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ABSTRACT

Suppose that we have a set of emissions reduction technologies whose greenhouse gas abatement potential is unknown,
and we wish to find an optimal portfolio (subset) of these technologies. Due to the interaction between technologies, the
effectiveness of a portfolio can only be observed through expensive field implementations. We view this problem as an online
optimal learning problem with correlated prior beliefs, where the performance of a portfolio of technologies in one project
is used to guide choices for future projects. Given the large number of potential portfolios, we propose a learning policy
which uses Monte Carlo sampling to narrow down the choice set to a relatively small number of promising portfolios, and
then applies a one-period look-ahead approach using knowledge gradients to choose among this reduced set. We present
experimental evidence that this policy is competitive against other online learning policies that consider the entire choice set.

1 INTRODUCTION

We consider the problem of reducing greenhouse gas emissions by refitting residential households with various existing and
emerging technologies. A study by McKinsey & Company (2007) finds potential for emissions abatement in some of the
following areas:

• Residential lighting
• Energy-efficient water heaters
• Energy-efficient appliances
• Improved ventilation systems
• Efficient air conditioning equipment
• Heating systems and furnaces
• Increased use of solar energy (solar panels)
• Fuel economy packages for cars
• New shell improvements for residential buildings
• Shell retrofits for residential buildings

Suppose that we wish to combine some of these emissions-reducing technologies into a portfolio. We do not know the
true emissions abatement that can be achieved by choosing any given portfolio, but we do have certain prior information
about the abatement potential. Different technologies may interact in unknown ways, so the overall abatement potential of
a portfolio is best measured by installing that portfolio into one or more residential buildings. By doing so, we can obtain
more accurate information about the effectiveness of that portfolio, as well as all other portfolios that contain one or more
of the same technologies.

Suppose that we are allowed to make N sequential trials. Each trial allows us to observe a sample realization of the
abatement potential of a portfolio by observing the effectiveness of that portfolio in a group of buildings. Because each such
trial is expensive, our objective is to allocate the trials in such a way as to maximize the total effectiveness of all portfolios
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chosen for testing. Thus, the problem can be viewed as an online subset selection problem. Depending on the total number
of technologies available, as well as the size of the desired portfolio, the number of possible portfolios may be very large.

Viewed in this way, the problem can be treated as a multi-armed bandit problem, where each subset is a distinct “alternative”
with an unknown reward (abatement potential), and we maximize the total reward collected across all measurements. The
traditional multi-armed bandit problem, which assumes that all alternatives have independent rewards, has been widely
studied. A major breakthrough in this area was the development of index policies. In an index policy, every alternative
is assigned a number which depends only on our most recent beliefs about that alternative, considered separately from all
other alternatives. The policy then measures the alternative with the largest index. For certain classes of index policies,
primarily those based on upper confidence bounds, the work by Lai and Robbins (1985) provides bounds on the number
of times suboptimal alternatives are measured. The culmination of the index policy approach is the Gittins index policy
(Gittins and Jones 1974, Gittins 1989), which is asymptotically optimal as N → ∞ in the presence of a discount factor.
Additionally, there are many other general heuristics (described e.g. by Powell 2007) that have been proposed for online
learning problems. These include interval estimation (Kaelbling 1993), the Boltzmann exploration policy, pure exploitation,
and so on. An empirical comparison of some heuristics is available in Vermorel and Mohri (2005).

However, the portfolio selection problem described above has one crucial feature that is not considered by the traditional
bandit literature, namely the presence of correlated beliefs. If two energy portfolios have one or more technologies in
common, then their rewards are correlated. By observing the effectiveness of one portfolio, we also learn something about
other portfolios that we believe to be similar. The correlated case has been studied by Pandey et al. (2007), but only in the
case of binomial rewards. The ability to handle correlated beliefs is important in the context of energy portfolio selection,
because our measurement budget N may only allow us to look at a small portion of the (possibly very large) set of alternatives.
Thus, it becomes especially important to be able to use the correlation structure of the problem to intelligently choose those
portfolios that provide the most useful information about the entire set of choices.

Our analysis builds on the knowledge gradient (KG) principle, originally developed by Gupta and Miescke (1996) and
later studied by Chick et al. (2009) and Frazier et al. (2008) for the ranking and selection problem. This problem is the
offline version of the multi-armed bandit problem: the objective is solely to find the alternative with the highest reward, with
no additional regard for the outcome of each trial. The KG policy for ranking and selection always chooses the alternative
that would be optimal if it were the last alternative we were allowed to measure. Thus, the policy yields the greatest expected
single-period improvement in the estimate of the best reward. It is optimal for N = 1 by construction; as N → ∞, it is
guaranteed to find the best reward in an offline setting. In practice, it performs well for other values of N also. The KG
concept was extended by Frazier et al. (2009) to the ranking and selection problem with correlated beliefs, and by Chick
et al. (2009) to a setting with uncorrelated beliefs and unknown measurement noise. The first KG policy for online problems
was given by Ryzhov et al. (2008), and studied by Ryzhov and Powell (2009) in the specific context of subset selection. A
summary of this work is given in Section 3.1.

An important advantage of KG in the previously studied problems has been its usability. In many settings, knowledge
gradients are easy to calculate, unlike Gittins indices, which are well-known to be difficult to compute (see Katehakis and
Veinott Jr 1987 and Duff 1995 for approaches to this issue). Furthermore, there is experimental evidence (Ryzhov et al.
2008) that suggests that the online KG policy is competitive against the Gittins policy even when the Gittins indices are
known exactly. However, knowledge gradient methods require significantly more computational effort than simpler heuristics
such as interval estimation or approximated Gittins indices (Yao 2006). When the number of alternatives become large, it
becomes expensive to consider the correlation structure of the problem when making decisions.

In this paper, we propose a modification of the online KG policy that uses Monte Carlo sampling to reduce the set of
choices, and then runs existing KG algorithms on the reduced set. We compare the Monte Carlo KG policy (MCKG) against
three other learning policies in the context of energy portfolio selection: an undiscounted, finite-horizon setting where the
number of choices makes it costly to compute knowledge gradients for every possible portfolio, and the time horizon N is
much smaller than the size of the choice set. Our experiments demonstrate that MCKG retains the KG policy’s ability to
consider correlations when making a decision, while incurring little cost in performance relative to other policies.

2 MATHEMATICAL MODEL

We present a mathematical model for an online learning problem with multivariate normal rewards and a general covariance
structure. This model has been previously used by Frazier et al. (2009) for the correlated ranking and selection problem.
Suppose that there are M distinct energy portfolios. In every time step, we can perform a trial on any one portfolio of our
choice. By measuring portfolio x, we make a random observation µ̂x ∼N

(
µx,σ

2
ε

)
of the effectiveness of x. The quantity

µx is the true abatement potential of portfolio x, and is unknown to us. Letting µ = (µ1, ...,µM)T be the vector of true values
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for all portfolios, we can express our initial beliefs about the true values with a multivariate normal distribution,

µ ∼N
(
µ

0,Σ0) ,

where µ0 =
(
µ0

1 , ...,µ0
M
)

is a vector containing our beliefs about each portfolio, and Σ0 is an M×M matrix representing
the uncertainty of our beliefs, as well as the covariance structure of the true values. The initial parameters µ0 and Σ0 thus
completely characterize our prior beliefs about all portfolios.

Let F n be the sigma-algebra generated by our choices of portfolios for the first n trials, as well as the observations we
made of their true values. We denote by IEn the expected value given F n, and we say that something happens “at time n”
if it happens after we have made exactly n observations, and before we have made our decision about the (n+1)st trial.
Then, we can define µn = IEn

µ to be our beliefs about µ after making exactly n measurements. Similarly, Σn = Var (µ |F n)
represents the time-n uncertainty and correlation structure of our beliefs. Thus, at time n, we believe that µ ∼N (µn,Σn).

If we measure portfolio xn at time n, the evolution of our beliefs is given by the equations

µ
n+1 = µ

n +
µ̂

n+1
xn −µn

x

σ2
ε +Σn

xnxn
Σ

nexn (1)

Σ
n+1 = Σ

n− ΣnexneT
xnΣn

σ2
ε +Σn

xnxn
(2)

where µ̂
n+1
xn is the random observation we make as a result of the measurement, and exn is a column vector with component

xn equal to 1 and all other components equal to zero. Thus, one measurement has the potential to change our entire vector
of beliefs, and the new beliefs will have less uncertainty because the components of Σn+1 are smaller than the components
of Σn. We assume that the random rewards µ̂n

xn are independent of each other, conditionally on xn.
We define the knowledge state sn = (µn,Σn). The knowledge state completely characterizes our beliefs about all portfolios

at time n. Then, we can write sn+1 = KM
(
sn,xn, µ̂

n+1
xn
)
, where the transition function KM is described by (1) and (2).

The energy portfolio problem is an online learning problem because we have to actually implement portfolios (a costly
and time-consuming procedure), and live with their performance, as we are learning. We assume that we are allowed to
make N trials in all, followed by one final reward at time N. When we allocate a trial at time n, we are allowed to use the
information encoded in sn to make our decision. Our goal is to find a set of rules for allocating each trial efficiently based
on the most recent information available at a given time. A measurement policy π represents a collection of decision rules
Xπ,n for n = 0, ...,N. The decision rule Xπ,n maps a knowledge state sn to a point in {1, ...,M} representing an alternative.
We require that Xπ,n be measurable with respect to F n, that is, the decision rule at time n is allowed to know the past
leading up to time n, but not the future. Our objective is to choose a measurement policy π that achieves

sup
π

IEπ
N

∑
n=0

µXπ,n(sn).

The value of following a policy π , starting in knowledge state sn at time n, is given by Bellman’s equation for dynamic
programming, first adapted to the context of optimal learning problems by DeGroot (1970):

V π,n (sn) = µ
n
Xπ,n(sn) + IEnV π,n+1

(
KM
(

sn,Xπ,n (sn) , µ̂
n+1
Xπ,n(sn)

))
(3)

V π,N (sN) = max
x

µ
N
x . (4)

At time N, we can collect only one more reward, and the information we collect from this reward will no longer be useful, so
we choose the alternative that seems to be the best based on the most recent information. At time n < N, we expect to collect
a reward of µn

Xπ,n(sn) from the portfolio we measure, as well as an expected downstream reward for future measurements.
The best possible measurement policy satisfies a similar equation

V ∗,n (sn) = max
x

µ
n
x + IEnV π,n+1 (KM (sn,x, µ̂

n+1
x
))

(5)

V ∗,N
(
sN) = max

x
µ

N
x . (6)
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We take a time-n expectation of the downstream reward because sn+1 evolves stochastically from sn according to the transition
function KM .

3 THE MONTE-CARLO KNOWLEDGE GRADIENT POLICY

We review the existing work on knowledge gradients, including their extension to correlated online problems. We then
propose a measurement policy that uses Monte Carlo simulation to reduce the set of alternatives, and then applies online KG
methods to that reduced set. This methodology can be used to reduce the computational effort needed to calculate knowledge
gradients in the energy portfolio problem, where the number of alternatives can be relatively large.

3.1 Overview of Knowledge Gradients

We briefly summarize the derivation of the online KG policy given by Ryzhov et al. (2008) and Ryzhov and Powell (2009).
Suppose that it is time n, and we have reached state sn. Now, suppose that the knowledge state will remain fixed for the rest
of the time horizon, that is, sn′ = sn for all n′ > n. We will continue to select portfolios and collect rewards at each time
step, but these rewards will no longer impact our beliefs through (1) and (2). Then the best possible policy is the one that
always chooses the alternative that we believe to be the best given the most current information. The expected total reward
obtained by this “stop-learning” policy (which we abbreviate as SL) is

V SL,n (sn) = (N−n+1)max
x

µ
n
x (7)

because we will collect exactly N−n+1 more rewards until the end of the time horizon.
The knowledge gradient concept first arose in the work by Gupta and Miescke (1994) in the context of the ranking and

selection problem. Abstracted from that setting, it can be stated as, “choosing the measurement that would be optimal if
it were our last chance to learn.” Suppose that the time-n measurement is now the last measurement that will change our
beliefs. That is, sn+1 = KM

(
sn,xn, µ̂

n+1
xn
)

as usual, but sn′ = sn+1 for all n′ > n+1. Then, after we decide what to do at time
n, we will switch to the SL policy starting at time n + 1. The KG decision rule following from this assumption is found
using Bellman’s equation:

XKG,n (sn) = argmax
x

µ
n
x + IEnV SL,n+1 (KM (sn,x, µ̂

n+1
x
))

= argmax
x

µ
n
x +(N−n) IEn max

x′
µ

n+1
x′

= argmax
x

µ
n
x +(N−n) IEn

(
max

x′
µ

n+1
x′ −max

x′
µ

n
x′

)
. (8)

The last equality holds because the quantity maxx′ µ
n
x′ does not affect the argmax. The quantity

ν
KG,n
x = IEn

(
max

x′
µ

n+1
x′ −max

x′
µ

n
x′

)
is called the knowledge gradient of portfolio x at time n. Thus, the KG policy yields the decision rule

XKG,n (sn) = argmax
x

µ
n
x +(N−n)ν

KG,n
x . (9)

It remains to compute the quantity νKG,n. In the special case where Σ0 is diagonal (all portfolios are assumed to be
independent), the knowledge gradient can be found using the explicit formula (Gupta and Miescke 1996, Frazier et al. 2008)

ν
KG,n
x = σ̃

n
x · f

(
−
∣∣∣∣µn

x −maxx′ 6=x µn
x′

σ̃n
x

∣∣∣∣) (10)

where σ̃n
x =

√
(σn

x )2−
(
σ

n+1
x
)2

is the variance reduction achieved by measuring x and f (z) = zΦ(z)+φ (z) with Φ, φ being
the standard normal cdf and pdf, respectively. For arbitrary covariance matrices, the knowledge gradient is given by (Frazier
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et al. 2009)

ν
KG,n
x =

M−1

∑
y=1

bn
y+1−bn

y√
σ2

ε +Σn
xx

f
(
−
∣∣cy
∣∣) (11)

where f is as before, the vector bn is equal to the xth column of Σn with the components sorted in increasing order, and
the numbers cy are such that

y = argmax
x′

µ
n
x′ +

Σn
x′,x√

σ2
ε +Σn

xx
· z z ∈ [cy−1,cy)

with ties broken by the largest-index rule. The work by Frazier et al. (2009) provides a method for computing (11) exactly.
Much of the research done on online learning problems has been devoted to the development of index policies of the

form Xπ,n (sn) = argmaxx µn
x + Ix (µn

x ,Σn
xx), where the index Ix of choice x depends only on our beliefs about choice x. Index

policies can be shown to have desirable asymptotic properties in the case where Σ0 is diagonal. In particular, the work by
Lai and Robbins (1985) establishes that the expected number of times suboptimal choices are measured under a certain class
of index policies is O(logN). Various index policies for which this property holds were put forth by Auer et al. (2002),
although these policies rely on restrictive assumptions about the range of the true values. Furthermore, the Gittins index
policy by Gittins (1989) is known to collect information optimally if the choices are independent.

The knowledge gradient policy is not an index policy. It is clear from (10) and (11) that the knowledge gradient depends
on our beliefs about all choices, not just the one under consideration. However, it is precisely this feature that makes the
KG policy suitable for correlated problems, such as the problem of energy portfolio selection. Index policies are inherently
not designed for this setting, because they rely on the ability to look at each choice separately from the others, ignoring the
covariance structure of the problem. The work by Ryzhov et al. (2008) derives a number of theoretical properties of the KG
policy, such as a bound on V KG,n (sn), and presents experimental evidence showing that online KG is competitive against
Gittins indices even when the latter are known exactly.

3.2 Action Elimination Using Monte Carlo Sampling

For a problem with arbitrary Σ0, the KG decision rule given by (9) requires us to compute ν
KG,n
x for all x and all n.

The algorithm given by Frazier et al. (2009) for computing the knowledge gradients in a single time step has complexity
O
(
M2 logM

)
. In the energy problem under consideration, if there are many portfolios to choose from, it can be expensive to

simulate the performance of the KG policy over many sample paths. We propose a method that uses Monte Carlo sampling
to reduce the set of choices.

The intuition behind this procedure is as follows. Experimental work (see e.g. Ryzhov and Powell 2009) suggests that,
in many online optimal learning problems, measurement policies such as KG and Gittins indices do not explore the entire
choice set, instead preferring to vacillate between a small number of choices that “look good.” The problem reduces to
refining the distinctions between these top choices. We can use Monte Carlo sampling to find those top choices, and limit
the KG computations to those choices only.

Suppose that we are at time n and knowledge state sn. We can generate K sample realizations of the random variable
µ̄n∼N (µn,Σn). Let µ̄n (ωk) be the kth sample realization. Then, µ̄n (ωk) is an M-vector for each k. Let xk = argmaxx µ̄n

x (ωk)
be the energy portfolio that appears to be the best, based on this sample realization. Because some of our Monte Carlo
samples may have the same argmax, let K0 be the number of distinct portfolios obtained from this procedure, and let x1, ...,xK0
represent those distinct portfolios. Now define a matrix An of size M×K0 by

An =
[
ex1 ... ex0

]
.

Then the equations

µ
MC,n = (An)T

µ
n, (12)

Σ
MC,n = (An)T

Σ
nAn, (13)
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1. Begin with an initial knowledge state s0 =
(
µ0,σ0

)
, and set n = 0.

2. Let R = /0. For k = 1, ...,K, do the following:

(a) Generate a Monte Carlo sample µ̄n (ωk) from the distribution N (µn,Σn).

(b) Let y = argmaxx µ̄n
x (ωk).

(c) If y /∈ R, then add y to R.

3. Letting K0 = |R| and x1, ...,xK0 be the elements of R, compute µMC,n and ΣMC,n using (12) and (13).
4. If K0 = 1, let xn = x1. Otherwise, compute

max
k

µ
n
xk

+(N−n)ν
MCKG,n
xk

,

where ν
MCKG,n
xk is as in (11), using K0 instead of M, and µMC,n and ΣMC,n instead of µn and Σn. Let xn be the

choice that achieves this maximum.
5. Observe a random measurement µ̂

n+1
xn ∼N

(
µxn ,σ2

ε

)
.

6. Compute sn+1 using (1) and (2).
7. Let n = n+1. If n < N, go to step 2.
8. Compute maxx µN

x and measure the alternative that achieves this maximum.

Figure 1: Summary of the online MCKG policy

give the parameters of the time-n marginal distribution of
(

µx1 , ...,µxK0

)
. We can then apply the decision rule

XMCKG,n (sn) = argmax
k

µ
n
xk

+(N−n)ν
MCKG,n
xk

(14)

where the knowledge gradients νMCKG,n are computed by running existing KG algorithms on the reduced choice set{
x1, ...,xK0

}
with time-n distribution characterized by µMC,n and ΣMC,n. This policy, which we call the Monte Carlo KG

policy, is summarized in Figure 1.
To put it in words, we first find a set of K0 different portfolios by generating K Monte Carlo samples of the time-n

distribution of our beliefs, and taking the portfolio that seems to be the best from each sample. Then, given F n, the vector
of true values for those portfolios has a multivariate normal distribution with mean µMC,n and covariance matrix ΣMC,n. We
can now compute knowledge gradients for the K0 portfolios generated, and repeat the computation (11) using µMC,n and
ΣMC,n instead of µn and Σn. This procedure returns a portfolio XMCKG,n (sn).

The KG policy prefers to visit either those portfolios that we believe to be very good (the ones with high µn
x ), or those

portfolios that seem to have a lot of uncertainty and correlation with other portfolios (those with high ν
KG,n
x ). Intuitively,

these are precisely the choices that will emerge from the Monte Carlo sampling. When we draw from the distribution
N (µn,Σn), the most likely winners are either those portfolios with the highest µn

x , or those portfolios with slightly lower
µn

x but larger uncertainty.
The cost of computing knowledge gradients for every portfolio in a single time step is O

(
M2 logM

)
, whereas the

cost of generating a single Monte Carlo sample from N (µn,Σn) using the Cholesky factorization of Σn is O
(
M3
)
. In

practice, however, the computation of Cholesky factorizations in modern linear algebra packages (e.g. in MATLAB) has been
extensively optimized, and the Monte Carlo samples can be generated as quickly as, or faster than, the knowledge gradients.

4 EXPERIMENTAL RESULTS

We compared the Monte Carlo KG policy to other learning policies in the context of the energy portfolio selection problem.
On average, MCKG is significantly better than the other policies tested across 100 randomly generated problems. Furthermore,
MCKG can achieve good performance with a small sample size, effectively eliminating the majority of the choice set.
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4.1 Setup of Experiments

The most reliable way to validate a measurement policy is to run it on a problem where the true values of the choices are
known, and evaluate its ability to find the true best choice. In practice, the true values are rarely known, but we can test a
policy on randomly generated problems where the true values are fixed. We do not allow the policy to see the true values
while it is making a decision, but we can use the true values to evaluate its performance at the end.

We compared MCKG to several measurement policies by running them on 100 randomly generated problems, using our
motivating example of energy portfolio selection to provide context. We considered the problem of choosing a portfolio of
five technologies out of the list of ten technologies given in Section 1. Thus, the size of the choice set we considered was
M =

(10
5

)
= 252. The MCKG policy can handle large problems, but showing that one policy performs better than another

requires extensive additional computational effort (in our case, we ran each policy 104 times on each problem we generated)
that makes such analysis costly for very large M. The value of M given, however, is still large enough to make action
elimination valuable, since we chose a time horizon that was an order of magnitude less than the size of the choice set.

The initial data for one problem consists of a vector µ containing the true values of each portfolio, a prior
(
µ0,Σ0

)
to represent our initial beliefs, and a measurement error σ2

ε . Each problem has M = 252 distinct choices. We set the time
horizon to N = 25, allowing ourselves to visit at most ten percent of the choice set. The study by McKinsey & Company
(2007) finds that individual emissions reduction technologies, if they were to be put into use throughout the entire United
States, could have abatement potential ranging from 0.2 to 3.0 gigatons of CO2 equivalent per year. We generated our prior
beliefs µ0 about the abatement potential of a portfolio of five technologies from a uniform distribution on the interval [3,10].
The initial variances were set to be 4, to roughly indicate that the true values were in a similar interval. The correlation
coefficient of portfolios x and y was chosen to be 1

5 c, where c ∈ {0,1,2,3,4} is the number of technologies that x and y had
in common. The measurement error was chosen to be σ2

ε = 3, to reflect a situation where the observed effectiveness of a
portfolio can vary fairly widely between groups of buildings. Finally, the true rewards µ were generated from a multivariate
normal distribution with mean µ0 and covariance matrix Σ0. This represents a situation where our prior provides us with
reasonably accurate information about the portfolios.

We ran each measurement policy 104 times on each problem. Our performance measure for each policy is the average
opportunity cost per true reward collected, which we define as

Cπ =
(

max
x

µx

)
− 1

N +1

N

∑
n=0

µXπ,n(sn)

for a generic policy π . We can then compare two policies by taking the difference of their opportunity costs. Thus,

Cπ2 −Cπ1 =
1

N +1

N

∑
n=0

µXπ1,n(sn)−µXπ2 ,n(sn) (15)

is the amount by which policy π1 outperforms (or underperforms) policy π2 on average in a single trial. In the interests of
accuracy, this quantity is computed using the true rewards µ , which were randomly generated at the start of all experiments.

For each policy, the 104 runs were divided into groups of 500 to obtain approximately normal samples of average
opportunity cost and the standard errors of these averages. The standard error of (15) is the square root of the sum of the
squared standard errors of Cπ1 and Cπ2 . In all, we tested five policies, which are briefly described below.

Monte Carlo KG (MCKG). The online MCKG policy is defined by the decision rule (14). The computation of knowledge
gradients was implemented using the algorithm from Frazier et al. (2009). The number of samples was chosen to be K = 25.
Thus, we only compute knowledge gradients for at most 10% of the choice set in every time step.

Independent KG (IndKG). The independent KG policy is defined by (9) with (10) used to compute knowledge gradients.
This policy ignores the covariance structure and takes what would be the one-period look-ahead action if the portfolios were
independent. The complexity of this policy is O(M), and thus we do not use Monte Carlo sampling to reduce the choice set.

Gittins indices (Gitt). The Gittins decision rule, designed for discounted infinite-horizon problems, is given by

XGitt,n (sn) = argmax
x

µ
n
x +σε ·Γ(Σn

xx,γ)

where γ is the discount factor and Γ(Σn
xx,γ) is the Gittins index of portfolio x based on the information available at time n.

To simplify this computation, we can approximate (σn
x )2 ≈ 1

Nn
x

where Nn
x is the number of times portfolio x has been visited

1498



Ryzhov and Powell

up to and including time n, which yields the decision rule

XGitt,n (sn) = argmax
x

µ
n
x +σε ·Γ(Nn

x ,γ) .

Our problem is not discounted, so we view γ as a tunable parameter. Gittins indices are typically difficult to compute; in
order to allow ourselves to tune the discount factor and consider values of γ for which the exact Gittins indices are unknown,
we use the following approximation from Yao (2006). Define a function

Ψ(s) =



√ s
2 s≤ 0.2

0.49−0.11s−
1
2 0.2 < s≤ 1

0.63−0.26s−
1
2 1 < s≤ 5

0.77−0.57s−
1
2 5 < s≤ 15

(2logs− log logs− log16π)−
1
2 s > 15

Now let s =− 1
n logγ

and define

Γ
LB (n,γ) =

1√
n

Ψ(s)− 0.583n−1
√

1+n−1

Γ
UB (n,γ) =

1√
n

√
s
2
− 0.583n−1
√

1+n−1
.

Finally, take the Gittins index to be

Γ(n,γ)≈ 1
2
(
Γ

LB (n,γ)+Γ
UB (n,γ)

)
.

This approximation will perform very well for any value of γ , as long as n is high enough. However, it can be inaccurate
for low values of n and high values of γ . In our experiments, we found that the approximation worked best for γ ≈ 0.9.

Interval estimation (IE). The IE decision rule by Kaelbling (1993) is given by

X IE,n (sn) = argmax
x

µ
n
x +
√

Σn
xx · zα/2

where zα/2 is a tunable parameter. The performance of IE is highly sensitive to the choice of tuning parameter: low values
of zα/2 yield very good performance on many problems, but very bad performance on a significant proportion of problems,
whereas high values reduce the extreme cases, but cause a drop in overall performance. We set zα/2 = 1, which somewhat
reduced the outliers while giving good performance on most problems.

Pure exploitation (Exp). The pure exploitation decision rule is given by XExp,n (sn) = argmaxx µn
x . It requires no tuning,

and does not take the uncertainty of our beliefs into account.
We used MATLAB to generate the problems and implement all five policies. The efficient linear algebra routines in

this software make it an attractive environment in which to run the Monte Carlo KG policy.

4.2 Main Results

For each comparison of MCKG to another policy, we obtained 100 samples of the difference in (15), one for each problem
we generated. Table 1 gives the means and average standard errors of our estimates of (15) across the 100 problems, for
N = 25. On average, the MCKG outperformed all competing policies by a statistically significant amount.

Table 1: Means and standard errors for the experiments

MCKG-IndKG MCKG-Gitt MCKG-IE MCKG-Exp
Mean 0.0116 0.0930 0.0395 0.4915
Avg. SE 0.0071 0.0069 0.0071 0.0075
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Figure 2: Histograms of the sampled difference in opportunity cost for MCKG vs. other policies

Figure 2 shows the distribution of the sampled differences. Each histogram is labeled with the two policies that were
compared, and gives the number of times the first policy outperformed the second. Bars to the right of zero indicate that
the first policy outperformed the second policy, and bars to the left of zero indicate the opposite. Thus, for instance, we see
that the MCKG policy outperformed the Gittins heuristic in 76/100 problems.

We see that the MCKG policy outperformed all competitors more than 60% of the time. In many cases, the difference
in performance was small. However, all comparisons exhibit significant positive tails. For example, there are problems
where the abatement potential of every portfolio chosen by MCKG is (on average) greater than the abatement potential of
the portfolio chosen by pure exploitation by as much as 3 gigatons of CO2 equivalent per year.

In the case of the pure exploitation policy, we see notable negative tails. About one third of the time, the abatement
potential of the pure exploitation portfolio is greater than the abatement potential of the MCKG portfolio by up to 1 gigaton
of CO2 equivalent per year. This behaviour arises from the fact that, in these experiments, the true values are generated
from the prior values. Because the prior is accurate on average, it is often the case that the portfolio that seems to be the
best at the very start of the trials is actually the true best portfolio, and pure exploitation immediately finds it. However,
when the alternative with the highest prior value is not the true best alternative, we start to observe severe positive tails.

We also examined the number of distinct portfolios measured by each policy. The average values across 100 problems
are given in Table 2. Although our time horizon allows us to look at up to 10% of the choice set, all five policies explore
less than 4%. As expected, the pure exploitation policy does the least exploration. The MCKG policy is in the middle;
because it takes correlations between portfolios into consideration when making decisions, it can afford to explore less than
independent KG and the Gittins heuristic, which were designed for uncorrelated problems. Although the MCKG policy only
looks at the learning potential of a reduced choice set, it still explores enough alternatives to achieve good performance.

4.3 Effect of Sample Size on KG Performance

Finally, we consider the effect of the sample size K on the performance of the MCKG policy. We chose the problem on which
MCKG achieved its median performance (out of the full set of 100), and ran MCKG on that problem for K = 5,10, ...,100.

Table 2: Number of distinct portfolios examined by each policy

Policy MCKG IndKG Gitt IE Exp
No. Explored 5.8325 6.2111 10.0880 5.5957 2.1988
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Figure 3: Effect of sample size K on performance of MCKG policy

Figure 3(a) shows the effect of K on CMCKG for this problem. It is easily seen that larger values of K result in noticeably
improved performance up to around K = 30. After that, the improvement is less than 0.01 for each increment of K, and
begins to fluctuate. We conclude that K = 30 is sufficient to generate all the portfolios which MCKG would be interested
in measuring, and larger values of K increase computational time without resulting in more exploration.

Figure 3(b) shows the effect of K on the number of distinct portfolios examined by MCKG. We see that MCKG does
much more exploration for small values of K. The number of distinct alternatives steadily decreases until around K = 30,
then levels off. For small sample sizes, the reduced choice set does not include all the portfolios that the knowledge gradient
policy should look at in order to make a decision, causing MCKG to explore more in search of those portfolios. When K
is large enough for all such portfolios to be included, MCKG limits itself to them. To obtain satisfactory performance, it is
sufficient to limit K to 10% of the full choice set.

5 CONCLUSION

We have proposed a decision rule for online learning problems. The MCKG policy is based on the logic of knowledge
gradients, but uses Monte Carlo sampling to compute knowledge gradients for a small subset of the choice set. In a problem
where the measurement budget is smaller than the number of choices by an order of magnitude, MCKG is effective at finding
the most interesting choices. We compared the MCKG policy to several other learning policies in the context of energy
portfolio selection, and found that it was competitive against the other policies tested. We believe that the Monte Carlo-based
methodology we have proposed is a reliable approach to learning problems. In particular, the usefulness of MCKG would
increase in a situation where we could obtain a sample realization of the best alternative, but where it would be difficult to
enumerate every alternative.
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