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ABSTRACT 

This paper demonstrates how an integer programming-based real-time scheduling heuristic approach can be applied for semi-
conductor manufacturing. Two integer programming formulations of a simplified version of this problem are proposed to 
model (1) a full-enumeration scheduling problem which minimizes the makespan (Cmax), and (2) a real-time scheduling 
problem which simply maximizes job assignments at the current state.  The real-time scheduler’s overall effectiveness in 
terms of solution quality and run time is evaluated through computer experiments. The real time scheduler is based on an 
iterative procedure to calculate the makespan, where a simulator is developed to read the integer programming output and to 
update the job and machine information at each state. The experimental study shows how a well-defined integer program-
ming-based real-time scheduling heuristic can generate a near-optimal solution. 

1 INTRODUCTION 

With the skyrocketing cost of semiconductor equipment, companies are challenged to develop quick, robust, and efficient 
dispatching and scheduling systems. In most semiconductor manufacturing companies, the roles of the scheduling and dis-
patching systems are differentiated: the dispatcher typically calculates job-to-machine assignment only for a given set of jobs 
or machines. This limited scope enables the dispatcher to respond quickly (i.e., within a few seconds) to system disturbances 
(Ham and Dillard 2005). In contrast, schedulers calculate a comprehensive series of job-to-machine assignments for all or a 
subset of jobs and machines available. The broader scope of scheduling may give a limitation on the scheduler’s speed, agili-
ty, and overall robustness. Since semiconductor manufacturing is surrounded by unpredictable system disturbances at every 
second—including machine failures (down to up, up to down, and maintenance), lot hold/releases, and engineering changes--
the scheduler’s response is often obsolete. Of course, with minimal effort, re-scheduling can be employed to adjust the sche-
duler’s decision. However, in many cases one disturbance forces the scheduler to generate a whole new set of schedules. To 
address this challenge, researchers have utilized improved computing power and algorithms to develop a more frequent short-
term scheduling method that can run every 5 to 10 minutes (Bixby et al. 2006; Govind et al. 2007). Despite certainly a signif-
icant improvement, the solution is still quite far from a real-time decision solution, which is very much needed for the many 
unpredictable system disturbances in semiconductor manufacturing. 
 Several real-time scheduling approaches have been discussed in flexible manufacturing systems. Maley et al. (1988) 
proposed a methodology for optimizing the control of an automated manufacturing facility by utilizing real-time guidance 
from a historical knowledge-based artificial intelligence system. Yih and Thesen (1991) formulated a class of real-time sche-
duling problems as semi-Markov decision problems. Fowler et al. (1992) demonstrated a real time control of batch semicon-
ductor manufacturing operations by using the knowledge of future lot arrivals. Kim and Kim (1994) proposed a scheduling 
mechanism where optimal job dispatching rule is dynamically selected based on information from discrete event simulation 
that evaluates a set of candidate rules.   
 Liao et al. (1996) developed an IP formulation to address the semiconductor scheduling problem. Because of the NP-
hard computational complexity of the formulation, they used Lagrangian Relaxation theory by assuming that, with infinite 
machine capacity, there was no need to form batches. They further developed an iterative heuristic algorithm to adjust the 
dual solution to a near-optimal, feasible schedule by taking advantage of the marginal cost interpretation of Lagrange multip-
liers and the network structure of the flow balance equations.  
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 More recently, Yu et al. (2002) discussed the scheduling of unrelated parallel machines in PWB manufacturing. They 
profiled a company that set out to create a schedule that would enable them to respond to unpredicted manufacturing events 
in under one minute.   With speed and efficiency as their dual goals, the team constructed an IP formulation with Lagrangian 
Relaxation to absorb complicating constraints into the objective function. 
  Moving on to selected integer programming-based shop floor scheduling approaches, some of the more groundbreaking 
studies include Manne’s (1960) linear programming model for a job-shop scheduling problem. Selen and Hott (1986) pro-
posed a goal programming model of the flow-shop scheduling problem to consider multiple objectives. Liao and You (1992) 
then extended Manne’s model by developing a job-shop scheduling problem with fewer constraints. Orcun et al. (2001) and 
Adams and Sherali (1990) presented several linearization techniques for the non linear integer programming models which 
contain quadratic cross-product terms. Stafford et al. (2005) investigated the performance of two families of integer pro-
gramming models for solving the simple flow-shop problem to minimize makespan.  
 Other notable heuristic approaches for  semiconductor scheduling include variants of the shifting bottleneck heuristic 
(Mason et al. 2002; Upasani et al. 2006), the generic algorithm (Malve and Uzsoy 2007; Chou 2007; Kashan et al. 2008), and 
simulated annealing (Erramilli and Mason 2006). 
  Practical integer programming-based approaches were first explored by Bixby et al. (2006). This paper described the 
practical implementation of a short interval area scheduler in a fully automated semiconductor fab. Their optimal solution 
contains a list of lot-step assignments to specific tools for a certain time horizon, and their algorithm uses dedicated schedu-
lers for each fab process area to reduce computation time. Govind et al. (2007) presented a similar optimization-based sche-
duler  in the photolithography area. They decomposed the fab scheduling problem into an individual area scheduling prob-
lem, enabling near real-time scheduling. In addition, they emphasized global targeting in order to compensate for the 
drawback of an area scheduler, which can lead to local optimality.  
 Building upon, expanding, and challenging studies past, this paper proposes an unprecedented method via integer pro-
gramming-based real-time scheduling which generates a near-optimal solution in dynamic semiconductor manufacturing. 
Two integer programming models of a simplified version of this problem are presented for the scheduling problem in semi-
conductor manufacturing: 
(1)  a full-enumeration scheduling problem which minimizes the makespan (Cmax),  
(2)  a real-time scheduling problem with production target that considers a line balance aspect while maximizing job assign-
ments at the current state.  
 The integer programming based full-enumeration scheduling model generates the optimal Cmax in a single calculation. 
In contrast, the integer programming-based real time scheduler requires multiple iterations to calculate the final Cmax. At 
each iteration, the previously assigned jobs move to the next steps and the machines are released. The real time scheduler 
then calculates a schedule for the new state. The iterations continue until the last job finishes at the last step. 

2 METHODOLOGY 

We made several assumptions to simplify the semiconductor scheduling problem to make it solvable. 
• No setups are required. 
• All jobs are available at time zero. 
• Each step has an identical processing time of one time unit. 

 Key among these assumptions is an assumption of identical processing time. There are two reasons : the first one is that 
we plan to conduct the computational study with a relatively large set of problem instances, i.e., 30-60 jobs with 10-15 steps, 
in order to begin to understand the practical effect in a real fab. The assumption permits us to reduce the number of integer 
variables dramatically. The second reason is the software usability difficulty. Without the assumption, discrete event simula-
tion software would be required. This is problematic because the software, which communicates with the linear programming 
solver at every job-to-machine assignment decision, is very difficult to implement. Our assumption permits us to write a 
small amount of code to simulate the wafer flow. To illustrate this, consider the very small problem instance defined in Table 
1. Column 1 shows the sequence of steps, column 2 shows the processing time, column 3 shows the available machines, and 
column 4 shows the initial inventory positioned at the beginning of the specified step.  
 

Table 1:  Small process flow with three steps 
Step Processing Time Machines Jobs 

1 1 1, 2 3 
2 1 2 0 
3 1 1,2 0 
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 As shown, jobs are randomly queued at each step. Jobs at step 1 can be processed by either machine 1 or 2 with one unit 
of processing time. The jobs then move to step 2 where only machine 2 can be used. At step 3, machines 1 and 2 are can be 
used. Finally, the jobs exit the flow. The objective is to minimize the maximum completion time of all jobs. The optimal 
Cmax of 5  is clearly demonstrated in Figure 1. 
  

Job 1 S1, M1 S2, M2 S3, M1    
Job 2 S1, M2 Wait S2, M2 S3, M1   
Job 3 Wait S1, M1 Wait S2, M2 S3, M1  
 t0 t1 t2 t3 t4 t5 

Figure 1: Optimal schedule of small process flow with three steps 
 

 At time 0, the scheduler assigns job 1 at step 1 to machine 1 and job 2 at step 1 to machine 2. At time 1, the scheduler as-
signs job 1 at step 2 to machine 2 and job 3 at step 1 to machine 1. At time 2, it assigns job 1 at step 3 to machine 1 and job 2 
at step 2 to machine 2. At time 3, it assigns job 2 at step 3 to machine 1 and job 3 at step 2 to machine 2. Finally, at time 3, 
the scheduler assigns job 3 at step 3 to machine 1. 
 Figure 2 shows a non-optimal schedule with the optimal Cmax of 7.  

 
Job 1 S1, M1 Wait S2, M2 S3, M2        
Job 2 S1, M2 Wait Wait Wait S2, M2 S3, M2    
Job 3 Wait S1, M2 Wait Wait Wait S2, M1 S3, M2  
 t0 t1 t2 t3 t4 t5 t6 t7 

Figure 2: Non-optimal schedule of small process flow with three steps 
 
 At time 0, the scheduler assigns job 1 at step 1 to machine 1 and job 2 at step 1 to machine 2. At time 1, the scheduler as-
signs job 3 at step 1 to machine 2 which makes machine 1 idle. At time 2, it assigns job 1 at step 2 to machine 2. At time 3, it 
assigns job 1 at step 3 to machine 2.  At time 4, it assigns job 2 at step 2 to machine 2. At time 5, it assigns job 2 at step 3 to 
machine 2 and job 3 at step 2 to machine 1. Finally, at time 3, the scheduler assigns job 3 at step 3 to machine 2.  
 With our manufacturing challenges clearly defined, we now turn our attention to the integer programming models, notes 
as follows: 
 
 Parameters: 
 t Number of steps (or states) ahead  
 Ij0 Initial number of jobs at step j 
 
 Decision variables: 
 xijk 1 if machine i is assigned to step j at time k; 0 otherwise 
 
 Bookkeepng variables: 

Ijk Number of jobs at step j and time k 
 Cj Number of jobs already processed at step j 
 
Note that index i refers to machines, index j refers to steps and index k refers to times. The problem description is addressed 
with an example. Section 2.1 and 2.2 show the integer programming models for the given problem. 

2.1 Integer programming-based full-enumeration scheduling model (OPT) 

  
Minimize    Cmax  (1) 
subject to   
m

ijk jk
i 1

x I                                                           j ,k
=

≤ ∀∑  (2) 

1
s

ijk
j 1

x                                                              i,k
=

≤ ∀∑  (3) 
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 In summary, the objective (1) is to minimize the maximum completion time of all jobs. Constraint set 2 ensures that the 
machine will not be assigned more inventory than available. Constraint set 3 ensures that the number of jobs assigned to a 
machine cannot exceed the machine capacity, which is 1. Flow balance is the focus of constraint sets 4 and 5, where invento-
ry is defined as follows: Current inventory – Outgoing inventory + Incoming inventory.  
 Constraint set (6) ensures that each job visits each step. Constraint set 7 determines the makespan and Constraint set (8) 
imposes the binary restrictions on the X variables. This total enumeration model demonstrates the optimal solution that will 
minimize the maximum completion time of all jobs. Though we explore this model in theory, we recognize that it cannot ac-
tually be used in real semiconductor manufacturing, where every second is very expensive. Instead, we propose using an in-
teger programming-based real-time scheduler model (discussed in section 2.2 below) to attack the practical problems in sem-
iconductor scheduling. While the model below cannot guarantee global optimality, it can determine a solution in a near-real 
time. 

2.2 Integer programming-based real-time scheduler model (RTS) 

The objective of this model is to maximize job assignments at the current time bucket and the next t time buckets. As t is in-
creased, the model generates a higher quality solution. When t is equal to Cmax, it becomes a full enumeration model. In this 
paper, we set t to 1 so that it considers the current and very next time buckets only. The model gives a higher weight to the 
current time bucket job assignment and a relatively lower weight to the next time bucket job assignment. 
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Loop   
 
 The real-time scheduler’s constraint sets are similar to those of the full enumeration scheduler. Constraint set 10 prohi-
bits the machines from being assigned more inventory than what is available. Constraint set 11 dictates that the number of 
jobs assigned to a machine should not exceed the machine capacity of 1. Constraint sets 12 and 13 ensure balance of flow. 
After the MIP with objective function (9) and constraint sets (10)-(14) has been run, equations 14 and the equations described 
in (15) – (17) are run to update the input parameters for the next iteration. The Ij0 variables are the inventory positions and the 
weight variables (Cj) keep track of the number of job assignments at each step. The objective (9) gives a higher weight to an 
under-run step and a lower weight to an over-run step, which helps the jobs flow through the production line seamlessly. 

3 COMPUTATIONAL STUDY 

To evaluate the performance of our real-time scheduling heuristic approach, we conducted a broad set of computational expe-
riments using randomly generated test instances. First, we used AMAT /RTD software language to generate the integer-
programming models. 
 
 
 
 
 
 
 

 

 

 

Figure 3: System flow of full-enumeration scheduling model 
 

 The optimization-based full-enumeration scheduling model (OPT) is then solved with ILOG/CPLEX 9.1 as shown in 
Figure 3, but the optimization based real-time scheduling model (RTS) is solved with the MIP solver within lpSolve 5.5 as 
shown in Figure 4. Solver lpSolve 5.5 has been selected because it provides a user-friendly interface. However, lpSolve 5.5 
could not be used to solve the full enumeration model (OPT), which is quite sizable. Unlike the above full-enumeration sche-
duling model, the real-time scheduling model generates the decision only for a current time bucket. A simulator is therefore 
required to simulate the job flow. However, no simulator yet supports the flexible interface to the linear programming solver, 
especially when the linear programming model will be continuously updated based on a previous output. Since each job has 
an identical processing time, we developed a simulator to read the integer programming output and update the job informa-
tion.  

Build IP model (AMAT/RTD) 

Solve IP model (CPLEX 9.1) 
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Figure 4: System flow of real time scheduling model 

 

In this experimentation environment, section 3.1 demonstrates the computational results. 

3.1 Small Dataset Results 

 For the small dataset, we randomly generated the numerical values of the problem parameters according to the previous 
assumptions. Table 2 presents the 2*2*2*2combinations of the factors to be investigated on the semiconductor manufacturing 
flow problem instances (Montgomery 2004). 
 

Table 2: Factors for the small problem instances 
Factor Levels Total levels 
Number of steps 10, 15 2 
Number of jobs 30, 60 2 
Number of machines 3, 5 2 
Scheduling Methods OPT, RTS 2 
Replication Randomly generated machine qualifications 5 
Total Problem Instances 2*2*2*2*5 80 

 
 The results in Table 3 reveal the Cmax values for the problem instances.. Column 1 shows the number of steps, col-

umn 2 shows the number of machines, and column 3 shows the replications. Column 4 reports the best Cmax from OPT 
model generated by CPLEX, column 5 reports the best Cmax from RTS model, and column 6 reports the percentage above 
optimal which is calculated as Cmax (RTS) / Cmax(OPT). The results for 60 jobs instances haves the same columns. As one 
can see, RTS maintains a clear focus on long-term performance. It does so by giving a higher weight to an under-run step and 
a lower weight to an over-run step, enabling jobs to flow through the production line more seamlessly. This approach results 
in 1%-3% above optimal (on average). 

 
 
 
 
 
 
 
 

Build IP model (AMAT/RTD) 

Solve IP (lpSolve 5.5) 

Read IP output and update jobs 
(AMAT/RTD) 

Repeat until no job available 
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Table 3: Results (Cmax) for small problem instances 

      30 jobs 60 jobs 
    Run OPT RTS RTS/OPT OPT RTS RTS/OPT 

10 steps 3 machines 1 55 56 1.02  125 129 1.03  
  2 92 92 1.00  161 161 1.00  
  3 41 43 1.05  122 124 1.02  
  4 36 36 1.00  99 100 1.01  
  5 75 76 1.01  143 145 1.01  
 sub avg       1.02      1.01  
 5 machines 1 17 18 1.06  56 57 1.02  
  2 24 24 1.00  72 72 1.00  
  3 29 29 1.00  63 64 1.02  
  4 27 29 1.07  65 68 1.05  
  5 35 36 1.03  64 64 1.00  
  sub avg       1.03      1.02  

15 steps 3 machines 1 52 53 1.02  124 125 1.01  
  2 77 77 1.00  165 166 1.01  
  3 65 65 1.00  127 127 1.00  
  4 62 62 1.00  140 141 1.01  
  5 69 70 1.01  173 174 1.01  
 sub avg       1.01      1.01  
 5 machines 1 37 38 1.03  85 86 1.01  
  2 52 54 1.04  64 65 1.02  
  3 42 44 1.05  88 90 1.02  
  4 38 38 1.00  89 90 1.01  
  5 37 40 1.08  71 72 1.01  
 sub avg       1.04      1.02  
 grand avg    1.02    1.01  

 
 

 Regarding the computational run time shown in Table 4, RTS returned the solutions within one second. Although the 
size of the problem instances tested is small, we expect that the RTS solution time will be reasonable even for large problem 
instances since the problem is solved for only a single period at a time  Notice that the full enumeration IP model (OPT) re-
quires setting a maximum value of t. Although the Cmax value generated from RTS is used as t, which provides a very strong 
lower bound (permitting us to reduce the number of integer variables), the integer programming-based full enumeration mod-
el still takes up to 3404 seconds. 

 
 
 
 
 
 
 
 
 
 

1663



Ham, Lee and Fowler 
 

Table 4: Solution time in seconds of small problem instances 
    Run 30 jobs 60 jobs 

10 steps 3 machine 1 2.08  17.67  
  2 3.70  4.32  
  3 1.68  23.18  
  4 0.77  13.20  
  5 6.60  35.22  
 sub avg   2.97  18.72  
 5machines 1 0.40  7.63  
  2 0.17  4.87  
  3 1.55  3.48  
  4 1.72  5.17  
  5 2.52  4.80  
  sub avg   1.27  5.19  

15 steps 3machines 1 12.92  299.97  
  2 21.47  1963.10  
  3 17.08  71.13  
  4 8.92  598.13  
  5 24.58  3404.35  
 sub avg   16.99  1267.34  
 5machines 1 6.92  14.83  
  2 22.57  9.05  
  3 21.32  70.93  
  4 6.02  41.18  
  5 6.63  22.48  
  sub avg   12.69  31.69  
grand avg   8.48  330.73  

 
Table 5 represents the ANOVA analysis of the four factors in the experimental design. Based on the p-values, we see that the 
model is a significant factor in this design of experiment. 
 

Table 5: ANOVA results of small dataset 
Source DF Sum of Squares F Ratio Prob > F 

Machines 1 73804.8 177.5448 <.0001 
Steps 1 1657.63 3.9876 0.0482 
Jobs 1 109565.63 263.571 <.0001 

Scheduling Methods 2 4615.8 5.5519 0.005 
 

4 CONCLUSION 

In this paper, we have proposed a binary inter programming-based real-time scheduling heuristic approach for non-standard 
job-shop flow. To accomplish this, we developed two integer programming formulations of a simplified version of this prob-
lem, as follows: (1) a full-enumeration scheduling problem which minimizes Cmax and (2) a real-time scheduling problem 
with a production target that considers a line balance aspect while maximizing job assignments at the current state.  
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 The computational study shows that the well-defined integer programming based real-time scheduling model can gener-
ate a near-optimal solution, 1-3% above optimal in average. We will later try more realistic problem instances with 25 steps, 
120 jobs, and 7 machines. 
 A real-time scheduling approach is even more important in a dynamic fab environment where a diverse range of unpre-
dictable system disturbances are the norm.  
 For future research, an integer programming-based real-time semiconductor scheduler--with batching, setups, delay 
times, and hot job--will be developed. We note that  a real-time scheduling approach similar to the one developed in this pa-
per might be appropriate for other industries, including airline scheduling and chemical blending scheduling.  
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