showing how SysML can be used to develop a domain specific language for
creating conceptual models in a particular domain, and how data interchange standards like XML/XMI can be used to sup-
port the automatic translation of a model in the domain specific language to a model in a simulation language..

2 OVERVIEW

A “domain specific language,” or DSL, is described by Wikipedia as “a programming language or specification language
dedicated to a particular problem domain, a particular problem representation technique, and/or a particular solution tech-
nique.” The domain could be an abstract domain, such a queuing theory, or a real domain, such as semiconductor manufac-
turing. It even could be a programming domain, such as discrete event simulation. In fact, simulation languages, like Are-
na™, are domain specific languages.

Figure 1 illustrates how domain specific languages might be used to enhance steps 4 and 7 in Table 1. Two distinct do-
main specific languages are represented in Figure 1. On the left is a DSL dedicated to the description or specification of sem-
iconductor manufacturing scenarios, which is used to create a specific instance model or specification for a particular semi-
conductor manufacturing situation. On the right is a discrete event simulation DSL, or simulation language, which can be
used to create specific simulation models or simulation programs. In the middle are two ovals. The top oval represents a
mapping between the two domain specific languages, e.g., a specification of the relationships between a syntactical construct
in the semiconductor manufacturing DSL and an equivalent syntactical construct in the discrete event simulation DSL. The
bottom oval in Figure 1 represents a computational process for converting a specific instance model of a semiconductor man-
ufacturing model into a specific instance of a discrete event simulation model.

Discrete Event

Simulation
J
Y
Domain Domain
Specific Mapping Specific
Language : Language
Specific v Specific
Application Translator Simulation
Model Model

Figure 1: Framework for Model-Driven Simulation

There are a number of challenges in implementing the framework illustrated in Figure 1. Perhaps the most obvious is
creating a DSL for the application domain. The fact that almost every discussion of the process of “doing simulation” (as de-
scribed in Table 1) provides relatively vague description of step 4 is some evidence for the lack of explicit domain specific
languages in general. SysML has been suggested as a basis for a semiconductor manufacturing DSL in (Huang et al 2008);
although they did not use the term “domain specific language” their description is entirely consistent with the intent of the
term.

SysML has a number of advantages to recommend it as a basis for an application specific DSL. It is a graphical lan-
guage, which makes it possible to discuss SysML models with the “problem owners” in order to validate modeling assump-
tions. Also, SysML is a formal language—it has a formal syntax, which enables a number of computational tools which op-
erate on SysML models. SysML is implemented as a profile of UML, and as a result there are many commercially available
tools for SysML. SysML is easily extended and specialized, an important advantage in developing a DSL. SysML has an
open, or publically available standard, making it easy to develop application which use SysML models.

1704

McGinnis and Ustun

Suppose an application-specific DSL has been developed, e.g., in SysML. A second major challenge is creating the
mapping between this DSL and a discrete event simulation language. Part of the challenge is that most simulation languages
do not have a publically available formal specification, thus creating a formal mapping from an application specific DSL is
an arduous task.

The final challenge, of course, is the development of the model translator, which uses the mapping to translate an appli-
cation specific model written in the application specific DSL to a corresponding simulation model written in the specific dis-
crete event simulation language.

3 THE SIMPLE EXAMPLE

We illustrate, in a very limited way, an implementation of the framework illustrated in Figure 1. We use SysML to create a
DSL for a subset of queuing theory. This domain specific language is used to create specific queuing models. We use Are-
na™ as the target discrete event simulation language. Since Arena has an existing Access™ interface (i.e., Arena models can
be exported to MS Access, and imported from MS Access, using a particular data schema), we use this interface, rather than
attempting to create a “native” Arena DSL in SysML. We do, however, create an Access DSL in SysML, and use it to speci-
fy the schema required for Arena export/import.

Because we have chosen a relatively limited domain, the mapping from the SysML DSL to the Arena DSL is relatively
straightforward. We address this issue in our concluding remarks.

Both SysML and MS Access have facilities for XMI file export and import, which simplifies the process of creating a
translator. Our translator, which operates on the appropriate XMI files, is implemented in Atlas Transformation Language
(ATL). Figure 2 summarizes the structure of the example implementation.

SysML

Application AETE
DSL (SADSL)
SI\//I\ol:zj?ell_ Arena Model
™ H

(SADSLM) Access™ File
SADSLM Arena Access

XMl file XMl file
SADSLMX AAX

Mapping

Figure 2: Structure of the Example

For this simple example, we have used the standard flow shop model as described in Huang et al. (2007). There are two
workstations in sequence and each workstation consists of three identical machines in parallel. Topcased-SysML editor as a
Eclipse plugin is used to develop the SysML models. SysML models are exported as XMI files using the Topcased SysML
metamodel based on the Eclipse Modeling Framework’s Ecore metametamodel. For demonstration purposes, we have
created a simpler metamodel for the flow shop model using Ecore as the underlying metametamodel. This metamodel -
named “SysMLCreate”- is depicted in Figure 3. The original XMI file is then transformed to a new XMI file using the
“SysMLCreate” as the base metamodel. The SysML model captured in the transformed XMI file is shown in Figure 4.

Transformation of the SysML model to an MSAccess database representing Arena™ models requires creating a meta-
model of the underlying database structure. The transformation is defined using Atlas Transformation Language (ATL). A
simple rule written in ATL to create “Process” modules for Arena™ is presented in Figure 5. As a result of the transforma-
tion, an XMI file is created, which is then imported to MS Access. Importing the MS Access database to the Arena™ model-
ing environment completes the transformation. The resulting Arena™ model is depicted in Figure 6.

1705

McGinnis and Ustun

H Entity “ FlowDirection
= name =in
= typeProperty = out
= inout

H Property H Part H ConnectorEnd

= walue = direction = ghdPropertyName

= waluel

= yalue2

o value3 o.*

[=Ns! 0. *

*
0. ends
) ports
properties

H Connector

H Block connectars 0%

Figure 3: Simplified SysML metamodel

1706

k?xm1 wersion="1.0" encoding="I50-8859-1"7>

McGinnis and Ustun

<xmd MI oxmirversion="2.0" xmIns:xmi="http:/fwww.omg. org HMI" xmins="sSysMLCreated">

<Block name="puffer' />

<Block "arrivalProcess" /=
<Block Part" /=

<Block Machine" />

<Block name="Departureprocess' />

<Block n

</Blocks
<Block n

</Blocks

<Block n

</Block

<M L

ame="workstation">

<properties name="hufferl" typeproperty="suffer"/>
<properties ‘machinel" typeProperty="Machina" />
<properties ‘machine2" typeProperty="Machina" />
<properties name="machine3" typeproperty="machine"/ >

ame="Flowshopsystem's

<properties name="arrivalprocessl"” walue="Expo(5)" typeProperty="arrivalprrocess"/ >

"workstationl" i

<properties i i
‘workstation2" i

<properties

<properties

<Conhectors names="connectarl" TypePropertys="Connectar s
<ends endPropertynMame="arrivalpProcessl" />
<ends endPropertyname="workstationl" />

wvalue="Triangular"

</connectorss

<connectors names="connectar2" TypePropertys="Connectar s
<ends endPropertyname="workstationl"/ >
<ends endPropertyname="workstation2"/ >

</connectorss

<connectors names="connectar3"’ TypePropertys="Connectar s
<ends endPropertyname="workstation2"/ >
<ends endPropertyname="departureProcessl” />

</connectorss

ame="workstation">
<properties name="machinel" typeProperty:
<properties names="machine2" typePropert
<properties name="machine3" typeProperty="Machina"/ >
<properties name="hufferl" typeProperty="suffer"/>
<ports name="PartIn" direction="in" typeProperty="pPort"/,=
<ports name="Partout"” direction="out" typeProperty="Port"/>
<connectors name="connectarl” TypeProperty="Connectar”s
<ends endPropertyMame="partin"/ >
<ends endPropertymame="bufferl” />

"Machine” /=
Machine" /=

</connectorss

<connectors name="connectaor2” typePropert¥=”Connectar">
<ends endPropertymame="hutferl” />
<ends endPropertymame="machinel" />

</connectorss

<connectors name="connectaor3” typePropert¥=”Connectar">
<ends endPropertymame="hutferl” />
<ends endPropertyMame="machine2" />

</connectorss

<connectors name="connectaor4” typePropert¥=”Connectar">
<ends endPropertymame="hutferl” />
<ends endPropertyMame="machina3" />

</connectorss

<connectors name="connectari” TypeProperty="Connectar”s
<ends endPropertymMame="machinel" />
<ends endPropertyMame="partout” />

</connectorss

<connectors name="connectars” TypeProperty="Connectar”s
<ends endPropertymMame="machina2" />
<ends endPropertyMame="partout”/ >

</connectorss

<connectors name="connectar?" TypeProperty="Connectar”:>
<ends endPropertyMame="machina3" />
<ends endPropertyMame="partout”/ >

</connectorss

>

1>

valuel="5
2" walue="Triangular" valuel="5
‘departureprocessl” typeProperty="Departureprocess’/>

wvalue
wvalue

"8" walue3="10" typeProperty="workstation"/ >
8" walue3="10" typeProperty="workstation"/ >

Figure 4: Transformed SysML model

1707

McGinnis and Ustun

module SysMLCreatedZirens; —-- Module Template
create COUOT : Queus from IN @ SysMLCreated;

rule SysMLZZProcess |
from
dt : SysMLCreated!'Property |
if dt.typeProperty='Torkstation' then true
elgse fslse
endif

)

out ! Queue!BasicProcess x007C Process |
WNatme <— dt.nameJ
SeriallNurwber <- dt.id,
Modellewel <- '1',
X<-'0',
Yo-'o',
Feportitatistics<-'Tes',
Type<-'Standard' ,
Aetion<-'3DR',
Valueldded<-'VL4',
DelayType <-— dt.wvalues,
Units <-'Hours',
FPriority<-'2"',
Expression <-'1',
Schev<-"'.,2"',
Max<-dt.valuei,
Min<-dt.wvaluez,
Value<-dt.valuel

Figure 5: SysML to “Process” module transformation

Crezte 1 \-—-—- Wiork=tation Wiork=tation:

/

Dizpoze 1

Figure 6: Generated Arena™ model
4 ISSUES

We have chosen an admittedly limited demonstration domain, so it is a fair question to ask whether or not this approach
scales up. We believe the answer is a qualified “yes,” for several reasons. First, based on the previous and ongoing research
at Georgia Tech (Huang ef al 2007, 2008) and elsewhere (see, e.g., Schonherr and Rose 2009), we believe there is little rea-
son to doubt the feasibility of creating domain specific languages for usefully large application domains. In fact, the publica-
tion of the Core Manufacturing Simulation Data standard by NIST (Johnson et a/ 2007, Lee et al 2007, and Riddick and Lee
2008) is compelling evidence that the structure of manufacturing can be described in a formal way. Of course, the challenge
of creating the formal syntax and semantics for behavior has yet to be definitively settled.

1708

McGinnis and Ustun

Second, while model translation in the practice of simulation traditionally has been an ad hoc process, there are devel-
opments in computer science that hold great promise for making the process much more formal. For example, research on
graph transformation and triple graph grammars (see. e.g., Amelunxen et a/ 2008) has led to the creation of tools (see, e.g.,
<http://www.moflon.org/>) for creating mappings between metamodels and using the mappings to automate model transla-
tion.

While we believe the technology is emerging to enable the development of domain specific languages in manufacturing,
and their automatic translation to simulation code, that does not mean there are not remaining issues. Here we highlight two
specific issues:

(1) Some systems are very large, with many instances of the same entity or component. The creation and management

of such large instance models represents a challenge of its own.

(2) In order to automatically translate a conceptual model (e.g., realized using a formal DSL) into its corresponding si-
mulation program, all the information needed to create that simulation model must be contained in the conceptual
model, because there is no human simulation analyst to elaborate terse descriptions, or disambiguate incomplete de-
scriptions. Thus, the “programming” aspects of simulation will move in two directions—off line development of the
DSL, the mapping, and the translator, and on-line application of the DSL to capture a fully rendered conceptual
model.

5 CONCLUSION

Our purpose in this paper has been to demonstrate with a simple example how a formal modeling language, SysML, can be
used to transform the practice of simulation by making the conceptual modeling process much more formal, and largely au-
tomating the creation of the simulation code. The reader may ask, “Why would you want to do this?” The motivation is
simple—we seek to make the practice of simulation much more widespread than it is today. One strategy is to make simula-
tion technology more accessible to the customer, by giving customers and simulation practitioners the tools they need to
create complete descriptions of the problem to be simulated, in a form that can be understood by the customer, i.e., in the cus-
tomer’s language. If at the same time, the time, cost, and potential for error in “programming” simulation codes can be large-
ly eliminated, then more time and attention can be focused on working with the customers to insure the problem is properly
specified.

REFERENCES

Amelunxen, C., F. Klar, A. Konigs, T. Rotschke, and A. Schiirr. 2008. Metamodel-based tool integration with moflon. Pro-
ceedings of the 30th international conference on Software engineering. Leipzig, Germany. ACM.

Atlas Transformation Language (ATL). 2009. http://www.eclipse.org/m2m/atl/

Ecore. 2009. http://www.eclipse.org/modeling/emf/ [accessed July 29, 2009].

Haddock, Jorge. 1988. A Simulation Generator for Flexible Manufacturing Systems Design and Control. //E Transactions.
20(1):22-31.

Huang, E., R. Ramamurthy, and L. McGinnis. 2007., System and Simulation Modeling Using SysML. In Proceedings of the
2007 Winter Simulation Conference. eds. S. G. Henderson, B. Biller, M.-H Hsieh, J. Shortle, J. D. Tew, and R. R. Bar-
ton, 796-803. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Huang, Edward, Ky Sang Kwon, and L. F. McGinnis, “Toward On-Demand Wafer Fab Simulation using Formal Structure
and Behavior Models,” Proceedings of the 2008 Winter Simulation Conference; ed S. J. Mason, R. R. Hill, L. Ménch, O.
Rose, T. Jefferson, J. W. Fowler, 2341-2349. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers,
Inc.

Johansson, M., S. Leong, Y. T. Lee, F. Riddick, G. Shao, B. Johansson, A. Skoogh, and P. Klingstam. 2007. A Test Imple-
mentation of the Core Manufacturing Simulation Data Specification, In Proceedings of the 2007 Winter Simulation Con-
ference, 1673-1681. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Lee, Y. T., S. Leong, F. Riddick, M. Johansson, and B. Johansson. 2007. A Pilot Implementation of the Core Manufacturing
Simulation Data Information Model. In Proceedings of the Simulation Interoperability Standards Organization 2007
Fall Simulation Interoperability Workshop. Orlando, Florida: Simulation Interoperability Standards Organization, Inc.

Nubile, E., E. Ambrose, and A. Mackarel. 2004. Development of a procedure for manufacturing modeling and simulation.
21% International Manufacturing Conference, Limerick, Ireland.

Object Management Group. 2009. OMG SysML™ vl.1. Avaliable via http://www.omg.org/spec/SysML/1.1/
[accessed July 29, 2009].

1709

McGinnis and Ustun

Riddick, F. and Y. Lee. 2008. Representing layout information in the CMSD specification. Proceedings of the 2008 Winter
Simulation Conference, ed S. J. Mason, R. R. Hill, L. Ménch, O. Rose, T. Jefferson, J. W. Fowler, 1777-1784. Piscata-
way, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

TOPCASED. 2009a. Available via www.topcased.org [accessed July 29, 2009].

TOPCASED. 2009b. SysML metamodel implementation. Available via www.topcased.org [accessed July 29, 2009].

Wikipedia. 2009a. Model-driven Architecture. Anon. http://en.wikipedia.org/wiki/Model Driven Architecture [accessed
July 29, 2009].

Wikipedia. 2009b. Domain-specific Language. Anon. http://en.wikipedia.org/wiki/Domain_specific language [accessed
July 29, 2009].

AUTHOR BIOGRAPHIES

LEON MCGINNIS is the Gwaltney Professor of Manufacturing Systems at the Georgia Institute of Technology, where he
serves as Associate Director of the Manufacturing Research Center, Director of the Product and Systems Lifecycle Manage-
ment Center, and founder of the Keck Virtual Factory Lab. His personal research focuses on systems modeling and systems
design for discrete event logistics systems, and he leads several research teams addressing large scale systems analysis prob-
lems for industry sponsors. He is a member of IEEE, INFORMS, and IIE. His email address is
<leon.mcginnis@gatech.edu>.

VOLKAN USTUN is a postdoctoral research fellow in the H. Milton Stewart School of Industrial and Systems Engineering
at the Georgia Institute of Technology. He has received his B.S. and M.S. degrees in Industrial Engineering from Middle
East Technical University (METU), Turkey and his Ph.D. degree in Industrial and Systems Engineering from Auburn Uni-
versity in 2009. Prior to joining the Ph.D. program, he has worked as a software engineer at The Scientific and Technical Re-
search Council of Turkey (TUBITAK). His research interests mainly include discrete-event and agent-based simulation mod-
els and frameworks for complex systems. His email address is <volkan.ustun@isye.gatech.edu>.

1710

