
Proceedings of the 2009 Winter Simulation Conference
M. D. Rossetti, R. R. Hill, B. Johansson, A. Dunkin and R. G. Ingalls, eds.

DEVS NAMESPACE FOR INTEROPERABLE DEVS/SOA

Chungman Seo
Bernard P. Zeigler

Arizona Center for Integrative Modeling and Simulation
The University of Arizona

1230 E. Speedway Blvd., Tucson, AZ 85721

ABSTRACT

Interoperable DEVS modeling and simulation is desirable to enhance model composability and reusability with DEVS mod-
els and non-DEVS models in different languages and platforms. The barrier to such interoperability is that DEVS simulators
implement the DEVS modeling formalism in diverse programming environments. Although the DEVS formalism specifies
the same abstract simulator algorithm, different simulators implement the same abstract simulator in different ways. This sit-
uation inhibits interoperating DEVS simulators and prevents simulation of heterogeneous models. Service Oriented Architec-
ture provides a flexible approach to interoperability than because it provides platform independence and employs platform-
neutral message passing with Simple Object Access Protocol to communicate between a service and a client. The main con-
tribution of this study is to design and implement an interoperable DEVS simulation environment using the SOA concept and
a new construct called the DEVS message namespace. The interoperable DEVS environment consists of a DEVS simulator
service and an associated integrator. Using the DEVS namespace, DEVS simulator services can be interoperable with other
such services using the same message types.

1 INTRODUCTION

The study of interoperability concerns methodologies to interoperate different systems distributed over a network system.
Such a System of Systems (SoS) is differentiated from a single monolithic system in that it requires interoperability among its
constituent systems (Sage 2007). Levels of interoperability describing technical interoperability and the complexity of inte-
roperations have been suggested (Tolk et al. 2006, DiMario 2006) and are interpreted in different applications such as tele-
communication and command and control software (Jacobs 2004). Zeigler and Hammonds (2007) introduced linguistic con-
cepts of interoperability at three basic levels: pragmatic, semantic, and syntactic. The pragmatic level focuses on the
receiver’s interpretation of messages in the context of application relative to the sender’s intent. The semantic level concerns
definitions and attributes of terms and how they are combined to provide shared meaning to messages. The syntactic level fo-
cuses on a structure of messages and adherence to the rules governing that structure. The linguistic interoperability concept
supports simultaneous testing environment at multiple levels (Zeigler et al. 2005).
 Interoperability between heterogeneous software systems is an important issue to increase software reusability in the
software industry. Many methods are proposed to implement interoperable systems using distributed computing infrastruc-
tures such as CORBA, HLA and SOA (Sarjoughian and Zeigler 2000; Seo et al. 2004; Cheon et al. 2004; Mittal and Martin
2007; Wutzler and Sarjoughian 2007). These infrastructures can provide communication channels between software systems
with heterogeneous environments. SOA (Service Oriented Architecture) provides a more flexible approach to interoperability
than others because it provides platform independence and employs neutral message passing with Simple Object Access Pro-
tocol (SOAP) to communicate between a service and a client.
 The Discrete Event System Specification (DEVS) is a formalism describing entities and behaviors of a system (Zeigler et
al. 2000). A coupled model is made up of component models, and the coupling relations which establish the desired commu-
nication links. A coupled model specifies how to connect several component models together to form a new model. Two sig-
nificant activities involved in coupled models are specifying its component models and defining the couplings which create
the desired communication networks. The DEVS Protocol (Zeigler, Kim, and Praehofer 2000) specifies the abstract simula-
tion engine that correctly simulates DEVS atomic and coupled models. Interpreted in a distributed simulation context, the
DEVS abstract simulator gives rise to a general protocol that has specific mechanisms for declaring who takes part in the si-
mulation (the federates). It also specifies how federates interact in an iterative cycle that controls how time advances, when
federates exchange messages, and do internal state updating. A significant feature, in comparison to simulation based on the

1311978-1-4244-5771-7/09/$26.00 ©2009 IEEE

Seo and Zeigler

HLA standard (Kuhl, Weatherly, and Dahmann 1999) is that if the federates in simulation are DEVS compliant then the si-
mulation can be proved to be correct in the sense that the DEVS closure under coupling theorem guarantees a well-defined
resulting structure and behavior (Zeigler, Kim, and Praehofer 2000).
 DEVS modeling and simulation research groups have been interested in DEVS interoperability in order to enhance mod-
el composability and reusability with DEVS models and non-DEVS models in different languages and platforms (Kim and
Kim 2005, Mittal and Martin 2007). The problem to interoperate heterogeneous DEVS models with DEVS simulators is that
DEVS simulators implement the DEVS modeling formalism in diverse programming environments (e.g. DEVSJAVA (Zeig-
ler 2004), CD++ (Wainer 2002), smallDEVS(Janousek and Kironsky 2006)). Although the DEVS formalism specifies the
same abstract simulator algorithm for any simulator, different simulators implement the same abstract simulator using differ-
ent codes. This situation inhibits interoperating DEVS simulators and prevents simulation of heterogeneous models. Never-
theless, different platforms specialize in different capabilities, e.g., C++ supports fast execution, but JAVA provides a better
platform for web service development. Therefore, to exploit these diverse capabilities requires a capability to interoperate
them at the abstract simulator level (see Section 5 for an example).

Figure 1: DEVS Standardization Supports Higher Level Web-Centric Interoperability

 The demand for interoperable DEVS simulation has spurred the development of standards to interoperate DEVS models
generated in the different languages and platforms (Vangheluwe et al. 2001). Figure 1 indicates that DEVS standardization
can be sought at both the modeling level and at the simulator level to achieve higher level web-centric interoperability. The
left side of the Figure 1 represents the well-known DEVS simulation concept in which a DEVS abstract simulator interacts
with a DEVS model through the DEVS protocol. The right side of Figure 1 represents extended DEVS simulation concept for
the distributed simulation on the network. The messages passed on the network are carried through SOAP messages. At the
top, the three levels of interoperability mentioned above are envisioned (Zeigler and Hammonds 2007). Interoperability of
DEVS models at the modeling level is the most challenging since it requires exposing the DEVS defining methods and data
types of different languages to a common interface (Touraille, Traoré, and Hill 2009).
 In contrast, DEVS interoperability at the simulator level requires exposing the defining methods of the DEVS abstract
simulator so that different simulators can interface to the same DEVS protocol. Some research on DEVS interoperability at
the simulator level has been studied along with HLA and SOA. Prior works include DEVS/SOA which Mittal and Rico de-
veloped using web services (Mittal and Martin 2007). Kim (2008) and Jarrah (2008) extended DEVS/SOA to run in real
time but did not address interoperability. However, DEVS/SOA provides only platform interoperability because it employs
JAVA serialization which converts JAVA objects into byte arrays to send messages to other simulators. This restricts interope-
ration to simulators based on JAVA. To add the language interoperability to the platform interoperability, we must enable
platform neutral message passing and the SOA environment. The interoperability on DEVS at the simulator level interopera-
bility uses common simulator interfaces to simulate DEVS models. The simulator interface describes a minimum agreement
being able to implement a DEVS simulator class using different languages such as JAVA, C++, and C#. This approach streng-
thens model reusability because DEVS modeling and simulation separates models and simulators. To increase model compo-
sibility, we apply a new construct called the DEVS namespace which is a specific XML namespace to define unique message
types used by DEVS models in the DEVS simulator services. It provides semantic interoperability when we integrate differ-
ent DEVS simulators.
 In the rest of the paper, the background of SOA and web service is discussed in the section 2. The section 3 addresses an
overall architecture of interoperable DEVS simulator services, DEVS namespace, design of the DEVS simulator service, and
DEVS message to XML message. The section 4 explains implementation of the DEVS namespace and DEVS simulator ser-
vices. The example of integration of web service is presented with DEVS simulator services embedding atomic DEVS mod-

1312

Seo and Zeigler

els to create a track display coupled model in the section 5. A comparison between interoperability of DEVS/SOA with HLA-
based DEVS interoperability is presented in section 6. The paper’s summary and future work is in the section 7.

2 BACKGROUND: Service Oriented Architecture (SOA) and Web Service

SOA (Newcomer and Lomow 2004) is a methodology with which a new application is created through integrating existing
and independent business processes which are distributed over the networks. The business processes are called modules or
services which communicate with each other, passing a message through the networks. This design concept requires interope-
rability between heterogeneous systems and languages and orchestration of services to meet the purpose of the creator.
 One of the implementations of the SOA concept is web service, which is a software system for communicating between
a client and a server over a network with XML messages called Simple Object Access Protocol (SOAP) (Box 2003). The
web service makes the request of machine-to-machine or application-to-application communication possible with neutral
message passing even though each machine or application is not in the same domain. Web services realize interoperability
among different applications providing a standard means of communication and platform independence.

Figure 2: Web Services Architecture approach to build software application that use services available in a network

 As seen in Figure 2, the web services technologies architecture is based on exchanging messages, describing web servic-
es, and publishing and discovering web service descriptions. The messages are exchanged by SOAP messages conveyed by
internet protocols. Web services are described by Web Services Description Language (WSDL) which is a XML based lan-
guage providing required information such as message types, signatures of operations, and a location of a service, for clients
to consume the services. Publishing and discovering WSDLs is managed by Universal Description Discover and Integration
(UDDI), which is a platform-independent and XML style registry. In other words, three roles are classified in the architec-
ture: a service provider, a service discovery agency (UDDI), and a service requestor. The interaction of the roles involves
publishing, finding, and binding operations. A service provider defines a service description for a web service and publishes
it to a service discovery agency. This operation publishes operations between the service provider and the service discovery
agency. A service requestor uses a finding operation to retrieve a service description locally or from a discovery agency and
uses the service description to bind it with a service provider and invoke or interact with the web service implementation.

3 OVERALL ARCHITECTURE OF INTEROPERABLE DEVS SIMULATOR SERVICES

 The system of interoperable DEVS simulator services is based on web technology and a DEVS namespace concept. The
web service provides common infrastructure of system/language interoperability and the DEVS namespace presents a look-
up table for messages that are passed between services.
 The interoperability system of DEVS simulator services consists of three parts: a DEVS namespace, DEVS simulator
services, and DEVS simulator service integration and execution (DSSIE). The DEVS namespace is a schema that contains
message type definitions. It is used to recognize message types between distributed or different systems when the systems
need to cooperate in a system of systems (Zeigler, Mittal, and Hu 2008). The message types of each service are registered in
the DEVS namespace before the service publishes in the server.
 In Figure 3, two DEVS simulator services provide common interfaces on the different platforms. A common interface
contains operations for the DEVS simulation protocol to simulate DEVS models in different services. DSSIE has two func-
tions, the integration of the DEVS simulator services based on message types and the execution of the integrated system. The

1313

Seo and Zeigler

integration of the DEVS simulator services is performed by a GUI called a DEVS simulation service integrator (Seo and
Zeigler 2009) which uses the DEVS namespace to verify if couplings between two services are possible or not. The data on
the integrator are written to a XML document sent to the executor which simulates DEVS simulator services. The executor
adopts Java Architecture for XML Binding (JAXB) API to make it easy to handle the XML. In the Figure 3, the DSSIE ob-
tains DEVS message types of DEVS simulator services from the DEVS namespace to integrate services and simulate the
DEVS services with simulation protocols.

Figure 3: Overall system of interoperable DEVS simulator services

 Figure 4 represents web-enabled interoperability of DEVS components which are made of different languages such as
Java and C++. There are two services called aDEVS federate and DEVSJAVA federate, one DEVSJAVA client and DEVS
namespace. The aDEVS federate is a DEVS simulator service encapsulating aDEVS modeling and simulation on the .Net
environment (Seo and Zeigler 2009). However, the DEVSJAVA federate consists of DEVSJAVA and AXIS2 environment.
The DEVSJAVA client is DSSIE which integrates DEVS simulator services and executes the integration. The DEVS names-
pace stores schemata for entity classes in messages. The federates can register and discover schemata for information ex-
change. SOAP messages are passed among the services and the client during the simulation.

Figure 4: Web-enabled interoperability of DEVS components

3.1 DEVS Namespace

 The WSDL for a DEVS simulator service defines data types used by each operation. When the web service communi-
cates with a user, the operations of the web service receive an argument as an XML document embraced in a SOAP message.
The XML document is created in conformance with a type of schema in WSDL. The return value of operations is generated
above the procedure. The data types in WSDL are just defined for operations of a DEVS simulator not a DEVS model. In the

1314

Seo and Zeigler

view of simulation, the structure of a DEVS message consists of a set of content which has a port name and an object. The
DEVS model uses an object as a message. That means the message type has no common type covering all DEVS messages in
the different languages. To overcome this problem, a DEVS message is converted to a XML document in the web service
level. This approach works if DEVS simulator services use the same messages in the DEVS models.
 To integrate DEVS simulator services in different platforms or languages, information of model level messages should
be known to a user. To meet this end, we employ a DEVS namespace to the system for the interoperability of DEVS simula-
tor services.
 The DEVS namespace is an indicator of a schema document for types of messages which are used in DEVS models. The
types are expressed into an element of XML schema that describes a structure of the XML document. XML schema assigns a
unique name to each element. For example, if the name of the element is Job, Job element is unique in the schema document.
Uniqueness of a type gives clarity for message passing between systems on interoperable operation.
 Figure 5 shows the conversion of a language class to a schema type. If a Job class is used in the DEVS model, the Job
class should be expressed as a corresponding schema data type. In the example, Job class has two variables named id and
time which are assigned to int and double type, respectively. The schema data type represents all variables in the class. The
name of class is the name of a data type and variables become sub elements of the data type. The sub elements are assigned to
primitive data types like variables in the class.

Figure 5: Conversion of Job class to schema data type

 Conversion of a class to a schema is performed by a service provider. The schema document resulting from the conver-
sion is registered into a DEVS namespace storage to access through the network. The procedure of registering a schema doc-
ument starts with sending a schema document to a web service which has four operations. One operation, called checkSche-
ma, has one argument for the schema document and a Boolean return type to send a result of checking if the schema type is
in the DEVS namespace storage. Another operation, called registerSchema, is for registering the schema document to the
DEVS namespace storage. The getDomains and getMessageTypes operations are used to search a schema document in the
DEVS namespace storage and get a specific schema document.

3.2 Design of the DEVS Simulator Service

 The design of the DEVS simulator service starts from consideration of what is the role of the DEVS simulator service. First
of all, the DEVS simulator service is capable of handing the information of a DEVS model to a requestor in order to execute
the DEVS model as a component in a coupled model with other DEVS simulator services. Second, the DEVS simulator ser-
vice passes the information of schema location and message types to a client to let the client know information of schema
location and message types of the DEVS model. Last, the user should be informed of the result of simulation after finishing
the execution of the integration of DEVS simulator services. Therefore, reporting functions are included in the design of the
DEVS simulator service.

Figure 6: The operations of DEVS simulator service

1315

Seo and Zeigler

 As a result of all considerations, a DEVS simulator service has three categories: DEVS simulation protocol operations,
schema location and message type operations, and reporting function operations. Figure 6 represents three categories of op-
erations and signatures of operations.
 The operations for DEVS simulation protocol at the top of the Figure 6 are utilized when DEVS simulation is executed
by a user. There are nine operations: getSimulator, initialize, getTN, lambda, getOutput, receiveInput, deltfcn, addCoupling,
and exit. The getSimulator operation decides which simulator is used. There are two kinds of simulators which are for centra-
lization and decentralization. If its argument is set to false, the DEVS simulator service uses a simulator for centralization. If
true, it uses a simulator for decentralization. The addCoupling operation is used in case of a simulator for decentralization to
let the simulator know coupling information for sending messages to a destination service. When a simulator is selected, the
simulator has a DEVS model.
 DEVS simulation protocol starts with the initializing operation which is called when the simulation begins. The getTN
operation returns next internal event time (TN) to a coordinator which is in the DEVS simulator services integration and ex-
ecution in Figure 3. The lambda operation generates output messages if the model has an internal event. The getOutput op-
eration returns output messages which consist of the XML document to the coordinator which looks up the coupling table
and requests the invocation of the receiveInput operation to a corresponding DEVS simulator service. The receiveInput oper-
ation sends output messages, input port name, and output port name to the target service. The input port name is used to gen-
erate DEVS messages in the target service. Thereafter, the deltfcn operation changing the state of the model and scheduling
TN is called to all DEVS simulator services. This is one cycle of DEVS simulation protocol. The simulation protocol is re-
peated until meeting the certain condition to stop the simulation such as infinity of TN of all simulator services, and reaching
the number of simulation protocol cycles.
 The operations for schema location and message type in middle of the Figure 6 have four operations which are getSche-
maInfo, getType, getInports, and getOutports. Each simulator service has information of schema location and model’s mes-
sage types which is registered in the schema repository called DEVS namespace and exposes the location of the schema, the
names of input ports and output ports, and message types used in the input or output ports with the four operations. The get-
SchemaInfo returns the location of schema, the getType returns the type for an input or output port when sending a port name,
the getInports returns an array of names of input ports of the model, and the getOutports returns an array of names of output
ports of the model. These operations are used when DEVS simulator services are integrated based on matching message
types between the models.
 The operations of the reporting function in the bottom of the Figure 6 has two operations, that is, getConsole and getRe-
sult. The getConsole operation returns a document produced by the simulator service during a simulation protocol cycle. The
document can be used to check any bug in the model and validate if the model in the simulator service is appropriately work-
ing. The getResult operation returns the result of the simulation if the simulator service generates data written in the result
document located in the specific place.

3.3 DEVS Message to XML Message

DEVS messages are defined as pairs consisting of a port and a value in the DEVS modeling and simulation. Implementations
of the DEVS theory use these pairs to express DEVS messages. That means that the DEVS messages can be converted to a
common expression in the XML. We design a common XML message to cover generic DEVS messages.

Figure 7: The structure of the XML message

 Figure 7 represents the structure of the XML message starting with a Message tag. The Message tag consists of content
tags whose elements are a port and an entity tag. The entity tag expresses any object as a message used in the DEVS model. It

1316

Seo and Zeigler

has a class tag containing the name of the object. Tags under the class tag are created according to the number of variables of
the object. The tags have an attribute called type describing the type of the variable.

Figure 8: The DEVS message and XML message in the web service

 Figure 8 represents conversion of DEVS messages to XML messages and vice versa. A DEVS simulator service consists
of DEVS modeling and simulation (DEVS M&S), DEVS interface, and web service. The DEVS M&S handle the DEVS
messages, and the DEVS interface converts DEVS messages to XML messages, and the web service generates an SOAP
message including the XML messages. This procedure is called serialization. The opposite procedure converts XML messag-
es to DEVS messages. It is called deserialization.

4 IMPLEMENTATION OF THE DEVS NAMESPACE AND DEVS SIMULATOR SERVICES

4.1 Implementation of the DEVS Namespace

Figure 9: Overview of registering and browsing schema

We created a web service called NamespaceService through which schema of a DEVS simulator service is registered and
browsed. Figure 9 illustrates a procedure of registering and browsing a schema used in a DEVS simulator service. A service
provider has responsibility of registration of a schema. When the provider registers the schema, the provider uses a GUI
called schema data register. The GUI has client codes for NamespaceService web service, which can help easily invoke oper-
ations. It displays the response of the operations. Any web service provider who uses a Java based environment or .Net based
environment can use the GUI to register a schema. If a user wants to browse the DEVS namespace storage, the user can use a
browsing GUI consisting of two parts. One part is to display all schema documents in the DEVS namespace storage and the
other part is to show the schema document corresponding to the name of the document chosen by the user.

4.1.1 The GUI for Schema Data Registration

The GUI has three functions: to enter message information such as class name, variable’s name and type, to compose a
schema document, and to check and register the schema to DEVS namespace storage. A service provider can use this GUI to
make sure that the schema of DEVS message is registered or to register the schema into the DEVS namespace storage. If a

1317

Seo and Zeigler

name of DEVS message is “Job” and the “Job” message has two variables called “id” and “time” whose types are int and
double, respectively, the provider provides information of DEVS messages including a namespace which represents a name
of a DEVS model. Figure 10 represents the result of conversion “Job” message to a schema. The table on Figure 10 has two
columns, Message and Contents, that display the messages. There are two buttons called “ADD” and “Remove” to add or
remove a row in the table. A provider adds DEVS messages through an “ADD” button which makes a type generator GUI
pop up. As seen in the Figure 11, the type generator represents a DEVS message with information of a class name, variable
names and types. When the provider finishes entering the information of the DEVS message, a schema document is created
and displayed by clicking the button called “Generating Schema”. In Figure 10, we can see a schema document containing
“EFP” namespace, “Job” class name and all names and types of variables in the “Job” class.

Figure 10: The Example of the GUI for schema register

Figure 11: The GUI for type generator

The “Checking Schema” button makes a checkSchema operation in Namespace-Service web service invoked with a

schema document, and gets the return value which is a Boolean type. If the return value is true, the schema is already regis-
tered. If false, the schema needs to be registered in the DEVS namespace storage. In case the return value of the checkSchema
operation is false, the “Registering Schema” button gets enabled and the schema is registered by clicking the button. In this
case, a registerSchema operation is invoked.

4.1.2 NamespaceService Web Service

NamespaceService web service is designed to check, register, browse, and get a schema through DEVS namespace. There are
four operations in the service. They are called “checkSchema”, “registerSchema”, “getDomains”, and “getMessageTypes”.
The “checkSchema” and “registerSchema” are used to check and register a schema document. Both operations have one ar-
gument and one return value, which are a string type and Boolean type, respectively. The “checkSchema” operation extracts
the first element of a schema, called a domain name, and checks if the domain name is on the DEVS namespace document. If
the name is on the DEVS namespace, the “checkSchema” returns true. If not, the “checkSchema” returns false. The “regis-
terSchema” operation adds the schema document to the DEVS namespace. If there is no error, then the operation returns true.
If there is an error during addition of the schema, the operation returns false.

The “getDomains” and “getMessageTypes” are used to browse and get a schema document. The “getDomains” opera-
tion has no argument and a string array for a return type. The string array contains all domain names in the DEVS namespace.
The “getMessageTypes” has a string as an argument and a string as a return value. The return value contains a schema docu-
ment for the argument.

1318

Seo and Zeigler

4.2 Implementation of the DEVS Simulator Service

In this paper, we use aDEVS and DEVSJAVA M&S with .Net and AXIS 2 environment, respectively. The procedure of gene-
rating the DEVS simulator service in the both environments requires common operations of the DEVS simulator service.
Based on the operations, DEVS simulator services with .Net and AXIS 2 are created according to their own method of creat-
ing a web service. The details of how to create the DEVS simulator services with .Net and AXIS 2 are in Seo (2009). The
DEVS simulator service with DEVSJAVA and AXIS 2 is briefly mentioned as follows.
 To create web services for DEVSJAVA, we need packages such as DEVSJAVA API, DEVS interface, and a class con-
taining operations of the DEVS simulator service. There are seven packages to create the DEVS simulator service (Seo 2009).
The actual service of DEVSJAVA is in the service.devs package where a Java class having all operations of the service is im-
plemented. The DEVSJAVA model is in the service.models package. The adapter package has a Digraph2Atomic class to
make a coupled model seen to an atomic model. The service.modeling package has classes to connect DEVSJAVA model to
DEVS simulator service such as an Atomic and a Message classes. The Atomic class makes an atomic or a coupled DEVS
model look like one class type, that is to say, the Atomic class. The Message class has an XMLObjectMessageHandler class
in the service.util package and a message class from DEVSJAVA. Message conversion is done in the Message class. The ser-
vice.simulation package has a simulator class handling DEVS simulation protocol with the Atomic class.
 After all classes are implemented, the classes need to be placed in the web server where we use an Apache tomcat6 serv-
er and AXIS2 middleware. We can deploy all classes into the specific folder. Another option is to compress all classes as an
archive. The archive has a structure to contain all classes and services.xml document which indicates a service class and mes-
sage exchange patterns for the web service. The message exchange patterns show the shapes of operations. For example, if an
operation has an argument and no return type, the message exchange pattern is in-only. If an operation has an argument and
return type, the message exchange pattern is in-out.
 We need the environment of integrating an Apache web server and AXIS2 to deploy .aar file. A web archive (WAR) file
is used to connect between the server and AXIS2 and has a specific structure consisting of axis2-web, META-INF, and WEB-
INF folders. The WAR file contains contents for web services and has a configuration file called a web.xml in the WEB-INF
folder. The web.xml contains directions of processing web requests between the web server and AXIS2. The web service
compressed to .aar is located in the services folder in the WEB-INF folder.

5 DEVS SIMULATOR SERVICES INTEGRATION AND EXECUTION

To demonstrate the DEVS simulator service interoperability system, an example DEVS model called TrackCoupled is used.
The TrackCoupled has three atomic models called “ Track Generator 1”, “Track Generator 2”, and “Track Display”, respec-
tively. The “Track Generator1” and “Track Display” reside in TrackGenerator and TrackDisplay services with DEVSJAVA,
AXIS2, and Apache server. The “Track Generator2” model is placed in the TrackGenerator2 service with ADEVS, .NET,
and Windows server. Before the services are deployed to their servers, data type schema should be registered in the DEVS
namespace with a GUI for schema register. In this case, one message type, called TrackData, is used to send the track infor-
mation
.

Table 1: A message used in the Track Display system
Name of Message Name of Variable Type of Variable

TrackData

id int
xposition double
yposition double
heading doube

Figure 12: The schema for the TrackData

1319

Seo and Zeigler

 Table 1 displays the data used in the schema register GUI to generate a schema document for the message. The first col-
umn is the name of the message, the second column is the name of the variable, and the third column is the type of the varia-
ble. Figure 12 represents the schema for the TrackData generated by the schema register GUI.

Figure 13: Simulation of DEVS simulator services

 We are ready to integrate DEVS simulator services for the Track Display system using the DEVS simulator service in-
tegrator. The integrator generates an XML document to describe information of services and coupling information for the
track display system. In the document, the locations of services and DEVS namespace and coupling information are dis-
played. According to the XML document, the TrackGenerator service is located in the http://150.135.218.206:8080 server,
the TrackDisplay service is located in the http://150.135.218.204:8080 server, and the TrackGenerator2 service and DEVS
namespace are located in the http://150.135.218.199 server with ports 80 and 8080, respectively. Figure 13 represents client
and servers having services of atomic models in the TrackCoupled. When we execute the XML document, the track display
window GUI is shown in the server containing the TrackDisplay service.

6 COMPARISON OF DEVS/SOA WITH HLA-BASED DEVS INTEROPERABILITY

Table 2: HLA vs. SOA support for DEVS interoperability
 DEVSsimHLA Interoperable DEVS/SOA
Platform/Language interoperability Support Support
Neutral Message passing No Support
Middleware interoperability Possible using a HLA bridge Support
Linguistic levels of interoperability Support 2 levels (syntactic and seman-

tic)
Support all levels (syntactic, seman-
tic, and pragmatic)

To point out the generic differences between interoperability supported by DEVS in HLA and in SOA, Table 2 presents a
comparison between representative implementations, namely, DEVSsimHLA (Sung, Hong and Kim 2009) and DEVS/SOA,
respectively. Both approaches support platform and language interoperability. However, while HLA uses pre-defined mes-
sage types in the Federation Object Model (FOM) and Simulation Object Model (SOM), interoperable DEVS/SOA uses plat-
form-neutral messages based on XML language during simulation. The neutral message passing enables heterogeneous
DEVS models to be simulated with dynamic message invocation on the interoperable DEVS/SOA environment. Furthermore,
it increases model reusability without changing structures of messages. From the middleware interoperability point of view,
HLA implementations of different vendor can communicate with each other only using a HLA bridge. In contrast, DEVS si-
mulators can interoperate without conflict because DEVS/SOA adheres to SOAP, the accepted standard for message ex-
change in web SOA.

1320

Seo and Zeigler

7 CONCLUSION

In this study, we implemented an interoperable DEVS simulation environment adhering to the SOA and DEVS simulation
standards, and extended with the DEVS namespace. In this environment, SOA provides network interoperability, DEVS pro-
tocol implementation provides simulator interoperability, and DEVS namespace provides a step toward semantic level intero-
perability. The DEVS simulator interoperability is implemented by DEVS simulator service consisting of three layers: simu-
lation protocol layer, message connection layer, and reporting layer. The simulation protocol layer provides basic
functionality to simulate DEVS models. The message connection layer provides message type information to a DEVS simu-
lator service integrator. Through this layer, heterogeneous DEVS simulator services can be integrated. The report layer pro-
vides the simulation results generated during the simulation period.

SOA uses an SOAP message to provide an interoperable environment. When SOA and DEVS meet, the DEVS message
in its native language is converted to an XML DEVS message in compliance with the DEVS namespace. This XML DEVS
message conforms to the DEVS formalism enabling interoperability over languages and platforms. Significantly, while in
general, design of such marshalling/unmarshalling is manual, JAVA supports dynamic invocation enabling dynamic conver-
sion of JAVA objects to XML messages. This invocation is implemented in the DEVS simulator services for DEVSJAVA.

The DEVS simulator level interoperability achieved so far paves the way for increasing the degree of semantic and
pragmatic level interoperability in further development. Such increased capability can be facilitated by attaching metadata to
models. For example, by associating the experimental frames in which models are developed to the models themselves, one
can support increased semantic interoperability in the form of improved discoverability and appropriate reuse of models
(Chreyh and Wainer 2009). Similarly, metadata can be attached to DEVS messages in the namespace to enhance the ability to
find message schema that match the new model requirements. For example, the domain information currently employed to
support namespace search can be augmented with experimental frame information that captures the objectives underlying the
model development in which the DEVS messages originated. In this way, schema developed to serve objectives that are simi-
lar to those driving current model development stand a better chance of having the same meaning in the new context.

Pragmatic level interoperability requires shared agreements about the intentions of usage of the messages in the models.
To support such interoperability requires that such representations enable applying messages that have been extracted from
the namespace in a manner appropriate to the new context of use. Similar to the semantic level, pragmatic level interoperabil-
ity can be increased by associating pragmatic frames with message schema in the namespace to enable the DEVS simulator
integration service to match the schema to compatible usage contexts.

REFERENCES

Box, D., D. Ehnebuske, G. Kakivaya, and A. Layman. 2003. Simple Object Access Protocl (SOAP) 1.1.
Cheon, S., and B.P. Zeigler. 2006. Web Service Oriented Architecture for DEVS Model Retrieval by System Entity Structure
 and Segment Decomposition. DEVS Integrative M&S Symposium.
Cheon, S., C. Seo, S. Park, and B. P. Zeigler. 2004. Design and Implementation of Distributed DEVS

Simulation in a Peer to Peer Network System. 2004 Advanced Simulation Technologies conference (ASTC '04) - Design,
Analysis, and Simulation of Distributed Systems Symposium 2004 (DASD 2004).

Chreyh, R., and G. Wainer. 2009. CD++ Repository: An Internet Based Searchable Database of DEVS Models and
 Their Experimental Frames. DEVS Integrative M&S Symposium.
DiMario, M.J. 2006. System of Systems Interoperability Types and Characteristics in Joint Command and Control.
 Proceedings of the 2006 IEEE/SMC International Conference on System of Systems Engineering.
Jacobs, R.W. 2004. Model-Driven Development of Command and Control Capabilities For Joint and Coalition Warfare,
 Command and Control Research and Technology Symposium.
Janousek, V., and E. Kironsky. 2006. Exploratory Modeling With SmallDEVS. In Proceedings of the 20th annual European

Simulation and Modelling Conference.
Jarrah, M. 2008. An Automated Methodology for Negotiation Behaviors in Multi-Agent Engineering Applications.
 Electrical and Computer Engineering Dept., University of Arizona.
Kim, T., C. Seo, and B. P. Zeigler. 2008. Web Based Distributed SES/NZER Using Service Oriented
 Architecture. submitted to Simulation: Transactions of The Society for Modeling and Simulation International.
Kim, T. G., and J. Kim. 2005. DEVS Framework and Toolkits for Simulators Interoperation Using HLA/RTI. Asia
 Simulation Conference 2005, Bejing, China. 16 – 21.
Kuhl, F., R. Weatherly, and J. Dahmann. 1999. Creating Computer Simulation Systems: An Introduction to the
 High Level Architecture. Prentice Hall PTR.

1321

Seo and Zeigler

Mittal, S., J. L. Risco-Martin, and B. P. Zeigler. 2007. DEVS-Based Simulation Web Services for Net-centric T&E. Summer
 Computer Simulation Conference SCSC’07.
Mittal, S., and J. L. R. Martín. 2007. DEVSML: Automating DEVS Execution over SOA Towards Transparent Simulators
 Special Session on DEVS Collaborative Execution and Systems Modeling over SOA. DEVS Integrative M&S
 Symposium.
Newcomer, E., and G. Lomow. 2004. Understanding SOA with Web Services. Addison-Wesley Professional.
Nutaro, J.J. 2008. On Constructing Optimistic Simulation Algorithms for the Discrete Event System Specification. ACM
 Transactions on Modeling and Computer Simulation(TOMACS).
Sage, A. 2007. From Engineering a System to Engineering an Integrated System Family, From Systems Engineering to
 System of Systems Engineering. 2007 IEEE International Conference on System of Systems Engineering (SoSE).
Sarjoughian, H. S., and B. P. Zeigler. 2000. DEVS and HLA: Complementary Paradigms for Modeling and Simulation.
 Simulation: Transactions of the Society for Modeling and Simulation International 17(4) : 187-97.
Seo, C., and B. P. Zeigler. 2009. Interoperability between DEVS Simulators using Service Oriented Architecture
 and DEVS Namespace. A Joint Symposium DEVS Integrative M&S (DEVS) and High Performance Computing (HPC)
 Proceedings of the Spring Simulation Conference
Seo, C., and B. P. Zeigler. 2009. Automating the DEVS Modeling and Simulation Interface to Web Services.
 A Joint SymposiumDEVS Integrative M&S (DEVS) and High Performance Computing (HPC), Proceedings of the
 Spring Simulation Conference.
Seo, C., S. Park, B. Kim, S. Cheon, and B. P. Zeigler. 2004. Implementation of Distributed

high-performance DEVS Simulation Framework in the Grid Computing Environment. 2004Advanced Simulation
Technologies conference (ASTC '04) -High Performance Computing Symposium 2004 (HPC 2004).

Sung, C. H., J. H. Hong and T. G. Kim. 2009. Interoperation of DEVS Models and Differential Equation
 Models using HLA/RTI: Hybrid Simulation of Engineering and Engagement Level Models. Proceedings of the DEVS
 Integrative M&S Symposium
Tolk, A., Saikou Y. Diallo, C. D. Turnitsa, and L. S. Winters. 2006. Composable M&S Web Services for Net-centric
 Applications. Journal for Defense Modeling & Simulation (JDMS), 3(1): 27-44, January.
Touraille, L., M. K. Traoré, and D. R.C. Hill. 2009. A Mark-up Language for the Storage, Retrieval, Sharing and
 Interoperability of DEVS Models. DEVS Integrative M&S Symposium.
Vangheluwe, H., J. de Lara, J.-S. Bolduc, and E. Posse. 2001. DEVS Standardization: some thoughts. Winter Simulation
 Conference.
Wainer, G. 2002. CD++: a toolkit to develop devs models. Softw. Pract. Exper., 32(13):1261–1306.
Wutzler, T., and H.S. Sarjoughian. 2007. Interoperability among Parallel DEVS Simulators and Models Implemented in
 Multiple Programming Languages. SIMULATION: Transactions of The Society for Modeling and Simulation
 International.
Zeigler, B. P. 2004. DEVSJAVA 3.0. Available via
 <http://www.acims.arizona.edu/SOFTWARE/software.shtml#DEVSJAVA> [accessed August 3, 2009]
Zeigler, B.P., D. Fulton, P. Hammonds, and J. Nutaro, 2005. Framework for M&S Based System Development and Testing
 in Net-centric Environment. ITEA Journal. 26(3): 21-34.
Zeigler, B.P., and P. Hammonds, 2007. Modeling & Simulation-Based Data Engineering: Introducing Pragmatics into
 Ontologies for Net-Centric Information Exchange. New York, NY: Academic Press.
Zeigler, B.P., T. G. Kim, and H. Praehofer, 2000. Theory of Modeling and Simulation, 2nd ed. Academic Press, New York.
Zeigler, B.P., S. Mittal, and X. Hu, 2008. Towards a Formal Standard for Interoperability in M&S/Systems of Systems
 Engineering. Critical Issues in C4I, AFCEA-George Mason University Symposium.

AUTHOR BIOGRAPHIES

CHUNGMAN SEO is an senior research engineer in RTSync company and a member of Arizona Center for Integrative
Modeling & Simulation (ACIMS). He received his Ph.D. in Electrical and Computer Engineering from The University of
Arizona in 2009. His research interests include DEVS based web service integration; DEVS/SOA based distribution DEVS
simulation, and DEVS simulator interoperability. His email address is <uracbul@gmail.com>.

BERNARD P. ZEIGLER is a Professor of Electrical and Computer Engineering at the University of Arizona, Tucson and
Director of ACIMS. He is internationally known for his 1976 foundational text Theory of Modeling and Simulation, revised
for a second edition (Academic Press, 2000), He has published numerous books and research publications on the Discrete
Event System Specification (DEVS) formalism. In 1995, he was named Fellow of the IEEE in recognition of his contribu-
tions to the theory of discrete event simulation. His email address is <zeigler@ece.arizona.edu>.

1322

