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ABSTRACT

The Generation Expansion Planning (GEP) problem is a highly constrained, large-scale, mixed integer nonlinear programming
problem. The objective of the GEP problem is to evaluate the least cost investment plan for addition of power generating
units over a planning period subject to demand, availability, and security constraints. In this paper, a GEP model is presented
and the Cross-Entropy (CE) optimization method is developed to solve the problem. The CE method is an effective algorithm
for solving large combinatorial optimization problems. The main advantage of the CE method over other metaheuristic
techniques is that it does not require decomposition of the problem into a master problem and operation subproblems, greatly
reducing the computational complexity. This method also provides a fast and reliable convergence to the optimal solution.

1 INTRODUCTION

The electric power industries worldwide have been witnessing tremendous growth, especially in developing nations. Optimum
investment policies for addition of new generation utilities in order to satisfy increased demands have to be determined.
Decisions like when to commission what kind of utilities are essential. In order to facilitate planners, several determin-
istic (Turvey and Anderson 1977, Anderson 1972) as well as stochastic models (Park, Lee, and Youn 1985, Mankki 1991,
Mo, Hegge, and Wangensteen 1991, Gorenstin et al. 1993) have been proposed to simulate generation expansion planning.
Stochastic models consider uncertainties in future demand, fuel costs etc. Deterministic models are used to evaluate plans for
a number of predetermined scenarios. Game theoretic models (Chuang, Wu, and Varaiya 2001) have also been developed
to simulate competition within industry.

The objective of the GEP problem is to determine the minimum cost plan for setting up power generation utilities in
order to satisfy future electricity demand. The plan includes decisions such as type of plant, capacity, time of introduction,
and the utilization of each plant in the following years. For example, a planner may choose from a 2MW windmill which
can only supply peaking power, or a 2000MW nuclear plant for base power. Each plan has to be devised under several
constraints like reliabilty, demand and required fuel mix. These constraints ensure that the proposed plans ensure a stable
supply to the required reliability levels. For example, a plan must have an appropriate mix of coal, hydro, gas, wind and
other technologies, as supply of any one kind of fuel is unreliable. Apart from the cost objective, these models have been
extended to a multicriteria optimization as well. Minimization of environmental costs, or a combination of the environmental
and economic costs may be carried out.

GEP models are large scale and higly constrained, and may have discrete as well as continous decision vari-
ables. A number of methodologies including linear programming (Turvey and Anderson 1977, Climaco et al. 1995), non-
linear programming (Turvey and Anderson 1977), decomposition methods (Dantzig et al. 1989), dynamic programming
(Ryuya Tanabe 1992), expert systems (David and Rongda 1991), fuzzy logic (Satoh and Serizawa 1989), immune algo-
rithms (Chen, Zhan, and Tsay 2006), simulated annealing (Yildirim, Erkan, and Ozturk 2006), particle swarm optimization
(Kannan et al. 2004) and genetic algorithms (Park, Park, and Won 1998, Sirikum and Techanitisawad 2006) have been used
to solve the GEP problem. A comparison of metaheuristic techniques is presented in (Kannan, Slochanal, and Padhy 2005).
Commercial packages such as WASP (Jenkins and Joy 1974) and EGEAS (Caramanis, Schweppe, and Tabors 1982) have
also been developed using dynamic programming with heuristic tunneling techniques.
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In this paper we present a new method to solve the GEP problem. The Cross-Entropy method (Rubinstein and Kroese 2004)
was originally devised as an algorithm for rare event simulation (Rubinstein 1997). Later, it was also proven to be a simple and
effective algorithm suited to solve both stochastic and deterministic combinatorial optimization problems (Rubinstein 2001). It
has also been extended to solving continuous multi-extremal optimization problems (Kroese, Porotsky, and Rubinstein 2006).
The CE method is witnessing an increasing number of applications including queing networks (de Boer 2000), re-
liability systems (Kroese, Hui, and Nariai 2007), vehicle routing (Chepuri and Homem-de Mello 2005), optimal control
(Sani and Kroese 2008) etc. Several applications of the CE method have reported better and faster solutions than other
randomized algorithms. Recently, effective parallel computation implementations (Evans, Keith, and Kroese 2007) have been
introduced, improving the performance manifold. It has also been presented to the power systems community as an effective
tool for solving the unit commitment problem as well (Ernst et al. 2007).

Traditionally, GEP problems have been solved using dynamic programming by decomposing it into a master problem
and a number of subproblems. The master problem determines the optimal investment for setting up new utilities, while the
subproblems determine the least operating cost for the utilities, given the demand, availability, and reliability constraints.
In this paper we propose a simple and efficient implementation of the Cross-Entropy method for solving the GEP problem
without resorting to decomposition heuristics. It will also be evident that the CE method does not require much tweaking of its
parameters to suit different problems. Hence, it is a problem independent procedure, unlike other optimization metaheuristics.

The rest of this paper is organized as follows. Section 2 presents the GEP model used. Section 3 provides a brief
overview of the CE methodology and also shows how it is applied to the GEP problem. Finally, we apply the CE method
to a synthetic GEP problem and provide the results.

2 PROBLEM FORMULATION

The problem discussed in this paper is based on the deterministic GEP model of (Turvey and Anderson 1977), as presented
in (Sirikum and Techanitisawad 2006). This particular model has been used as it may incorporate more advanced constraints
like location, pollution and pollutant concentration; and may also include Demand Side Management(DSM) programs.
However, since our focus is on presenting the effectiveness of the CE method as a viable alternative technique, we have
neglected the less important constraints.

Apart from the initial investment costs, the parameters include a forecasted demand curve, a load duration curve, the
variable fuel and maintenance costs, the discount rate, the allowable loss of load probability, the desired reserve margin, as
well as plant characteristics such as availability and capacity factor. Relevant nomenclature is presented in Appendix A.

A simplified problem is formulated as follows.

2.1 GEP Model

Define a vector Ynt as:

Ynt =

{
1, if unit n is set up at or before year t,

0,otherwise.

Objective function: Minimise the total discounted cost Z,

Z =
T


t=1

N


n=1

wt(int − snt) ·Ynt +
P


p=1

T


t=1

N


n=1

( fnt p + vnt p) ·Gntp ·dp, (1)

subject to the following constraints:

1. Power demand constraint:

(1− l) ·
(

N


n=1

Gntp

)
≥ qtp, ∀t, p. (2)

2. Capacity constraint:

Gnt p ≤ ant ·Ynt · pnt , ∀t,n, p. (3)
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3. Thermal energy availability constraint:

P


p=1

(Gntp ·dp) ≤ 8760 · cn ·Ynt · pnt , ∀t,n. (4)

4. Reliability constraints:

(a) Reserve margin constraint:

(1− l) ·
(

N


n=1

ant ·Xnt · pnt

)
≥ (1+R) ·qtp, ∀t, p. (5)

(b) LOLP constraint:

t ≤ ∗t , ∀t. (6)

5. Non-negativity constraints

Gnt p ≥ 0, ∀n, t, p.

Xnt Binary.

The objective function (1) is the sum of the discounted (i.e. present worth) of capital costs, fuel costs and the maintenance
costs. The present worth of any distributed investment is calculated as

PW =
N


t=0

Ct

(1+ r)t

where Ct and r represent the investment and the discount rate for year t, respectively. Hence, the discount factor is defined
as wt = (1+ r)−t .

The power demand constraint (2) ensures that the net available power is greater than the demand for each season. The
capacity constraint (3) restricts the power production of each plant below its capacity. Fuel availability can be included in
the thermal energy constraint (4). Reserve margin required above the peak demand is included in (5), while the LOLP limit
can be applied using (6). The LOLP is calculated using the cumulant method as described in (Stremel et al. 1980) and also
applied in (Sirikum and Techanitisawad 2006). It is the source of the nonlinearity of the problem.

It must be realised that the disadvantage of this model is that each additional candidate plant increases the dimension of
the solution space. On the other hand, this also affords the planner the flexibility to parameterise each plant independently,
rather than create sets of plants based on common plant characteristics like fuel used. The limit on any particular type of
plant may be applied by limiting the number of candidate plants, or by explicitly defining a constraint in the program.

3 THE CROSS ENTROPY METHOD

3.1 Overview of the CE method

The Cross-Entropy(CE) method is a novel Monte Carlo method that has proven successful for solving combinatorial optimisation
problems. It is a simple and versatile algorithm suited to a large number of problems. The CE tutorial (de Boer et al. 2004)
is a gentle introduction to this optimisation technique. Essentially, the CE method is an iterative Monte Carlo procedure in
which each iteration can be described as follows:

1. Generate a random data sample according to a specified mechanism.
2. Update the parameters of the random mechanism based on the data to produce a “better” sample in the next iteration.

This step involves a cross-entropy minimisation procedure.
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The CE method is rooted in well known statistical principles. It uses the Importance Sampling(IS) technique by
minimising the Kullback-Leibler, or cross-entropy, distance between the optimal zero-variance measure pdf and the chosen
importance sampling distribution.

A detailed derivation is presented in (Rubinstein and Kroese 2004). Suppose we wish to maximise the function Z(x),
where x is a vector or state in set X . Let us denote the maximum by ∗. Thus,

∗ = max
x∈X

Z(x) = Z(x∗).

Now, instead of searching for x∗ directly in the set X , we define a family of pdf’s f (·;v),v ∈ V on X and solve a related
estimation problem, called the associated stochastic problem, namely, the estimation of the probability:

�() = Pu(Z(X) ≥ ) = EuI{Z(X)≥},

where X is a random vector with pdf f (·,u), for some u ∈ V , and  is left unspecified. For  ≈ ∗, � will be very small
and under the optimal IS measure, X ≈ x∗. The CE method works by adaptively changing the probability density parameter
v towards the optimal density v∗. This results in a sequence of tuples (̂t , v̂t) which converge quickly to a “degenerate”
optimal tuple (̂∗, v̂∗).

The CE method is initialised by choosing an initial v̂0. N represents the number of samples generated in each iteration.
It is assumed to be a fixed number. The parameter  represents the fraction of “best” performing samples, and is used to
calculate  . Usually,  is of the order of 10−2. The iterative procedure is as follows:

1. Adaptive updating of t . For a fixed vt−1, let t be the (1−)-quantile of Z(X) under vt−1. That is, t satisfies

Pvt−1(Z(X) ≥ t) ≥ ,

Pvt−1(Z(X) ≤ t) ≥ 1−.

A simple estimator ̂t of t can be obtained by taking a random sample X1,X2, . . . ,XN from f (·;vt−1) and evaluating
the sample (1−)-quantile of performances as:

̂t = Z(�(1−)N	), (7)

where Z(1) ≤ Z(2) ≤ . . . ≤ Z(N).
2. Adaptive updating of vt . For fixed t and vt−1, derive vt from the solution of the cross-entropy program:

max
v

D(v) = max
v

Evt−1I{Z(X)≥t} ln f (X;v). (8)

The stochastic counterpart of equation (8) is as follows: for fixed ̂t and v̂t−1, derive v̂t from the following program:

max
v

D̂(v) = max
v

1
N

N


i=1

I{Z(Xi)≥̂t} ln f (Xi;v). (9)

Remark In order to slow the convergence to avoid a sub-optimal solution, we use the following smoothed updating
instead of the above solution:

v̂t =  ṽt +(1−)v̂t−1, (10)

where ṽt is the parameter obtained from (9).  is called the smoothing parameter and usually 0.7 ≤  ≤ 1. A detailed
explanation of smoothing procedures is available in (Kroese, Porotsky, and Rubinstein 2006).

Typically, the sampling pdf is chosen such that it belongs to a Natural Exponential Family (e.g., Gaussian or Bernoulli).
This enables an analytical solution of (9). Refer to (Rubinstein and Kroese 2004) for further explanation. Algorithm 1
summarises how the samples are generated and updated to result in a optimal solution.
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Algorithm 1 Generic CE Algorithm for Optimisation
1: Choose some ṽ0. Set t = 1.
2: Generate a sample X1,X2, . . . ,XN from the density f (·; v̂t−1) and compute the sample (1-)-quantile ̂t of the performances

according to (7).
3: Use the same sample and solve the stochastic program (9). Denote the solution by ṽt .
4: Apply (10) to smooth out vector ṽt .
5: Repeat steps 2-4 until stopping criterion is met.

3.2 CE Method for GEP

In the presented model of the GEP, both discrete and continuous decision variables have to be worked with. Let X be the
vector of binary decision variables Xnt . Recall that each element Xnt represents whether or not candidate plant n has been set
up at year t. At each stage of the CE algorithm the sampling pdf for X is multi-variate Bernoulli with success probability
vector p̂. We write X ∼ Ber(p̂). In particular, the components of X are independent, and

T


j=0

P(Xn j = 1) =
T


j=0

p̂n j = 1.

We have assumed p̂n0 to be the possibility of not selecting plant n at all.

Algorithm 2 CE Algorithm for GEP Optimisation
1: Initialise p̂0, and ̂0, ̂0. Set j = 0.
2: Increment j by 1. Using distributions Ber(p̂ j−1) and N(̂ j−1, ̂ j−1), generate pairs of acceptable samples (X1,G1),

(X2,G2), . . . , (XN ,GN).
3: Calculate the performances Z(Xi,Gi) for all 1 ≤ i ≤ N. Let I be the indices of the Nelite best performing samples, i.e.

for which the performance is least.
4: Update the parameters:

p̃ jnt =
N

k=1 I{k∈I } I{Xknt=1}
Nelite , ∀n, t

̃ jnt p =
i∈I Gint p

Nelite , ∀n, t, p.

and

̃ jnt p =
i∈I (Gint p − ̃ jnt p)

2

Nelite . ∀n, t, p.

5: Smooth:

p̂ j = p̃ j +(1−)p̂ j−1,

̂ j = ̃ j +(1−)̂ j−1,

̂ j = ̃ j +(1−)̂ j−1.

6: Repeat from step 2 until stopping criterion is met.

The second decision vector G represents the utilisation of each plant. Each element Gntp is sampled from a Gaussian
distribution N(̂nt p, ̂nt p). Algorithm 2 shows the CE algorithm for the GEP problem. In the course of the optimisation,
each N(̂nt p, ̂nt p) should converge to a degenerate distribution with the final ̂nt p being the resultant utilisation for each
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season. A possible stopping criterion is when maxnt p ≤  , where  ≈ 0.1, or when ̂t does not change for a few iterations.
Figure 4 shows the convergence of maxnt p for a sample run of the GEP program.

4 NUMERICAL RESULTS

The computer program for the CE method implementation is developed in C++. The tests are carried out on a 3GHz Linux
machine with 1GB RAM.

4.1 Test System Descriptions

The proposed CE method was applied to a synthetic test problem. A 10 year planning period with stages at 1-year intervals
is considered. Table 2 shows that data for the existing plants. Table 1 lists the candidate plants.

4.2 GEP and CE Parameters

The peak power demand is considered to be 1600MW at year zero with a 10% annual rise. The load duration curve is
simplified as shown in Figure 1. It is discretized into 3 parts. LOLP limit is taken to be 0.01, the discount rate is 8.5%.
System losses are 5% of the produced power, while the reserve margin is 15% of the peak load. The CE parameters required
no tweaking and were kept constant for all the runs. The number of samples was set at 2,000 and  was set to 0.05. The
stopping criterion was chosen as maxnt p < 0.01.

Table 1: Data of candidate plants

Type Capacity FOR Cap. Fuel Maint.
cost cost cost

(MW) (%) ( $/kW) ($/MWh) ($/kW)
P1:Coal 1000 6 735 4.21 30
P2:Oil 300 8 341 11.30 30
P3:Oil 300 8 341 11.30 30
P4:Oil 700 6 390 9.24 30
P5:Oil 700 6 390 9.24 30
P6:Lignite 300 8 400 9.88 30
P7:Lignite 300 8 400 9.88 30
P8:Lignite 300 8 400 9.88 30
P9:Lignite 300 8 400 9.88 30
P10:Lignite 300 8 400 9.88 30
P11:Gas 300 6 152 12.16 30
P12:Gas 300 6 152 12.16 30
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Figure 1: Load duration curve, P = 3
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Figure 2: Convergence of the cost function, Z
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Figure 3: Execution time for different planning periods

Table 2: Data of existing plants

Type Capacity FOR Cap. Fuel Maint.
cost cost cost

(MW) (%) ( $/kW) ($/MWh) ($/kW)
E1:Coal 1000 6 7350 4.21 30
E2:Oil 300 8 3410 11.30 30
E3:Oil 700 6 3900 9.24 30
E4:Lignite 300 8 4000 9.88 30
E5:Gas 300 6 1520 12.16 30
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Figure 4: Convergence of  for N = 2000,  = 0.05
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Figure 5: Convergence of Bernoulli probabilities for N = 2000,
 = 0.05

4.3 Numerical Results

The results for a sample 10 year run of the CE implementation are presented in Table 3. As expected, the simulation prefers
to set up the larger plants, with lower running costs, earlier than the smaller peaking plants. Figure 2 shows the convergence
of the cost function, while Figure 4 displays the convergence of the maximum standard deviation, max ̂nt p, for each iteration.
Figure 5 displays the convergence of p̂nt . It represents the values farthest away from their respective final values, at each
run. It can be seen that the CE algorithm quickly solves the unit selection master problem, and then converges to optimal
values of the subproblem. It was also noticed that the CE method provided the optimal solution 7 out of 10 times, with
runtimes and deviations as shown in Table 4. Figure 3 displays the execution time for different number of stages.

The CE program also compares favourably with other techniques applied to GEP optimisation. A higher repeatability
is achieved, while execution times are comparable to prior works (Sirikum, Techanitisawad, and Kachitvichyanukul 2007).
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Table 3: Results of simulation

Plant Capacity Utilisation at peak demand for each year (MW)
(MW) 1 2 3 4 5 6 7 8 9 10

E1 1000 836.495 781.644 775.421 798.636 797.505 787.941 866.351 843.138 863.197 892.644
E2 300 196.29 104.485 172.302 185.022 148.97 128.368 131.08 186.017 184.115 214.034
E3 700 559.018 426.252 485.46 514.363 490.868 457.213 502.492 514.488 516.679 578.014
E4 300 213.396 174.912 146.728 152.041 176.544 160.679 174.233 178.462 197.407 213.13
E5 300 150.787 118.004 146.98 144.714 156.449 175.512 170.805 148.31 168.541 228.913
P1 300 0 0 0 0 0 0 0 0 0 0
P2 300 0 0 0 0 0 0 0 0 0 0
P3 300 0 0 0 0 0 0 0 0 0 0
P4 700 0 0 0 0 0 288.462 407.952 467.154 513.135 590.679
P5 300 0 0 0 0 0 0 0 0 168.803 200.952
P6 1000 0 546.433 639.955 808.693 686.508 781.737 783.258 820.076 869.49 897.562
P7 300 0 0 0 0 0 0 0 0 0 0
P8 300 0 0 0 0 0 0 0 154.206 154.555 204.458
P9 300 0 0 0 0 0 0 0 0 0 0

P10 300 0 0 0 0 0 0 0 0 0 0
P11 700 0 0 0 0 406.803 370.097 428.95 499.687 556.551 591.459
P12 300 0 0 0 0 0 0 0 0 0 0

Table 4: Summary of results for 10 year execution

Runs Performance ($ 109) Runtime (min)
Best Worst Avg. Best Worst Avg.

10 6.7897 6.8121 6.7903 21 23 21

5 CONCLUSION

This paper addressed the GEP problem by elucidating a novel CE method toward its solution. The method has proven
efficient for large nonlinear discrete and continuous constrained optimisation problems, and has several advantages. There
is no need to formulate and solve the operation subproblem. The CE method is capable of optimal multivariate solutions
without these heuristics. This greatly reduced the complexity of the program. Another advantage as compared to other
numerical optimisation procedures is that the CE parameters need not be tweaked for each run. The simulation results also
show that CE provides for greater repeatability with comparable execution times. This method results in robust solutions for
each problem as the algorithm itself is problem independent.
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A NOMENCLATURE

Indices
n Generating unit, (n = 1,2, . . . ,N).
p Season of load duration curve, (p = 1,2, . . . ,P).
t Year of operation of generating units (t = 1,2, . . . ,T ).
Parameters
t Actual loss of load probability in year t.
∗t Allowable loss of load probability in year t.
ant Availability of generating unit n in year t (%).
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dp Duration of season p (hours).
fnt p Fuel cost per unit energy output from plant n in year t and season p ($).
int Investment cost of plant n in year t ($).
l Transmission and distribution losses (%).
cn Annual capacity factor for plant n (%).
pnt Power capacity of generating unit n in year t.
qtp Power demand in season p in year t.
R Reserve margin (%).
snt Salvage values of generating unit n in year t.
wt Discount factor (%).
Z Total discounted cost function.

Decision Variables
Gntp Utilisation of generating unit n in year t and season p (MW).

Xnt

{
1, if unit n is set up at year t,

0,otherwise.
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