A TIME-BASED FORMALISM FOR THE VALIDATION OF SEMANTIC COMPOSABILITY

Claudia Szabo
Yong Meng Teo

Department of Computer Science
13 Computing Drive
National University of Singapore
Singapore 117417, SINGAPORE

Simon See

Sun Microsystems Inc.
1 Magazine Road
Singapore 059567, SINGAPORE

ABSTRACT

Simulation components are semantically composable if the newly composed model is meaningful in terms of expressed behaviors, and achieves the desired objective. The validation of semantic composability is challenging because reused simulation components are heterogeneous in nature and validation must consider various aspects including logical, temporal, and formal. In this paper, we propose a new time-based formal approach for semantic composability validation. Our validation process provides a formal composition validation guarantee by establishing the behavioral equivalence between the composed model and a perfect model. Next, composition behaviors are compared through time using semantically related composition states. We evaluate our formal approach using time complexity and experimental analysis using the CADP analyzer.

1 INTRODUCTION

Composability, an appealing approach of growing interest to the simulation community (Kasputis and Ng 2000, Pidd 2004), aims to reduce the time and cost of developing complex simulations. Simulation composability (Petty and Weisel 2003a) can be defined as “the capability to select and assemble simulation components in various combinations to satisfy user requirements”. Component-based frameworks that employ reused simulation component promise shorter development time and increased flexibility in meeting diverse user needs (Petty and Weisel 2003a). However, there are still many challenges in composable simulations, and the most important include mechanisms for the selection and assembly of simulation components, meaningful run-time interoperation between simulation models (Yilmaz and Paspuleti 2005), as well as semantic composability (Bartholet et al. 2004, Kasputis and Ng 2000, Petty and Weisel 2003a), and semantic composition validation (Davis and Tolk 2007).

Several challenges make the validation of semantic composability an important focus of research in the simulation community in recent years (Petty and Weisel 2003a, Tolk 2006). Firstly, composition is not a closed operation with respect to validation because valid components do not necessary form valid compositions (Balci 1997). Next, reused components are developed for different purposes and when composed may result in emergent properties (Gore and Reynolds 2008). Similarly, the context in which a reused component was developed and validated might differ from the new context of the composed model (Bartholet et al. 2004). Another challenge arises from the various aspects of component interactions that need to be validated. The validation process must address logical aspects such as deadlock, safety, and liveness, temporal aspects such as the behavior of components and compositions over time, and formal aspects such as the need to provide a formal measure of the validity of compositions, also called “figure of merit” (Kasputis and Ng 2000). A formal approach to validation is desirable because it offers the possibility of ranking models based on their validity and, when automated in a computer program, eliminates the need of system experts to validate the execution of the composed models (Kasputis and Ng 2000). Furthermore, a formal validation process offers the guarantee of provable simulation validity for the benefit of the simulation model users (Petty and Weisel 2003a). The main validation techniques of composable simulations include the DEVS formalism (Ziegler et al. 2000), Petty and Weisel’s formal theory of composability (Petty and Weisel 2003a), and component abstractions such as BOM (Moradi et al. 2007).

In this paper, we present a formal approach to the validation of semantic composability. Based on our proposed time-based formalism, we provide a formal composition validation guarantee by determining the behavioral equivalence between the composed model and a perfect model over time. The contributions of this paper include:
1. We propose a time-based formalism for the representation of a simulation component as a function of its states over its execution time.

2. We introduce a novel semantic metric relation, V^e, for comparing simulation executions of a composed model with a perfect model. Based on well-defined concepts in a component-based ontology, V^e quantifies state similarities and considers only composition states that are semantically related. Through V^e, the formal guarantee to validity has higher credibility compared with current measures (Petty and Weisel 2003a, Traore 2006) because the comparison is done based on both time and semantics, two important considerations in simulation.

3. To validate our approach, we present a theoretical and experimental analysis of our validation process. We analyze the average time complexity of our approach with respect to the number of components in the composed model. From a practical perspective, we present simple and complex examples and analyze the execution time of our validation process.

This paper is organized as follows. We present our approach to formal validation of semantic composability in Section 2. In Section 3, we validate our approach through theoretical analysis and practical experiments. We compare and contrast our approach with current work in Section 4 and present our concluding remarks in Section 5.

2 PROPOSED TIME-BASED FORMALISM

The proposed validation process aims to provide a formal measure of composition validity by comparing the composition with a perfect composition made up of perfect components. We consider that for each type of base component there exists a perfect model in the repository, initially provided by domain experts. The perfect base component models describe what the domain experts consider to be the ideal component behavior. The generic descriptions lack specific attributes (e.g. sampling distributions for time attributes) and are without an implementation. We assume that for each base component type (e.g. Source in Queueing Networks Application domain) there exist different base component implementations in the repository (e.g. SourceOpen - a Source component for open queueing network systems). The base component implementations may differ widely from the perfect base component models. The idea of comparing a composed model with a perfect model has been previously explored by Petty and Weisel (2003a), by representing components as functions of integer values. However, this representation does not allow complex compositions (e.g. with “fork” connectors). This is because different outputs for the connector branches cannot be specified using a single coordinate functional domain. Moreover the mathematical composition of functions cannot be applied to connector branches. Furthermore, the simulation execution is represented statically based on the component position in the composition. We provide a major improvement by representing components dynamically as functions of states over time. Our novel formalism allows for complex models to be validated. Furthermore, simulation execution is represented as a time ordered schedule of component executions. This allows for a more accurate validation process in which the composition execution through time is evaluated.

In this section, we first present our formal definitions of components, simulation, and validity in the context of our formal validation process. Based on our proposed formal definitions, we establish a formal validation process as a sequence of well defined steps. We exemplify our proposed process using an example of a single-server queue.

2.1 Validity

In this section we define components, simulation, and validity in the context of our formal validation process. To facilitate the proposed validation process we separately represent a simulation component using our proposed time-based formalism. The separation of the component specification from the component implementation is widely recognized in the simulation community as an important step towards simulation composability and model reuse (Petty and Weisel 2003a, Yilmaz 2004). In our proposed approach, a simulation component is represented as a function of states over time.

Definition 1 (Simulation Component). The formal representation of a simulation component C_i is a function $f_i : X_i \rightarrow Y_i$, where $X_i = I_i \times S_i \times T_i$, and $Y_i = O_i \times S_i \times T_i$. I_i and O_i are the set of input/output messages, S_i is the set of states and T_i is the set of simulation time intervals at which the component changes state.

By representing a simulation component as a mathematical function we leverage on Petty and Weisel’s formal theory of composability (Petty and Weisel 2003a). However, our approach greatly differs by including $time$ and $state$ as domain coordinates. Our three coordinate representation allows for a meaningful and detailed definition of a valid model without affecting the complexity of the validation process. The domain of each functional representation is $X_i = I_i \times S_i \times T_i$. Coordinate
A simulation run is represented as an LTS where nodes represent the entire composition state as a reunion of the individual component states. A component state contains all values of the component attributes. Lastly, T_i represents the set of simulation time moments at which state transitions occur.

Definition 2 (Composition). Given the components $C_i, i = 1, n$ formally represented as f_i. The formal representation of the composed model made up of C_i is $M = \{(f_i, f_j)| i \neq j, i, j = 1, \ldots, n\}$ with $(f_i, f_j) \in M$ meaning that C_i is connected to C_j in the composed model with C_j requiring input from C_i.

Definition 3 (Mathematical Composability). Given a composed model $M = \{(f_i, f_j)| i \neq j, i, j = 1, \ldots, n\}$, and the time values when f_i produces output and f_j requires input, $T_i^{out} = \{t_{i,m}^j| 1 \leq m \leq |O_i|\}$, and $T_j^{in} = \{t_{j,n}^i| 1 \leq n \leq |I_j|\}$ respectively. Then f_i and f_j are composable if they exist the bijective binary relation $R = \{(t_{i,m}^j, t_{j,n}^i) \in T_i^{out} \times T_j^{in} | t_{i,m}^j > t_{j,n}^i \}$.

Informally, for the component functions to be composable, all sampled time values for components requiring input must be greater than the time moment values for the components that provide them with output. Definition 3 is the usual mathematical composability definition but only considers time moment values from the three coordinate function domain. This is because individual component states are irrelevant at this point in the validation, and input and output data has been previously validated (Szabo and Teo 2009a).

A simulation represents the execution of the composition over the simulation time.

Definition 4 (Simulation). The simulation $\mathcal{S}(M)$ of the composed model $M = \{(f_i, f_j)| i \neq j, i, j = 1, \ldots, n\}$ is defined formally as the ordered set $\mathcal{S}(M) = \{\ldots f_i(t_{p,i}^j, S_{p,i}^j, t_{p,i}^j) \rightarrow (O_{p+1,i}^j, S_{p+1,i}^j, t_{p+1,i}^j), \ldots, f_j(t_{q,j}^j, S_{q,j}^j, t_{q,j}^j) \rightarrow (O_{q+1,j}^j, S_{q+1,j}^j, t_{q+1,j}^j), \ldots)| t_{p,i}^j \leq t_{q,j}^j, t_{p+1,i}^j \leq t_{q,j}^j, t_{q+1,j}^j \leq t_{q+1,j}^j, i, j = 1, \ldots, n\}$ where $I_{p,i}^j \in I_i, S_{p+1,i}^j \in S_i, I_{p+1,i}^j \in T_i$, and $I_{q,j}^j \in I_j, S_{q+1,j}^j \in S_j, I_{q+1,j}^j \in T_j$.

Informally, the simulation \mathcal{S} of a composition of functions M is defined as the ordered set of the function executions for all components. The set order is based on the time $t_{p,i}^j$ at which each function f_i is executed. For example, if $(f_i, f_j) \in M$, then at least one function execution of f_i will come before all function executions of f_j. Thus, the simulation of the composed model is an ordered schedule of the function executions. This provides an accurate representation of the simulation to facilitate the validation process. Previous approaches such as that by Petty and Weisel (2003b) employ a static simulation description in which components appear in the linear order of aggregation in the composed model. Using our proposed time-based formalism, we obtain a dynamic representation of the simulation, in which components appear based on the time moments when they run.

The proposed formal validation approach aims to formally compare between the simulation of the composed model and the simulation of a perfect model. The perfect model is defined below.

Definition 5 (Perfect Model). Given a composed model of components C_i represented formally as $M = \{(f_i, f_j)| i \neq j, i, j = 1, \ldots, n\}$, the perfect model is defined as $M^* = \{(f_i^*, f_j^*)| i \neq j, i, j = 1, \ldots, n\}$, where C_i^* formally represented as f_i^* is the corresponding perfect component for component C_i.

To facilitate the comparison between the composed model simulation, $\mathcal{S}(M)$, and the perfect model simulation, $\mathcal{S}(M^*)$, the two simulations are represented as Labeled Transition Systems (LTS) (Srba 2001). Next, we compare the two LTS using the well established theory of bisimulation (Park 1981).

Definition 6 (Simulation Representation). Given a composed model M and its simulation $\mathcal{S}(M)$. The simulation run \mathcal{S} is represented as a Labeled Transition System $L(M) = (N, Act, \rightarrow)$ where N is the set of nodes, \rightarrow is the set of transitions between nodes, and Act is the set of transition labels. In $L(M)$, each node in N represents an annotated composition state given by the tuple $S_{j \in I \rightarrow} = \{(\text{state}(C_i)| i \in I_j\}, \text{f_in}, \text{f_out}\}$, where state$(C_i)$ is the state of component $C_i, r = |S|$, n is the number of components, f_in is the function called to enter this node, and f_out is the function called to exit this node. Edges \rightarrow are the function calls f_in or f_out in the simulation run, and labels $a_i \in Act$ are the tuple $<\text{function name}(f_{out}), \text{duration}(f_{out}), \text{output}(f_{out})>$, where duration$(f_{out})$ represents the execution time of f_{out}.

A simulation run is represented as an LTS where nodes represent the entire composition state as a reunition of the individual component states, and edges are labeled to facilitate the validation process. To facilitate accurate comparison between $L(M)$ and the perfect LTS $L(M^*)$, the edge labels contain the name of the function called to exit the node, its duration, and its
output. We consider the duration rather than the time moment when \(f_{out} \) begins to execute, because the time moments at which the functions \(f_{out} \) start to execute are already ordered through the directed nature of simulation \(\mathcal{S} \).

In our proposed formal theory, we consider two possible relations between the simulation of the composed model and the simulation of the perfect model, \(L(M) \) and \(L(M^*) \) respectively: strong equivalence relation (Park 1981) and our proposed semantic parametric metric relation, \(V_e \). Informally, strong equivalence between \(L(M) \) and \(L(M^*) \) validates that \(L(M) \) is exactly the same or included in \(L(M^*) \), including the sequence of the function calls and the edge labels. If this is not possible, we propose the semantic parametric relation \(V_e \) as a weak bisimulation relation. \(V_e \) considers only parts of \(L(M) \) and \(L(M^*) \) that are semantically close and validates that they appear in the same sequence in \(L(M) \) and \(L(M^*) \). \(V_e \) is defined below.

Definition 7 (Semantic Parametric Metric Relation). Let \(P \subseteq \{S_1, \ldots, S_n\} \), \(Q \subseteq \{S_1, \ldots, S_n\} \) a subset of the annotated composition states for \(L(M) \) and \(L(M^*) \) respectively, with \(p \in P \), \(q \in Q \). \(p = [s(p), f_{in}(p), f_{out}(p)] \), \(q = [s^*(q), f_{in}^*(q), f_{out}^*(q)] \), with \(s(p) = \text{state}(C_1), \ldots, \text{state}(C_n) \) and \(s^*(q) = \text{state}(C_1^*), \ldots, \text{state}(C_n^*) \) vectors representing component states. We define the semantic relation with parameter \(\varepsilon \), \(V_e \subseteq P \times Q \), as \(V(p, q) = \{(p, q) \in P \times Q \mid ||p - q||_{\varepsilon} \leq \varepsilon \} \). The semantic vector norm, \(||p - q||_{\varepsilon} \), is defined as

\[
||p - q||_{\varepsilon} = \frac{DS(s(p), s^*(q)) + DF(f_{in}(p), f_{in}^*(q)) + DF(f_{out}(p), f_{out}^*(q))}{2}
\]

where \(DS(s(p), s^*(q)) \) is the semantic distance between composition states, and \(DF(f_1, f_2^*) \) is the semantic functional distance between the function names.

The semantic metric relation with parameter \(\varepsilon \), \(V_e \), contains semantically related states between \(L(M) \) and \(L(M^*) \). Semantically related states are those for which the semantic vector norm, \(||p - q||_{\varepsilon} \), is smaller than the parameter \(\varepsilon \). The semantic vector norm has two components, \(DS \) and \(DF \). The semantic state distance, \(DS \), measures the semantic differences between component attribute values. The semantic functional distance, \(DF \), determines whether the functions that are called to enter and exit the LTS nodes are related.

Definition 8 (Semantic State Distance). Let \(s(p) = [\text{state}(C_1), \ldots, \text{state}(C_n)] \), \(s^*(q) = [\text{state}(C_1^*), \ldots, \text{state}(C_n^*)] \). The semantic state distance between vectors \(p \) and \(q \) is defined as

\[
DS(s(p), s^*(q)) = \frac{\sum_{i=1}^{n} |ds(\text{state}(C_i), \text{state}(C_i^*))|}{n}
\]

where \(ds(\text{state}(C_i), \text{state}(C_i^*)) = \frac{\sum_{a_i \in A(C_i) a_i^* \in A(C_i^*)} d(a_i, a_i^*)}{m} \), \(A(C_i) \) is the set of attributes for component \(C_i \), \(m = |A(C_i)| \) and \(d(a_i, a_i^*) \) is defined as

\[
d(a_i, a_i^*) = \begin{cases}
0 & \text{if } \text{related}(a_i, a_i^*) \text{ and } \text{value}(a_i) = \text{value}(a_i^*) \\
0.5 & \text{if } \text{related}(a_i, a_i^*) \text{ and } \text{value}(a_i) \neq \text{value}(a_i^*) \\
1 & \text{if } \nexists a_i^* \in A(C_i^*) \text{ s.t. } \text{related}(a_i, a_i^*) = \text{true}
\end{cases}
\]

where \(\text{related}(a_i, a_j) \) signifies that \(a_i \) and \(a_j \) are related in the COSMO ontology.

Definition 9 (Semantic Function Distance). Let \(f_i(p), f_i^*(q) \) the functions called to enter or exit nodes \(p \) and \(q \) in \(L(M) \) and \(L(M^*) \) respectively. The semantic state distance \(DF \) is defined as

\[
DF(f_i(p), f_i^*(q)) = \begin{cases}
1, & i \neq j \\
0, & i = j
\end{cases}
\]

In the CoDES framework, the COSMO ontology describes component-based simulations within and across simulation domains (Teo and Szabo 2008). The COSMO ontology facilitates the calculation of the semantic distance \(DS \) between composition states. This is done by determining the similarity between component states \((ds) \) by calculating the semantic closeness in the ontology of all component attributes \((d) \). Informally, \(V_e \) determines whether semantically related states from \(L(M) \) and \(L(M^*) \) (in terms of composition state - \(DS \), and incoming and outgoing function calls - \(DF \)) appear in the same labeled
sequence in $L(M)$ and $L(M^*)$ respectively. The above definition is similar to that of Petty and Weisel (Petty and Weisel 2003a). However, the fundamental difference and our major improvement comes from forcing the weak bisimulation relation to be V_e which we previously defined. V_e is a semantic metric relation which considers related composition states according to the COSMO ontology in which a well defined component and attribute hierarchy is present. By representing components as functions of times and states, $L(M)$ and $L(M^*)$ can be compared based on the timed sequences of component executions. Through V_e, the model can be compared with a perfect model based on rigorously defined concepts in an ontology.

Definition 10 (Validity). Given the composed model $M = \{(f_i, f_j) | i \neq j, i, j = 1, n\}$ and its simulation representation $L(M)$, and a perfect model $M^* = \{(f_i^*, f_j^*) | i \neq j, i, j = 1, n\}$ with the simulation representation $L(M^*)$. M is valid if $(f_i, f_j) \in M$ and $(f_i^*, f_j^*) \in M^*$ are composable respectively (by Definition 3) and there exists a binary relation R between $L(M)$ and $L(M^*)$, with $L(M) R L(M^*)$ such that R is either a strong equivalence relation (Park 1981) or a weak semantic parametric relation, V_e.

2.2 Validation Process

Based on the definitions presented above we refine the formal validation process to the five steps presented in Figure 1. The first three steps of the validation process, namely Unfolding and Sampling, Composition, and Simulation are applied separately to the components and perfect components. Components and perfect components annotated with a star symbol (*) from the composition and perfect composition respectively are formally represented as functions of their states over time according to Definition 1. The formal component representations are input to the Unfolding and Sampling step where the component representation is adjusted to fit our validation process. Based on the composed model topology, the unfolded representations obtained from the Unfolding and Sampling step are composed according to Definition 3 in the Composition step. The Simulation step applied to the composition and perfect composition results in a composition simulation, $L(M)$, and perfect composition simulation, $L(M^*)$, respectively according to Definition 6. The Composition step formally composes the functional representations based on our mathematical composability definition which considers the time moments at which the functions are activated. As such, $L(M)$ and $L(M^*)$ consist of time-ordered simulation schedules of the function executions. Lastly, in the Validation step, we first attempt to determine whether $L(M)$ and $L(M^*)$ are exact matches. This is done by determining strong equivalence between $L(M)$ and $L(M^*)$. If strong equivalence is not possible, we introduce the semantic relation V_e to determine weak equivalence only between related states, i.e. the parts in the two executions that are semantically related. If V_e is not a weak bisimulation relation between $L(M)$ and $L(M^*)$, then the model is invalid.

![Figure 1: Formal Validation Process](image)

Assumptions For the formal validation process to be realized, a series of assumptions must be in place. Firstly, component information including state machine description must be available in the form of a meta-component in which component attributes and state machine are defined in a standardized format. The component state machine is provided by the component creator when the component is added to the component repository. For example, components in our CoDES framework are represented as a meta-component in a standardized COML format (Teo and Szabo 2008). Next, logical
composition properties such as safety and liveness (Owicki and Lamport 1982) over time have been previously validated. This is the case in the layered validation process in the CoDES framework in which logical properties are first validated in the context of instantaneous transitions and secondly, over time (Szabo and Teo 2009a). Lastly, to facilitate the calculation of V_e, a component-based ontology in which component-based simulation concepts as well as application domain notions are rigorously defined. In the CoDES framework, the COSMO ontology describes component-oriented simulation within and across application domains (Teo and Szabo 2008).

For illustration, we apply the above steps on a single-server queue example consisting of Queueing Networks base components as shown in Figure 2. For simplicity, we discuss the first three steps only for the components f_i. For this example, we consider the behavior of the perfect components represented by f_i^* to be the same with respect to input/output transformations to the behavior represented by f_i. The base components C_i might differ from the perfect components C_i^* through additional logging attributes. We formally represent a component as a function of states over time according to Definition 1.

The Unfolding and Sampling step in Figure 2(b) unfolds the function definition over a period of simulation time using sampled values. For example, the state machine for meta-component C_1 is defined as $S_1(\Delta t) \rightarrow O_1 S_1[A_1]$ where Δt is sampled from an exponential distribution with a mean of 4, we have $f_1: \emptyset \times S_1 \times T_1 \rightarrow \{O_1\} \times S_1 \times T_1, f_1(\emptyset, s_1, t) \rightarrow (O_1, s_1, t + \Delta t)$. The above expression is not useful for the Unfolding and Sampling step in our approach because during a simulation run t and Δt have specific values. Thus the function call graph is unfolded for an unfolding coefficient of $\tau = 3$ times and sample the values for Δt, using mean values provided by the user. For component C_1 assume that the inter-arrival time is sampled from an exponential distribution with a mean $\tau = 3$. With sampling and an unfolding coefficient of $\tau = 3$ we have $\Delta t = 6, \Delta t = 2, \Delta t = 4$, and thus we can write the sequence: $f_1(\emptyset, s_1^3, 0) \rightarrow (O_1, s_1^2, 6), f_1(\emptyset, s_1^2, 6) \rightarrow (O_1, s_1^1, 8), f_1(\emptyset, s_1^1, 8) \rightarrow (O_1, s_1^0, 12), f_1(\emptyset, s_1^0, 12), f_1(\emptyset, s_1^0, 12)$. Where $f_1(\emptyset, s_1^0, 0) \rightarrow (O_1, s_1^0, 6)$ reads as “f_1 in state s_1^0 with no input at time 0, produces output O_1 at time 6, while changing its state to s_1^0”. For component C_2, described formally by f_2 assume the service time has an exponential distribution with a mean of $\tau = 6$ sampled as 11, 6, 1. Lastly, we assume component C_3 formalized in f_3 takes 1 unit of time to service each job, so $\Delta t = 1$ for all samples. The values of f_1, f_2, and f_3 are presented in Figure 2(b).

The Composition step in Figure 2(c) validates that the functions are mathematically composable according to Definition 2. We obtain constraints on the time variables (x, t, r) and (x', t', r'), considering that f_2 requires input from f_1 before it can proceed, and respectively that f_3 requires input from f_2 before executing. For components that require input to proceed, we also consider the average time spent by messages in the connectors, depicted in Figure 2 by Δw. The constraints in Figure 2(b) are solved by a constraint solver such as Choco (F. Laburthe and N. Jussien 2009), resulting in the values ($x = 8, t = 19, r = 25$) and ($x' = 23, t' = 28, r' = 29$).
In the Simulation step in Figure 2(d), an interleaved simulation run is obtained for model M and for perfect model M^*. The interleaved simulation run orders the function calls based on the time values obtained in the Composition step. The simulation runs are represented as Labeled Transition Systems (LTS), $L(M)$ and $L(M^*)$, according to Definition 6.

The Validation step is divided into two stages. Firstly, we attempt to prove the equivalence or inclusion between the $L(M)$ and $L(M^*)$ using a strong bisimilarity equivalence relation (Park 1981), in which only the sequence of labels and states is important. If strong equivalence is not possible, we relax the constraints in the second stage by defining a semantic metric relation V with parameter ε. V_ε considers only semantically related LTS nodes for which our defined semantic distance is smaller than ε. Next, if V_ε is a weak bisimulation metric relation (Park 1981) between $L(M)$ and $L(M^*)$, then C_1, \ldots, C_n are semantically composable and $L(M)$ is semantically valid. In this step, strong equivalence between $L(M)$ and $L(M^*)$ is validated using the BISIMULATOR equivalence checker, part of the CADP toolset (Garavel et al. 2007). For the simple example in Figure 2, the BISIMULATOR returns true and as such V_ε need not be calculated.

3 ANALYSIS

3.1 Theoretical Analysis

In this section we analyze the time complexity of our proposed formal validation. Let n be the total number of components in the composed model M. The complexity of our formal validation process, $O_{\text{validation}}$, is divided into three main parts:

$$O_{\text{validation}} = O_{\text{transform}} + O_{\text{compose}} + O_{\text{bisimulate}}$$ \hfill (1)

where $O_{\text{transform}}$ is the time complexity for the formal component representation, unfolding and sampling, and simulation steps (Step 1 and 3); O_{compose} is the time complexity for the Composition step (Step 2) and $O_{\text{bisimulate}}$ is the time complexity for the Validation step (Step 4). The time complexity for the formal component representation and the unfolding and sampling steps, as well as the simulation step is in the worst case $O(n)$. Thus,

$$O_{\text{transform}} = O(n)$$ \hfill (2)

The time complexity of the Composition step is reduced to the time complexity required by a constraint solver implementation to solve the proposed constraints. The constraint satisfaction problem is NP-Complete. However, the algorithm that solves the particular set of constraints from the Composition step has the time complexity of $O(n)$. This is because we require a single solution and it can be obtained by fixing the values for the time moments for the source components (e.g. x in Figure 2) and propagating the values to the rest of the variables. This is permitted by the peculiar nature of the simulation LTS, which, by Definitions 4 and 6 will always have a single edge exiting any state. Therefore,

$$O_{\text{compose}} = O(n)$$ \hfill (3)

For two LTS with N nodes and M transitions, strong and weak bisimilarity between two states can be determined in $O(MN)$ (Kanellakis and Smolka 1990). As such, strong and weak bisimilarity between two LTS can be determined in $O(N^2M)$. For the two LTS that are obtained in the Simulation step, we have $N = \tau n$ and $M = N - 1 = \tau n - 1$, where τ is the unfolding coefficient employed in the Unfolding and Sampling step. Thus,

$$O_{\text{bisimulate}} = O(\tau^2 \times n^3 \times (\tau n - 1)) = O(n^3)$$ \hfill (4)

Combining (2) - (4), (1) becomes:

$$O_{\text{validation}} = O(n) + O(n) + O(n^3) = O(n^3)$$ \hfill (5)

Therefore, the complexity of our proposed formal validation is polynomial in the number of components.

3.2 Experimental Analysis

The proposed formal validation process is fully implemented in Java. The time value inequalities in the Composition step are solved using the Choco (F. Laburthe and N. Jussien 2009) constraint solver. Strong equivalence relation between $L(M)$ and $L(M^*)$ is validated using the CADP toolset (Garavel et al. 2007). Lastly, V_ε is validated using our proposed algorithm which
employs the Jena Reasoner (HP Labs 2002) on our proposed COSMO ontology (Teo and Szabo 2008) to determine related states. In the previous section we illustrated our approach using a simple single-server queue example. In this section, we discuss a single-server queue example with two classes of jobs, in which the Server component has different service times for each class. Next, to show the scalability of our approach, we discuss execution times for the two presented examples and for the validation of a grid scheduler system with eleven components (Szabo and Teo 2007). The grid system has two virtual organizations (VO) sharing a grid meta-scheduler job queue (Foster et al. 2003). Each virtual organization consists of a local job scheduler and different types of computational resources modeled as Server components. Space constraints prevent us from showing the example here. However, it is discussed in detail in (Szabo and Teo 2009b). For the case where the simulation components are very similar to the perfect components, the validation process validates the grid model. However, if we inject several Server components with different service times for different job types, then the validation process finds the model as invalid.

Assume that the model to be validated represents a single-server queue presented in Figure 2. The Source component (C₁) generates alternatively two classes of jobs that have different service times when serviced by the Server component (C₂). The meta-component information relevant for the formal validation process is presented in Table 1.

Table 1: Meta-component Information

<table>
<thead>
<tr>
<th>Attribute</th>
<th>C₁</th>
<th>C₂</th>
<th>C₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>noJobsGenerated</td>
<td>noJobsGenerated = 0</td>
<td>noJobsServiced = 0</td>
<td>noJobsPrinted = 0</td>
</tr>
<tr>
<td>interArrivalTime</td>
<td>(noJobsGenerated + serviceTime1 : exponential(3))</td>
<td>(noJobsServiced + serviceTime2 : exponential(3))</td>
<td>(noJobsPrinted + AprintingTime : exponential(3))</td>
</tr>
<tr>
<td>origin</td>
<td>origin = Source</td>
<td>Server ... class = C₁</td>
<td>origin = Server</td>
</tr>
<tr>
<td>destination</td>
<td>destination = Server ... class = C₁</td>
<td>destination = Server</td>
<td>Sink</td>
</tr>
<tr>
<td>serviceTime2</td>
<td>busy = false</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S₀₁ ΔinterArrivalTime</td>
<td>S₀₁ O₁[A₁]</td>
<td></td>
<td>S₀₂[A₂]</td>
</tr>
<tr>
<td>S₀₂ΔinterArrivalTime</td>
<td>S₀₂ O₂[A₂]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A₁</td>
<td>(noJobsGenerated + ;)</td>
<td>(noJobsServiced + ;)</td>
<td>(noJobsPrinted + ;)</td>
</tr>
<tr>
<td>C₁</td>
<td>(noJobsGenerated%2 == 0;</td>
<td>(noJobsServiced%2 == 1;)</td>
<td></td>
</tr>
<tr>
<td>C₂</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2 presents the meta-component information for perfect components C₁⁺, C₂⁺, and C₃⁺ which are the same as in the example in Section 2. Notice how the time attributes of the perfect component are generically defined. As specified in the validation process, the generic values will be replaced with the sampled values employed in the Unfolding and Sampling step for the components part of the composed model.

Following the Unfolding and Sampling step we obtain the formal component representation presented in Table 3.

Next, the function composability is validated in the Composition step. Following Definition 3 we obtain constraints for the values of x, t, r and x', t', r' respectively. Assuming that the average times spent in the connector queues are \(\Delta w_1 = 2, \Delta w_2 = 3, \Delta w_3 = 1 \) and \(\Delta w'_1 = 4, \Delta w'_2 = 3, \Delta w'_3 = 2 \) for f₂ and f₃ respectively, the most trivial constraints that can be derived are:

\[
x \geq 6 + \Delta w_1, t \geq x + 11, t \geq 8 + \Delta w_2, r \geq t + 2, r \geq 12 + \Delta w_3
\]
\[
x' \geq x + 11 + \Delta w'_1, t' \geq x' + 1, t' \geq t + 2 + \Delta w'_2, r' \geq t' + 1, r' \geq r + 1 + \Delta w'_3
\]
Szabo, Teo and See

Table 2: Perfect Component Meta-component Information

<table>
<thead>
<tr>
<th>Attribute</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
</tr>
</thead>
<tbody>
<tr>
<td>interArrivalTime: generic</td>
<td>I, generic</td>
<td>I, generic</td>
<td>ΔprintingTime = generic</td>
</tr>
<tr>
<td>serviceTime: generic</td>
<td>I, generic</td>
<td>I, generic</td>
<td>-</td>
</tr>
<tr>
<td>bus = true</td>
<td>I, generic</td>
<td>I, generic</td>
<td>-</td>
</tr>
<tr>
<td>Input</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Output</td>
<td>O, generic</td>
<td>O, generic</td>
<td>-</td>
</tr>
<tr>
<td>State Machine</td>
<td>S1(ΔinterArrivalTime) → S2</td>
<td>IS1 → S2[A1]</td>
<td>IS1 → S2</td>
</tr>
<tr>
<td></td>
<td>S2 → S1O</td>
<td>S2(ΔserviceTime) → S1O[A2]</td>
<td>S2(ΔprintingTime) → S1</td>
</tr>
</tbody>
</table>

Table 3: Formal Component Representation

<table>
<thead>
<tr>
<th>Composed Model</th>
<th>Perfect Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unfold</td>
<td>Δt</td>
</tr>
<tr>
<td>f1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td>f2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td>f3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Next, the constraints are solved using the Choco constraint solver with the solution: (x = 8, t = 19, r = 21) and (x' = 23, t' = 24, r' = 25). For the perfect functions f1*, the constraint solver returns the solution for the perfect functions time attributes (x*, t*, r*) and (x', t', r'): (x* = 8, t* = 23, r* = 25) and (x' = 23, t' = 28, r' = 29).

Interleaved execution schedules are obtained for both composition and perfect composition, as shown in Figure 3(a) and Figure 3(b) respectively. Each interleaved execution is represented as a Labeled Transition System, L(M) and L(M*), respectively.

as shown in Figure 4. It is evident that the two LTS are not strongly equivalent (see the outgoing labels from S0 and S0*), hence the BISIMULATOR tool returns false. We calculate the semantic metric relation Vε for ε = 0.5 and obtain the following related nodes: Vε = {S1, S1'}, {S2, S2'}, {S3, S3'}, {S4, S4'}, {S5, S5'}, {S6, S6'}, {S7, S7'}, {S8, S8'}, {S9, S9'}, {S10, S10'}, with ∥S1 − S1′∥1 = 0.41 \forall(i, j) ≠ (5, 5)} and ∥S8 − S8′∥1 = 0.45}. For these values of Vε we can conclude that the model is not valid since Vε is not a weak bisimulation relation between L(M) and L(M*).

Table 4 presents the execution times for the examples discussed in this paper, namely a single-server queue in which the components are very similar to the perfect components, a single-server queue with two classes of jobs, a grid system with two virtual organizations in which components are very similar to the perfect components, and lastly a grid system with two classes of jobs. We differentiate between the execution times of the Unfolding & Sampling, Composition, and Simulation steps (USCS), of the Strong Equivalence Validation step using the BISIMULATOR tool, and of the Vε validation where it is necessary. The last column shows the total execution time.

1419
Table 4: Validation Process Execution Times

<table>
<thead>
<tr>
<th>Model</th>
<th>Number of Components</th>
<th>Number of LTS States</th>
<th>Result</th>
<th>Execution Times (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-Server Queue</td>
<td>3</td>
<td>12</td>
<td>valid</td>
<td>0.95 1.02 - 1.97</td>
</tr>
<tr>
<td>Single-Server Queue with Two Classes of Jobs</td>
<td>3</td>
<td>12</td>
<td>invalid</td>
<td>1.04 0.97 2.74 4.72</td>
</tr>
<tr>
<td>Grid System</td>
<td>11</td>
<td>51</td>
<td>valid</td>
<td>4.58 0.96 - 5.54</td>
</tr>
<tr>
<td>Grid System with Two Classes of Jobs</td>
<td>11</td>
<td>51</td>
<td>invalid</td>
<td>5.17 1.05 2.07 8.29</td>
</tr>
</tbody>
</table>

The above examples raise some interesting issues. Firstly, there is the well known difference between what system experts perceive as valid and what can be defined in a computer system as a valid model for it to validate automatically and independently. In our formal approach, a valid model is one that is close enough with respect to the states, sequence and duration of component execution, to a perfect model. Yet, what exactly is close enough (i.e. the values of ϵ), as with all thresholds, remains an open problem. Furthermore, because of the component-based nature of the validation process, it is difficult to translate the notion of valid/invalid into easier to grasp simulation concepts. Next is the problem of perfect models. While it is acceptable to assume their existence, their origin and content is still an open question. For example, the single-server queue with two classes of jobs described above would be considered valid if the perfect model for the Server component would contain two sampling time intervals instead of a single one. Previous approaches such as Petty and Weisel’s (Petty and Weisel 2003a) do not consider the nature of the perfect components. It is the first time that the exact structure of the perfect models has been studied. Lastly, the impact of a different semantic distance DS on the weak semantic bisimulation relation remains to be studied.

4 RELATED WORK

Petty and Weisel pioneered a formal theory of composability validation which allows for a composed simulation model to be checked for semantic validity (Petty and Weisel 2003a). A composition is modeled as a mathematical functional composition. The simulation of a composition is represented as an LTS where nodes are model states, edges are function executions, and labels are model inputs. A composition is valid if and only if its simulation is close by a relation to the simulation of a perfect model. In the Petty and Weisel approach, time is not modeled and the function representing a component makes an instantaneous transition from input to output. This permits only a static representation of the composition. Furthermore, the LTS representation considers the functions strictly in the order they appear in the mathematical composition, which might not be representative for complex compositions. In contrast, we propose a new formal component definition where states change over time. Based on this definition, we represent composition simulations as interleaved schedules of component execution, considering the execution duration and output as labels in the simulation LTS. Thus our approach has the advantage of representing the dynamic change of the entire simulation over time. To provide a more accurate measure of validity, we consider semantically related composition states in the definition of V_e. This is not be possible in the Petty and Weisel approach where a component is abstracted as a one-dimensional integer domain function.

DEVS (Discrete Event System Specification) (Ziegler et al. 2000) is a formalism derived from general system theory and is designed to describe the structure and behavior of a system. In DEVS, a system is modeled as a blackbox with state, input and output ports. For validation, compositions of DEVS models are represented in the Z specification language (Traore 2006). A theorem proving tool based on Z such as Z/EVES is used to verify the model and discover hidden properties.
Ambiguities, conflicts and inconsistencies can be discovered in the specification. However, the Z specification language lacks time modeling, one of the most important attributes in DEVS models.

A third approach to composition validation (Moradi et al. 2007) uses the Base Object Model (BOM) (Gustavson and Root 1999) as a component abstraction. A BOM captures component behavior information including participating entities and their state machines, and information about the possible usage scenarios of the component. This approach assumes that a detailed user specified composition scenario exists to represent a valid composition. The scenario includes the sequence of component execution, as well as events and parameter names for interacting components. Component discovery is done based on the specified scenario. A valid composition of discovered components is one in which the sequence of actions or events is the same as or includes the sequence specified in the scenario. However, the somewhat informal validation process includes the composition and execution of discovered components in all possible combinations in order to be compared with the specified scenario, which leads to a costly implementation. Furthermore, a detailed execution scenario might not be available from the model composer.

5 CONCLUSION

We propose a formal approach for validation of semantic composability. We introduce a novel time-based formalism where a simulation component is represented as a function of its states over time. Based on our formal definitions of composition, simulation, and validity, we refine and specialize the formal validation process to a form applicable to environments for component-based simulation development in which time and state are of paramount importance. In our five-step formal validation process, the behavior of the composed model over time is compared to the behavior of a perfect model. Component functions are unfolded using sampled values. The mathematical composition of the component functions is validated using existing constraint solvers. Simulations of compositions are then represented as interleaved timed execution schedules. The validation process formally compares the composition execution schedule to that of a perfect composition derived from perfect components. The comparison determines the equivalence of the schedules based on a new semantic metric relation, that considers semantically related composition states. This is in contrast to Petty and Weisel’s work in which the LTS representation considers function calls in the static order as they appear in the mathematical composition. Furthermore, our time-based formalism permits the representation of complex systems with “fork” and “join” topologies. Our theoretical analysis shows that the validation process has polynomial complexity and our execution time analysis shows that our approach is scalable. We have fully implemented and integrated the validation process in our CoDES component-based framework. This paper addresses the semantic validation of simulation model developed using base components. We are extending the formal validation process to cover the more complex reused model components.

REFERENCES

AUTHOR BIOGRAPHIES

CLAUDIA SZABO is in the final year of her PhD studies at the National University of Singapore. Her email address is <claudias@comp.nus.edu.sg>.

YONG MENG TEO is an Associate Professor with the Department of Computer Science at the National University of Singapore, and an Associate Senior Scientist at the Asia Pacific Science & Technology Center, Sun Microsystems Inc. He heads the Computer Systems Research Laboratory and the Information Technology Unit. His email address is <teoym@comp.nus.edu.sg>.

SIMON SEE is the Director and Chief Scientist of HPC Center (System Practice), and Managing Director of Asia-Pacific Science and Technology Center, Sun Microsystems Inc. His email address is <simon.see@sun.com>.