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ABSTRACT 

This paper addresses the scheduling of lots in a specific wafer fabrication area, called diffusion, where scheduling of lots inte-
ract with batching, equipment dedication and queue time constraints. Realizing the difficulty of solving the underlying ma-
thematical program optimally, we develop a heuristic to regularly schedule the lots available in the area in real time. The pa-
per explains the user interface and implementation issues as well as the details of the heuristic logic. The results obtained 
from production in a wafer fabrication facility to date show high user compliance, improved predictability and visibility of 
the overall schedule, and improved operational performance including reduced cycle times and queue time violations. 

1 SEMICONDUCTOR MANUFACTURING OVERVIEW 

Semiconductor manufacturing (see Figure 1) is modeled with the interaction of lots with equipment. In a 200-mm wafer fa-
brication facility (wafer fab for short), there are about 3500 lots that run through about 600 equipment. Due to the complexity 
of the process, advanced computer software is used to keep track of lot movements and equipment states within the fab. Fur-
ther automation through computer-aided lot and recipe track-in (assignments of lots/recipes to specific equipment) is 
achieved with MES (Manufacturing Execution System). 

 

 
 

Figure 1: Semiconductor process areas 
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A lot contains 25 wafers of same type. Each lot follows a unique process flow (depending on the part type). A process 

flow consists of 300-500 process steps. Each process step uses an equipment type and a unique equipment recipe. Sometimes, 
a step may have alternative recipes and alternative equipment types.  

Each step has an estimated process time and (maximum) batch size, based on the selected equipment and recipe. In dif-
fusion, there is a time limit within which a group of steps must be completed which makes the scheduling problem even 
harder. These restrictions define the queue timer limits. The maximum batch size defines the maximum number of lots that 
can be run at the same time on equipment with a selected recipe. 

2 MOTIVATION 

Dispatching used heavily in semiconductor manufacturing tries to customize a priority rule according to the current step and 
time, but even with enhancements for upstream and downstream data, current dispatching methods do not provide an easy 
way to coordinate decisions across equipment and time periods. One could argue that this issue is more prominent in diffu-
sion than any other area. This is mainly because the diffusion processes are long and the equipment across multiple stages al-
lows batching of lots of same type and process (recipe), which is essential for equipment utilization and throughput. Lot-
based dispatching implemented one-stage at a time, despite significant diffusion-related enhancements, cannot easily handle 
batching across multiple wafer types and optimize decisions across batching equipment. Considering that lots of some wafer 
types must be scrapped if they spend more than a given time between certain batching stages (queue timer limits), coordina-
tion of decisions across stages of production becomes even more important. Therefore, we study this area in detail to develop 
batching/scheduling models and algorithms that will capture the essentials in coordinating decisions over time and across 
stages/equipment. To make this discussion more concrete and to show how we actually attack the ever-challenging dispatch-
ing/scheduling problems, we detail the diffusion area problem below first as a mathematical model, and then discuss our heu-
ristic solution technique. 

3 LITERATURE REVIEW 

Although there exist many batching situations in manufacturing, two situations are most commonly studied from the schedul-
ing point of view: batching lots sharing the same setup on an equipment (serial batching) and batching lots on an equipment 
that can process several lots simultaneously (parallel batching) (Potts and Kovalyov, 2000). In parallel batching, an equip-
ment processes a batch of lots simultaneously like an oven. Different versions of the parallel batch scheduling problem are 
studied by Chandru et al.  (1993a, 1993b), Uzsoy et al. (1994, 1995), Ghazvini and DuPont (1998), Dobson and Nambima-
dom (2001) and Azizoglu and Webster (2001).  
 As parallel batching is closely related to furnace operations seen in diffusion, there are specific studies motivated by dif-
fusion issues. In this group, we list Mehta and Uzsoy (1998), Gurnani, Anupindi and Akella (1992), Balasubramanian et al. 
(2004), Perez et al. (2005), Monch et al. (2005), Weng and Leachman  (1993), and Fowler, Hogg and Phillips (2000), majori-
ty of which use enhancements to dispatching rules to facilitate batching, and test the approaches with simulation.  
 Unlike parallel batching, lots in a batch are processed sequentially in serial batching, and each batch is preceded by a se-
tup. The serial problem is first considered by Coffman et al. (1989, 1990), who show that the problem of minimizing total 
completion time with both identical and arbitrary lot processing times is polynomially solvable. Albers and Brucker (1993) 
show that the problem of minimizing the total weighted completion time is NP-hard unless the lot processing times are iden-
tical. The serial batch scheduling problem with the objective other than the total completion time is also studied (Hochbaum 
and Landy, 1994, Yuan and Yang, 2003). Unlike parallel batching, no limit on the batch size is considered in serial batching. 
One exception is a study by Cheng and Kovalyov (2001) who analyze a special case called bounded problem in which there 
is a limit on the number of lots that may be grouped together in a batch.  

4 OPTIMIZATION MODEL 

In this simplified version of the diffusion batching/scheduling problem, we assume that we have a set of lots I  (indexed by 
i ) to be scheduled over two stages of production, each with multiple equipment. The first stage is called sink (denoted by su-
perscript S ) and the second stage furnace (denoted by superscript F ). The set of sinks is SK , and furnaces FK , with the 
overall equipment set denoted by K , all indexed by k . Set of process recipes is L , with the usual distinction between SL  
and FL , all indexed by l . Batch processing is allowed only of the lots of the same process recipe. The equipment and recipe 
combination determines the operation in the usual scheduling sense. Prioritization of lots is captured with iπ , larger values 

denoting high priority in the processing sequence. Processing time of sink recipe l  per batch is S
lp  and the maximum batch 
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size (or capacity) of sink when running recipe l  is S
lb . We similarly define F

lp  and F
lb  for furnaces. Although both stages 

allow batch processing, the actual operation is different between the two: Because a sink has multiple tanks, each can start 
taking in a new batch as soon as a tank is available (while processing batches in other tanks). Hence, the slowest tank time 
denoted by S

lr  determines the delay time between the starts of two consecutive batches at a sink. Furnaces operate like an 
oven, i.e., a batch has to be finished completely before the next one is loaded. Set J  denotes the set of batches, which 
represent placeholders for lots. Without loss of generality and optimization, we assume that the batches are processed in the 
order of their index: batch 1 first, then batch 2, and so on. Hence, index j  denotes not only a batch but also a position in the 
processing sequence at an equipment, which helps greatly in modeling and makes the overall problem to be filling the 
batches with lots (assignment of lots to batches) while making sure that dynamics of the problem are properly captured across 
lots, batches, recipes, and equipment.  
 We have the following binary decision variables: 

kjiXX F
ijk

S
ijk  furnace)(or sink on  tion batch/posi  toassigned is lot  if 1: ,  

kjlWW F
jkl
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 The other decision variables control the start and completion times: 
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 Ignoring the nonnegativity/binary restrictions on the variables, we write the overall model:  
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 Here, the objective function (1) seeks to finish lots as quickly possible, weighting the lots according to their priorities. 
Constraints (2-9) are grouped according to their stages, the left for sink constraints, and the right for the furnace constraints. 
Constraints (2) find the batch start times, taking advantage of the presequenced batches in the order of their corresponding 
indices. Sinks have a delay between starting times of consecutive batches according to the recipe-based slowest tank time, 
while batches at furnaces cannot start until the previous batch is completed. Constraints (3) compute the batch completion 
times, considering the recipe-equipment specific processing times of batches. Constraints (4) make sure that each lot is as-
signed to exactly one batch on an equipment in each stage. Constraints (5) ensure that the number of lots in a batch does not 
exceed the maximum batch size (sink/furnace capacity in number of lots). Constraints (6) state that at most one recipe can be 
assigned to a batch on an equipment. Constraints (7) make sure that a lot of a certain recipe is assigned to a batch only if the 
batch is of that recipe. Constraints (8) align the lot and batch start and completion times at both stages without needing nonli-
near terms. Here, the big- M  constants can be tightly calculated to strengthen the LP bounds. Constraints (9) compute lot 
completion times given the lot start times at both stages. Constraints (10) make sure that a lot starts processing at a furnace 
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after it is completed at the sink. For queue timer lots, we can add constraints of the form i
S
i

F
i qBB +≤ , where iq  is the 

queue timer limit for lot i . 
 Note that the actual diffusion batching/scheduling problem is more complicated, mainly due to longer process flows 
(routings) potentially different across product types (some with sink-to-furnace (S-F) flows as presented here, but others with 
3 or more stages such as S-S-F, S-F-F, and S-F-F-S-F flows). Also note that batching compatibilities between product types 
change as they move in diffusion with changing recipes across multiple steps, making the product type less relevant for 
batching purposes.  Finally, equipment maximum batch sizes/capacities (especially furnaces) depend on assigned recipes, 
which is again different from the models considered in the literature. 
 Solving this optimization problem (even with its simplified flow) to optimality with exact methods is extremely chal-
lenging due to its size and overall complexity. As mentioned before, even the single-stage batching problems are NP-hard, 
which gives no hope for finding efficient exact algorithms for this model. Hence, we develop a heuristic method that finds 
fast (but not necessarily optimal) schedules.  The heuristic implementation at Freescale Semiconductor (called FaST, Fab 
Scheduling Tool) is explained next. 

5 SCHEDULING HEURISTIC 

As discussed earlier in the paper, due to the size and nature of this problem, optimization tools were not feasible so a heuristic 
algorithm is developed to solve this large scale complex problem. 
 The heuristic procedure has three distinct objectives while it schedules batches through the equipment: 

• Maximize equipment utilization by assigning highly ranked full batches and minimize the idle time between each 
batch run  

• Minimize the total queue (waiting) time of highly ranked lots which will also minimize the cycle times 
• Minimize the amount of expired lot timers by scheduling lots in timer loops on time 

 The heuristic is a batch-oriented and furnace driven algorithm. At each iteration, it tries to find the best batch based on 
the above objectives. The algorithm ends when the entire equipment capacity is used to schedule the current WIP within a 
user defined interval.  
 At any iteration, the best batch is defined to be the batch that has the highest number of most important lots that will in-
troduce the minimum idle time to the equipment it is assigned to. Having a full batch will satisfy the equipment utilization 
objective together with introducing the minimum idle time on a tool between batches. While forming batches, using a global 
dispatch rule that also considers the total queue time of a lot together with its overall importance to pick the lots to be as-
signed to batches will address the cycle time objective. If the heuristic finds an important lot on a timer loop, it will give pre-
cedence to these batches which will satisfy the minimization of the lot timer objective. 
 A rather sophisticated and multi-stage search algorithm is used while choosing the best batch of lots and best equipment 
for the best batch. During these assignments, all the constraints are evaluated one by one to keep the solution feasible. 
 There were several decision variables that affect the quality of the solution. There is a trade-off at certain cases such as: 

• Amount of time a batch should wait for an incoming lot or lots, i.e: there may be 2 lots available to be processed at 
time t but if we hold the batch for 30 more minutes, two more lots can be added. There is a tradeoff between trying 
to minimize the idle time on equipment by not waiting for incoming lots and increasing the batch size. 

• Physical lot location: A lot can be assigned to an equipment that will be available within a certain time in its current 
bay (i.e., physical area in which similar equipment types are grouped) or it can be assigned to an already idle equip-
ment in a different bay. There is a tradeoff between waiting in the current bay versus moving to a different bay that 
has an idle equipment. 

• Equipment selection for a batch. If a batch can be scheduled on more than one equipment, the algorithm has to 
choose one so that there are more available assignment alternatives for unscheduled batches.  Equipment assignment 
to a batch is also hard decision and requires advanced algorithms. In this heuristic approach, equipment with the 
most process restrictions is selected to maximize the possibilities for the other assignments. For example, if equip-
ment A can run 10 lots and equipment B can run 5 lots, if a lot can be processed on both A and B, the algorithm will 
choose equipment B to increase the possibility of assigning an equipment (say A) for incoming lots (10 of which are 
counted in the equipment selection) when needed.  

• Fixing the schedule. Due to real time and dynamic behavior of the system, if the algorithm is free to reschedule all 
available lots at its each run, the schedule may change dramatically. Changing the schedule regardless of what had 
been decided in the previous runs may be disruptive, considering the staging of batches, setting up equipment, etc. 
For example, operators stage the lots in front of the equipment based on the schedule and they prefer to minimize the 
moving of lots between areas and equipment in response to schedule changes. Therefore, it is not practical to run the 
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schedule from scratch every time. The algorithm uses a rule-based decision system to decide which batch to equip-
ment pairings from previous runs should be fixed (kept as is) or which fixed pairings should be released.  

• Buffer time between consecutive process steps. It is not practical to assume that a lot will be processed on its next 
step right after it completes its current step. The algorithm assigns a buffer time between consecutive process steps 
so operators will have enough time to move the lots between equipment. 

• Queue timer lot flag time. Lots with less time to expire their queue timer loops are prioritized higher. Lots with less 
time to expire than a certain threshold are expedited over other timer or non-timer lots.  

 To understand the underlying tradeoffs between different settings of these parameters and their interactions with each 
other, we have conducted a parametric computational study of over 100,000 runs with sampled actual data. The results 
showed that some of these parameters were critical and others were not. The critical parameters were set according to their 
impact on the scheduling objectives. We have been continuously observing the impacts of these parameters and adjust them 
based on inventory, equipment availability and product mix. 

5.1 System Design 

The algorithm explained in the previous section is supported by other components in the system design which provides data 
and user interface functionalities. The overall system is called Fab Scheduling Tool (FaST) which consists of three main 
components, Data Extraction, Scheduling Heuristic (algorithm engine), and Gantt-Chart based schedule viewer (Figure 2). 

 

 
 

Figure 2: High-level overview of the FaST architecture 
 

 Due to the complicated nature of semiconductor manufacturing, advanced Manufacturing Execution Systems (MES) are 
used for lot and equipment tracking, equipment integration and automation. Computerized and automated systems provide 
ways to facilitate paperless manufacturing and its management. MES is part of this system that keeps track of people, lot and 
equipment interactions. FaST’s input data is directly extracted from the MES. The data contains current Work-In-Process 
(WIP) lot snapshot, lot process flows (routings), equipment states (up, down, etc.), expected equipment up and down times, 
equipment maintenance information (preventive maintenance schedules), equipment recipe states (qualified or enables reci-
pes), process times and (maximum) batch sizes. This data is being extracted in real time and it is fed to the Scheduling En-
gine. 
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 Above data is maintained by the MES so that data always represents reality which enables FaST to be a real-time sche-
duling system.   
 Only WIP lots in the diffusion area or queued to arrive to diffusion are used in the extract. Each lot has average of 5 to 6 
processing steps in diffusion. We group the processing steps to be sink, furnace, or other (such as inspection, sorters). Each 
step can be processed using one of 3 to 4 alternate equipment recipes on one of 3 to 5 equipment. There are about 20 equip-
ment types with over 100 equipment within diffusion. Each equipment has 5 to 10 qualified process recipes. Equipment may 
have scheduled maintenance tasks or unscheduled down times. It takes about 90 seconds to extract the data required to feed 
the scheduler. 
 Extracted input data is moved to a Windows Server where the core scheduling engine runs. The scheduling engine is a 
heuristic based scheduler that is developed in Java and it can run on any platform that supports Java. The scheduler runs each 
time a new input data is provided by the data extraction component. The heuristic uses about 30 seconds of CPU to schedule 
2000 events (pairs of equipment and lot assignments). The scheduling horizon is set to be 24 hours. FaST creates a scheduled 
event list as an output to be sent to the schedule viewer module. (This output is also integrated to the existing dispatching ap-
plications so that the operators can follow the schedule with the standard MES interface that shows the operators the order of 
lots that need to be run on the shop floor) 
 Schedule viewer is the 3rd component of the system (see Figure 3 for an example screen snapshot). Gantt chart based 
schedule viewer is a Web-based GUI application that displays the scheduled events generated by the scheduler. The viewer 
helps supervisors and shift administrators to visualize the generated schedule. On this chart, we group lots in five classes, lots 
currently running on an equipment, non-timer lots, timer lots, expired timer lots, and lots whose down stream equipment is 
not available, and each group is shown with a different color.  

 

 
 

Figure 3: Gantt chart showing schedule for next 24 hours 
 

 Gantt chart has been also a very powerful tool to debug the algorithm. This makes it possible to validate the heuristic 
logic by following the flow of each batch. It also helps management and supervisors validate the accuracy of the heuristic. 
Gantt chart has several supporting reports to show scheduled batches on each equipment or equipment type (see Figure 4 for 
an example), available equipment recipes, expected equipment up or down times, current WIP displays, equipment history 
and individual lot flows. 
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Figure 4: Display of detailed lot schedule for a specific equipment 

5.2 Results to Date 

FaST has been designed and developed over 2 years at Freescale Semiconductor, Austin, TX. The project had over 40 human 
resources from IT, Manufacturing, Equipment Engineering, Process Engineering and Industrial Engineering for requirements 
definition, deployment, and implementation.  The FaST application has been deployed to one factory at Freescale with the 
intent to rollout to additional factories.   We have been able to cover 90% of the factory requirements. The benefits recog-
nized since May 2008 are: 

• 10% increase in throughput and a 25% decrease in inline cycle time in the area. 
• A reduction in end user time trying to decide which lots to run next.   
• The mean time between runs on the furnaces has been reduced by more than 10%. 
• The users have better visibility into what lots are coming to their equipment and when lots will be ready to unload 

allowing them to reduce idle time. 
 We were also able to release 4 resources that previously were dedicated to forming batches and scheduling them manual-
ly and use them for other projects.  Within a couple of days of deployment we had other areas asking for a scheduling system.  
Within a couple weeks we had all internal factories requesting the same system. This system opened a new era for how sche-
duling and the data that now becomes available within seconds (that took hours to process before) can be used in manufactur-
ing. One challenge that we were able to convert to an opportunity has been the critique that the project deployment received 
from people who were resistant to significant changes to existing scheduling protocols and procedures.  In this project, even 
those people are now giving ideas to the development team for next steps and enhancements.  In fact, the system has been so 
favorably/enthusiastically received that over 100 additional enhancement requests for extending the system capability in spe-
cific ways have been submitted by a combination of the manufacturing and engineering teams in just a few weeks following 
the deployment. Most of these have been addressed in newer versions that included these enhancements and bug fixes. 

5.3 Next Steps 

The team will engage in a phase II version of diffusion scheduling allowing us to cover the remaining 10% of scenarios as 
well as provide additional focus on maintenance tasks that have to be completed on equipment.  After phase II is completed 
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the team will continue to rollout the new FaST application to the other factories at Freescale (FSL). Below is a list of the fu-
ture enhancements planned for phase II: 

• Schedule when an equipment should be taken down for preventative maintenance. Since the scheduler knows when 
lots are scheduled to run on each equipment, it can opportunistically schedule maintenance tasks between batch 
runs. 

• Schedule lots that will be coming into diffusion in the next few hours. 
• Enhance algorithm to reduce recipes becoming unqualified because they have not run on an equipment within a cer-

tain number of days. 
• Enhance algorithm to look at WIP levels outside of diffusion and push lots to areas that need WIP. 
• Integrate scheduling with the material handling system so that lots can be moved to their scheduled area seamlessly. 
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