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ABSTRACT

In this paper we study rare event simulation for the tail probability of an affine point process (Jt)t≥0 that generalizes the
Hawkes process. By constructing a suitable exponential martingale, we are able to construct an importance sampling algorithm
that is logarithmically efficient in the Gartner-Ellis asymptotic regime.

1 INTRODUCTION

Affine point processes model have been used in the credit risk literature to capture the “clustering” or “self-exciting” feature
of the credit defaults that have been observed in the financial industry. In such models, the number of defaults is modeled
as a point process with an intensity driven by market-wide risk factors that follow an affine jump diffusion. The default
counting process itself is a risk factor as well so that the timing of past defaults influences the future evolution of defaults;
see Errais, Giesecke, and Goldberg (2009) for more discussion on the pricing and modeling of credit derivatives using affine
point processes.

Consider the affine point process satisfying the following stochastic differential equation (SDE)

dλt = κ(µ−λt)dt +σ

√
λt dBt +δ dJt , (1)

given λ0 > 0 and J0 = 0, where (Bt : t ≥ 0) is a standard Brownian motion and (Jt : t ≥ 0) is a counting process with intensity
(λt : t ≥ 0), i.e. Λt ,

∫ t
0 λs ds is the compensator of Jt or equivalently is such that Jt −Λt is a local martingale. One may

view Jt as the cumulative number of defaults by time t and λt is the associated arrival intensity of defaults. Moreover, at a
default event, the intensity jumps by an amount δ .

The special case where σ = 0 (so that there is no Brownian noise in (1)) is known as the Hawkes process. We therefore
refer to the model (1) as a generalized Hawkes process. Given that λt is an intensity, we require that (λt : t ≥ 0) be a
non-negative process in order that (Jt : t ≥ 0) be well-defined. This imposes the condition that 2κµ ≥ σ2 and consequently
this condition will be in force throughout the remainder of this paper.

Suppose that we are interested in the probability distribution of the number of defaults by time t. In particular, suppose
we want to compute P(Jt > x). It is well known that the Fourier transform of Jt has an exponential affine form which
can be identified by solving (generalized) Riccati ordinary differential equations (ODE’s); see Duffie, Pan, and Singleton
(2000) and Errais, Giesecke, and Goldberg (2009). Since Jt is integer-valued, P(Jt = n) can be characterized directly in
terms of ODEs. However, the ODEs take an inconvenient recursive structure, making it more and more difficult to get
the probabilities P(Jt = n) for increasing n. In this paper, we focus on the use of Monte Carlo simulation, which can be
potentially generalized to the multidimensional case without being affected by the “curse of dimensionality” associated with
Fourier transform methods.

The main difficulty in computing the tail probability via crude Monte Carlo (CMC) is that the number of trials n required
to estimate α , the probability of interest, to a given relative precision scales in rough proportion to α−1. As a consequence,
CMC is highly inefficient for estimating small α . Importance sampling is a technique that is widely used to reduce the
variance of such estimators (thereby reducing the computational cost); see, for example, Bucklew (2004).
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Suppose (Aγ : γ ∈ Γ) is a family of rare events, i.e. infγ∈Γ P(Aγ) = 0. Let (Z(γ) : γ ∈ Γ) be a family of unbiased estimators
for the P(Aγ)’s. Such a family of estimators is said to be logarithmically efficient if

inf
γ∈Γ

| log(EZ(γ)2)|
| log(α(γ)2)|

≥ 1;

see Asmussen and Glynn (2007) for a detailed discussion.
In this paper, we study the rare event regime {Jt > xt} as t → ∞ for suitably large x. The structure of this paper is

as follows. Section 2 introduces a family of change-of-measure martingales from which we will choose our importance
sampling distribution. Section 3 calculates the logarithmic asymptotics of P(Jt > xt), specifying its exponential decay rate.
Section 4 proposes an importance sampling algorithm and shows it is asymptotically optimal, with numerical results provided
in Section 5. The proofs of the propositions are provided in Appendix.

2 A CLASS OF EXPONENTIAL MARTINGALES

Note that Jt is an additive functional of λt . This suggests that an appropriate importance distribution will be induced by an
exponential martingale of the form

Mt(θ) = exp(h(θ ,λt)+θJt −ψ(θ)t−h(θ ,λ0))

for θ > 0 where ψ(θ) is deterministic and to be specified. Because λt is an affine process, it turns out that h(θ ,λt) can be
taken to be linear in λt , so that h(θ ,λt) = a(θ)λt for some suitable function a(θ). We now proceed to compute ψ(θ) and
a(θ).

Itô’s formula (see Chapter 2 of Protter 2005) establishes that

Mt := Mt(θ) = 1+
∫ t

0
Ms− dYs +

1
2

∫ t

0
Ms− d[Y,Y ]cs + ∑

0<s≤t
(Ms−Ms−−Ms− ·∆Ys), (2)

where Yt = a(θ)λt +θJt−ψ(θ)t−a(θ)λ0, [Y,Y ]c is the path-by-path continuous part of the quadratic variation process [Y,Y ],
Y0− = Y0 = 0 and M0− = M0 = 1. Note that

Yt = (a(θ)κµ−ψ(θ))t +a(θ)σ
∫ t

0

√
λs dBs−a(θ)κΛt +(a(θ)δ +θ)Jt , (3)

so

[Y,Y ]t = a(θ)2
σ

2
∫ t

0
λs ds+(a(θ)δ +θ)2Jt .

It follows that [Y,Y ]ct = a(θ)2σ2Λt and thus∫ t

0
Ms− d[Y,Y ]cs = a(θ)2

σ
2
∫ t

0
Ms− dΛs. (4)

Let

At = (a(θ)κµ−ψ(θ))t +a(θ)σ
∫ t

0

√
λs dBs−a(θ)κΛt

be the continuous part of Yt . Then,

∑
0<s≤t

(Ms−Ms−) = ∑
0<s≤t

eAs−(e(a(θ)δ+θ)(Js−+1)− e(a(θ)δ+θ)Js−) ·∆Js

= (e(a(θ)δ+θ)−1) ∑
0<s≤t

eAs−+(a(θ)δ+θ)Js− ·∆Js = (e(a(θ)δ+θ)−1)
∫ t

0
Ms− dJs. (5)

1292



Zhang, Glynn, Giesecke and Blanchet

Moreover, we have

∑
0<s≤t

Ms− ·∆Ys = (a(θ)δ +θ) ∑
0<s≤t

Ms− ·∆Js = (a(θ)δ +θ)
∫ t

0
Ms− dJs. (6)

If we plug (3) - (6) into (2), we find that

dMt =(a(θ)κµ−ψ(θ))Mt− dt +a(θ)σ
√

λtMt− dBt +
(

ea(θ)δ+θ −1
)

Mt−(dJt −dΛt)

+
(

a(θ)2σ2

2
−a(θ)κ + ea(θ)δ+θ −1

)
Mt−λt dt.

Since (Bt : t ≥ 0) and (Jt −Λt : t ≥ 0) are local martingales, it is evident that Mt will be a local martingale if we choose

a(θ)κµ−ψ(θ) = 0 (7)

and

a(θ)2σ2

2
−a(θ)κ + ea(θ)δ+θ −1 = 0. (8)

Observe that (7) asserts that ψ(θ) is computable from a(θ). Hence, the question of whether a suitable exponential martingale
exists for a given θ has been reduced to the issue of whether (8) possesses a solution a(θ); we discuss this equation in
Section 3.

Assuming the existence of a(θ) in (8), Mt(θ) is a local martingale. When {Mt : 0 ≤ t ≤ T} is actually a martingale,
we may therefore define an equivalent probability measure Q(·) by dQ

dP

∣∣
Ft

= Mt . In order to identify the dynamics of (λ ,J)
under Q, observe that

Yt = (θ +a(θ)δ )Jt +
(

1− eθ+a(θ)δ
)∫ t

0
λs ds− a(θ)2σ2

2

∫ t

0
λs ds+

∫ t

0
a(θ)σ

√
λs dBs,

because of (7) and (8). It follows, letting

M(1)
t , exp

(
(θ +a(θ)δ )Jt +

(
1− eθ+a(θ)δ

)∫ t

0
λs ds

)
and

M(2)
t , exp

(
−a(θ)2σ2

2

∫ t

0
λs ds+

∫ t

0
a(θ)σ

√
λs dBs

)
,

that Mt = M(1)
t M(2)

t . By Girsanov’s theorem (see Chapter 1 of Oksendal and Sulem 2007), Mt represents two changes-of-
measure corresponding to the two sources of randomness: M(1)

t changes the intensity of the counting process while M(2)
t

changes the drift of the Brownian motion for Itô processes. In particular, the dynamics of λ under Q is governed by the
following SDE

dλt = κ(θ)(µ(θ)−λt)dt +σ

√
λt dBQ

t +δ dJQ
t , (9)

where κ(θ) = κ−a(θ)2σ , µ(θ) = κµ/κ(θ), (BQ
t : t ≥ 0) is a standard Brownian motion under Q and JQ

t follows a counting
process with intensity λt exp(a(θ)δ +θ).

3 LOGARITHMIC ASYMPTOTICS

In this section, we calculate the logarithmic asymptotics of P(Jt > xt) as well as the correct “exponential twisting” parameter
θ ∗ which leads to an logarithmically efficient algorithm. We begin this section by computing the equilibrium mean of
(λt : t ≥ 0).
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Observe that if we formally take expectations in (1), we find that

dEλt = (κµ− (κ−δ )Eλt)dt,

thereby yielding a (deterministic) differential equation for Eλt . If κ < δ , this differential equation implies that Eλt increases
exponentially in t, so that P(Jt > xt) is not a rare event. On the other hand, if κ > δ , then Eλt should converge exponentially
rapidly to κµ/(κ−δ ); this should correspond to the setting where (λt : t ≥ 0) is a recurrent Markov process so that events
like {Jt > xt} are rare. Not surprisingly, we can the establish the following result.

Proposition 1 Suppose κ > δ . Then, there exists θ̃ > 0 and a1 > 0 such that (8) has a positive root a(θ) ∈ [0,a1)
for θ ∈ [0, θ̃).

The proof can be found in the Appendix of this paper. The positivity restriction of a(θ) arises as a consequence of (7),
since ψ(θ) must be positive in order that Mt be a martingale for θ > 0.

When θ ∈ (0, θ̃) and a(θ) ∈ (0,a1), the process (λt : t ≥ 0) is geometrically ergodic under the change-of-measure Q;
see Zhang, Glynn, Giesecke, and Blanchet (2009). This suggests that

Eexp(θJt −ψ(θ)t) = EQ exp(a(θ)(λ0−λt))→ EQ exp(a(θ)λ∞) (10)

as t→ ∞, where EQ(·) is the expectation operator associated with Q, and λ∞ has the equilibrium distribution of (λt : t ≥ 0);
see Zhang, Glynn, Giesecke, and Blanchet (2009) for a complete argument.

Given our above formal calculation, P(Jt > xt) is a family of rare events as t→ ∞ for x > κµ/(κ−δ ). Given the limit
relationship (10),

lim
t→∞

1
t

logEexp(θJt) = ψ(θ). (11)

It follows from the Gartner-Ellis theorem (see Dembo and Zeitouni 1998 or Bucklew 2004) that if there exists θ ∗ such
that ψ ′(θ ∗) = x, then

lim
t→∞

1
t

logP(Jt > xt) =−I(x), (12)

where I(x) = θ ∗x−ψ(θ ∗); existence of such a θ ∗ is established in Proposition 2 with proof provided in the Appendix.

Proposition 2 For each x > κµ/(κ−δ ), θ ∗ is given by

θ
∗ = θ

∗(x) =−δa log
(

1+κa− σ2

2
a2
)

where a is the smaller root of the quadratic equation(
δκµ

κ−δ
+1
)

σ2

2
a2−

(
κµ(σ2 +κδ )

κ−δ
+κ

)
a+

(κ−δ )x
κµ

−1 = 0.

Given the limit (12), this suggests the approximation

P(Jt > xt)≈ exp(−I(x)t) (13)

when t is large. In practice, the approximation (13) can be quite poor for moderate values of t. It follows that use of
simulation to compute P(Jt > xt) is of significant practical value in many settings.
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4 THE IMPORTANCE SAMPLING ALGORITHM

Given the key role that θ ∗ plays in the asymptotic limit (13), it is natural to therefore consider an importance sampling
algorithm in which the importance distribution is the change-of-measure Q associated with the exponential martingale
associated with θ ∗. For this choice of importance distribution, the associated estimator is

Z(t) , Mt(θ ∗)−1I(JQ
t > xt).

The corresponding importance sampling algorithm is then given by:

i.) Compute the root θ ∗ of ψ ′(θ ∗) = x
ii.) Simulate λt and Jt under the dynamics of the importance distribution Q associated with θ ∗ (see Giesecke and Kim

2007)
iii.) Compute Z(t) from the simulated path
iv.) Replicate steps i.) – iii.) N iid times, thereby producing Z1(t), . . . ,ZN(t)
v.) Calculate

Z̄ =
1
N

N

∑
i=1

Zi(t)

as the estimate of P(Jt > xt).

Note that

EQZ2(t) = EQ exp[2(ψ(θ ∗)t−θ
∗Jt −a(θ ∗)(λt −λ0))]I(Jt > xt)

≤ EQ exp[2(ψ(θ ∗)t−θ
∗xt−a(θ ∗)(λt −λ0))]

= exp(−2I(x)t)EQ exp(−2a(θ ∗)(λt −λ0))

The geometric ergodicity of (λt : t ≥ 0) under Q then suggests that

lim
t→∞

exp(2I(x)t)EQZ2(t) < ∞.

This guarantees that the family of estimators (Z(t) : t ≥ 0) is logarithmically efficient for computing the P(Jt > xt)’s; see
Zhang, Glynn, Giesecke, and Blanchet (2009) for details.

5 NUMERICAL RESULTS

The simulation experiments were performed on a desktop PC with an Intel Core 2 Quad 2.40 GHz processor and 2GB of
RAM, running Windows XP Professional. The codes were written in C++. The compiler used was Microsoft Visual Studio
2008. The numerical results are shown in Table 1 and Figure 1.

A APPENDIX

A.1 Proof of Proposition 1

Rewrite (8) as

eθ = e−δa
(

1+κa− σ2

2
a2
)

, f (a).

We have

f ′(a) = e−δa
(

κ−δ − (σ2 +κδ )a+
δσ2

2
a2
)

, e−δag(a).
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Table 1: Simulation results for P(Jt > xt). Parameter values are κ = 5, µ = 0.7, σ = 0.2, δ = 1, λ0 = 0.7 and x = 1.2. “Log
ratio” means logEQZ2(t)/ log(P(Jt > xt)2). Number of simulation trials is 500.

t Z(t) EQZ(t)2 log ratio 95% CI of log ratio
100 3.83E-03 6.57E-05 0.865177 [0.856314,0.87404]
200 1.30E-04 8.39E-08 0.910286 [0.90366,0.916911]
300 3.57E-06 8.70E-11 0.92335 [0.917782,0.928918]
400 1.04E-07 8.89E-14 0.934571 [0.92959,0.939552]
500 3.31E-09 1.01E-16 0.943133 [0.938622,0.947645]
700 4.47E-12 1.70E-22 0.959022 [0.955666,0.962378]

1000 1.39E-16 2.66E-31 0.964063 [0.960877,0.967248]
1400 2.93E-22 1.12E-42 0.974118 [0.971661,0.976574]
2000 6.07E-31 5.69E-60 0.980341 [0.978514,0.98169]
3500 1.48E-52 5.32E-103 0.986644 [0.985196,0.988091]
5000 6.58E-74 7.43E-146 0.991564 [0.990698,0.99243]
7500 4.34E-110 7.39E-218 0.992712 [0.990572,0.994852]

10000 6.08E-146 1.30E-289 0.99468 [0.993156,0.996204]

The discriminant of g(a)

∆g = σ
4 +2σ

2
δ

2 +κ
2
δ

2 > (σ2 +δ
2)2 ≥ 0

since κ > δ . Hence g(a), as well as f ′(a), has two distinct positive zeros, say a1 < a2. It follows that

sup
a>0

f (a) = f (a1) > f (0) = 1, inf
a>0

f (a) = f (a2) < 0.

Moreover, f (a) is strictly increasing on (0,a1) and strictly decreasing on (a1,a2). Let θ̃ = log( f (a1)). Then f (a) = eθ has two
distinct roots for θ < θ̃ , one single root for θ = θ̃ and no root for θ > θ̃ . When θ < θ̃ , we choose a(θ) < a1 to be the smaller root.

A.2 Proof of Proposition 2

Put y = x/(κµ) > 0, then we only need to solve (8) and a′(θ ∗) = y. Differentiating w.r.t. θ on both sides of (8), we have

a(θ ∗)σ2y−κy+(δy+1)ea(θ∗)δ+θ∗ = 0 (14)

Combing (14) with (8) yields

(δy+1)
σ2

2
a(θ ∗)2− ((σ2 +κδ )y+κ)a(θ ∗)+(κ−δ )y−1 = 0 (15)

which is a quadratic in a(θ ∗). Call the LHS of (15) l(a), i.e.

l(a) = (δy+1)
σ2

2
a2− ((σ2 +κδ )y+κ)a+(κ−δ )y−1.

Then, (15) has solutions for a(θ ∗) if and only if the discriminant of l(a)

∆l ≡ ((σ2 +κδ )y+κ)2−2σ
2(δy+1)((κ−δ )y−1)≥ 0.
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Figure 1: Plot of log ratio as function of time t, when computing P (Jt > xt)
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Indeed, after rearranging terms of ∆l , we obtain

∆l = (σ4 +κ
2
δ

2 +2σ
2
δ

2)y2−2δ (κ2 +2σ
2)y+κ

2 +2σ
2

which is, again, quadratic in y. It’s easy to calculate the discriminant of ∆l , which is

−4(κ2 +2σ
2)σ4 < 0.

Hence, ∆l > 0 for all y. In other words, we’ve shown that (15) always has two distinct positive roots since the constant term
of the quadratic function l(a) is

(κ−δ )y−1 =
(κ−δ )x

κµ
−1 > 0.

We take the smaller one as a(θ ∗).
The last step is to prove that for such an a(θ ∗) is indeed feasible in the sense that

eθ∗ = e−δa(θ∗)
(

1+κa(θ ∗)− σ2

2
a(θ ∗)2

)
> 0

(15) implies that

1+κa(θ ∗)− σ2

2
a(θ ∗)2 = y

(
κ−δ − (σ2 +κδ )a(θ ∗)+

δσ2

2
a(θ ∗)2

)
= yg(a(θ ∗))

where g(a) is as defined in the proof of Proposition 1. As discussed in the proof of Proposition 1, g(a) has two distinct
positive roots a1 and a2. Note that

l(a1) = yg(a1)+
σ2

2
a2

1−κa1−1 =
σ2

2
a2

1−κa1−1 < 0

as shown in the proof of Proposition 1. It follows that a(θ ∗) < a1 since a(θ ∗) is the smaller positive root of l(a). Therefore,
g(a(θ ∗)) > 0.
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