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ABSTRACT

Barrier options are popular derivative securities with payoffs dependent on whether or not an underlying asset crosses a
barrier. This paper presents a Monte Carlo simulation-based method of sensitivity analysis for barrier options based on
smoothed perturbation analysis (SPA) for a general form of discontinuous sample function payoffs. The connection between
the resulting SPA estimator and the probability formula derived in Hong (2008) and its generalization in Liu and Hong
(2009) is explored. Using a Brownian bridge result, the estimator is applied to continuously-monitored barrier options with
rebates. Illustrative simulation examples are provided.

1 INTRODUCTION

Since its introduction to finance by Boyle (1977), Monte Carlo simulation has become one of the standard methods for option
pricing due to the increasing complexity of derivative securities. Gradient estimation plays a central role in the hedging and
pricing of various security derivatives. For example, Fu and Hu (1995) price American call options with discrete dividends
by parameterizing the exercise boundary and using an SPA gradient estimator in a stochastic approximation algorithm to
maximize the expected payoff with respect to the parameters. Perhaps even more importantly than for option pricing,
gradients are central for hedging risk. For example, the first-order derivatives of the stock price with respect to the price
and volatility, called the “delta” and “vega,” respectively, are used to hedge against price and volatility swings. This paper
considers sensitivity analysis for continuously-monitored barrier options, which are a special type of options whose payoff
depends on if the underlying security price crosses a specific barrier during the life of the option. There are two main types
of barrier options: knock-out options, which pay zero if a barrier crossing occurs, and knock-in options, which have zero
payoff unless there is a barrier crossing. For more information on barrier options pricing, see Glasserman and Staum (2001),
Broadie, Glasserman, and Kou (1997).

In most cases, there are no analytical solutions for the gradient, and Monte Carlo simulation is frequently adopted to
estimate the gradient (Broadie and Glasserman 1996, Fu and Hu 1995). In the simulation literature, gradient estimation
has been studied extensively (Fu 2006). Techniques include infinitesimal perturbation analysis (IPA) (Ho and Cao 1991,
Glasserman 1991), the likelihood ratio method (Reiman and Weiss 1989), finite differences, and Malliavin calculus (Fournié
et al. 2001, Chen and Glasserman 2007).

For a general introduction to IPA, refer to Ho and Cao (1991), Glasserman (1991). The IPA method explores properties
of sample paths and usually gives estimators with smaller variance compared with other estimators. The key problem of
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IPA is the interchangeability of differentiation and integration, which is not applicable if the sample performance function
is discontinuous. By using conditional expectation, smoothed perturbation analysis (SPA) (Gong and Ho 1987, Fu and Hu
1997) can overcome this difficulty. To cope with the discontinuities in payoff functions, it may be difficult to choose on what
to condition, which is viewed as a drawback of SPA, but we will illustrate with examples how to do this for a certain class of
discontinuous sample performance functions. The likelihood ratio (LR) method, also called the score function (SF) method
(Rubinstein and Melamed ), does not require the sample performance function to be continuous, and the interchangeability
of differentiation and integration is often not a problem, although the variance can be high.

Recently, for the purpose of estimating quantile sensitivities, Hong (2008) derived a probability formula that is generalized
in Liu and Hong (2009) to derive gradient estimators for performance functions containing indicator functions. In this paper,
we explore the connection between the SPA approach and the method in Hong (2008). Specifically, we consider performance
functions with an indicator function and use the SPA approach to derive gradient estimators that match those in Liu and
Hong (2009), but are valid under different conditions. More generally, SPA can also be used to deal with the sensitivity
analysis for performance functions with more complicated forms. We give a pricing algorithm for barrier options with
underlying securities following general diffusion processes. The payoff function in our pricing algorithm involves multiple
indicator functions and has a complicated form, and SPA is used to obtain gradient estimators for the barrier option. We
also extend our result to barrier options with rebates. Finally numerical examples are given to demonstrate the effectiveness
of our algorithm.

2 PROBLEM SETTING

We consider the sensitivity analysis problem for a knock-out option with the underlying financial security following a
stochastic process {St , t ∈ [0,T ]}. We only deal with European-style options, which can only be exercised at maturity.
Continuously-monitored barrier options will be considered. The state vector of the underlying security at the simulated
discretized points (t1, t2, · · · , tm = T ), is denoted as (S1,S2, · · · ,Sm) (abbreviating the more explicit (St1 ,St2 , · · · ,Stm) ). For
simplicity, we also assume that the length of the time between two consecutive sampled dates ti+1 and ti is a constant ∆t.

2.1 Examples

2.1.1 Geometric Brownian Motion

In this example, the stock price St is governed by the dynamics

dSt = rStdt +σStdBt ,

where {Bt} is the standard Brownian motion process, r is the riskless interest rate, and σ is the volatility. This model has
an exact discretization solution

Si+1 = Si exp
(
(µ− 1

2
σ

2)∆t +σ
√

∆tZi

)
,

where Z1,Z2, · · · ,Zm−1 are i.i.d standard normal random variables. For a down-and-out barrier call option, the barrier is a
price level H < S0 and the barrier option has a discounted payoff

V = exp(−rT )(Sm−K)+1{inft≤T St>H},

where K is the strike price, and tm = T the maturity date. For this simple model, there exist closed-form solutions for the
pricing problem. We are interested in the sensitivity analysis of the expected payoff function E[V ] with respect to parameter
θ , which could be µ,σ ,K,S0,H. The sensitivity of E[V ] with respect to H is defined as

∂E[V ]
∂H

= lim
ε→0

E
[

exp(−rT )(Sm−K)+1{inft≤T St>H+ε}

]
−E

[
exp(−rT )(Sm−K)+1{inft≤T St>H−ε}

]
2ε

.
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2.1.2 General Diffusion Processes

Here we consider general diffusion processes, for example, the mean reverting Ornstein-Uhlenbeck process

dSt = θ(µ−St)dt +σdBt , (1)

where θ ,µ,σ are parameters. More generally, we consider the following diffusion process

dSt = µ(St , t)dt +σ(St , t)dBt , (2)

where µ(St , t) and σ(St , t) are two functions depending on St and t. The Ornstein-Uhlenbeck process (1) is a special case
of (2). We can easily simulate the above process by Euler scheme as follows:

Si+1 = Si + µ(Si, ti)∆t +σ(Si, ti)
√

∆tZi+1. (3)

Since there is no analytical solution for the pricing of barrier options with underlying securities of the above form, we
can use Monte Carlo simulation to estimate the option price. In this paper we are interested in the sensitivity analysis of
barrier options following the above model.

2.2 Pathwise Gradient Estimator By SPA

Note that the payoff function of barrier options can be written in a more general form

p(θ) = E[ψ(θ)1{ν(θ)≥0}], (4)

for random variables ψ and ν depending on parameter θ . Since there is an indicator function in the payoff function of barrier
options, the classical pathwise gradient estimation technique of infinitesimal perturbation analysis (IPA) is not applicable
(Glasserman 2004). Smoothed Perturbation Analysis (SPA) is a gradient estimation technique that can be used to smooth
out the discontinuity in the payoff function (Gong and Ho 1987, Fu and Hu 1997). Recently, Hong (2008) proposed an
approach to circumvent this difficulty when differentiating the expectation of an indicator function. Liu and Hong (2009)
extends the method in Hong (2008) to more general cases, which is applied to obtain Greeks for financial options. Actually
there is a connection between SPA and the method proposed by Hong (2008). Based on the SPA method, we give a new
derivation of the gradient estimator provided in Liu and Hong (2009).

We use the following assumptions to establish the unbiasedness of pathwise estimators for functions of the form (4),
where we assume ν(θ) is a random variable that is expressible as a function of another random variable, in which we show
explicit dependence by writing ν(θ ,ω).

Assumption 1. For ω a continuous-valued random variable, ν(θ ,ω) is a random variable that is differentiable w.r.t. θ

almost everywhere, i.e.

ν
′(θ ,ω) = lim

∆θ→0

ν(θ +∆θ ,ω)−ν(θ ,ω)
∆θ

w.p.1, (5)

and ν(θ) has probability density function (p.d.f.) fθ .

Assumption 2. ψ(θ) is differentiable w.p.1, and there exists a random variable λψ(θ) with E[λψ(θ)] < ∞ such that
|ψ(θ +∆θ)−ψ(θ)| ≤ λψ(θ)|∆θ | for sufficiently small ∆θ .

Theorem 1. If ν(·) and ψ(·) satisfy Assumptions 1 and 2 (respectively), then

∂

∂θ
E[ψ(θ)1{ν(θ)≥0}] = E[ψ ′(θ)1{ν(θ)}≥0]+ fν(θ)(0)E[ψ(θ)ν ′(θ)|ν(θ) = 0]. (6)

Proof. Given a specific θ , assume there exists an ω? in the sample space Ω such that ν(θ ,ω?) = 0; otherwise the IPA
gradient estimator would be unbiased, i.e., the second term in (6) would be 0. We consider the perturbation of θ to θ +∆θ ,
for small ∆θ .
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First, if ν(θ +∆θ ,ω?) and ν(θ −∆θ ,ω?) always have the same sign, we will have

∂

∂θ
E[ψ(θ)1{ν(θ)≥0}] = lim

∆θ→0

E[ψ(θ +∆θ)1{ν(θ+∆θ)≥0}−ψ(θ −∆θ)1{ν(θ−∆θ)≥0}]
2∆θ

= E[ψ ′(θ)1{ν(θ)}≥0],

by the dominated convergence theorem. Note that we also have

∂ν(θ ,ω?)
∂θ

= 0.

Hence the theorem is proved for this case.

Now assume that ν(θ + ∆θ ,ω?) and ν(θ −∆θ ,ω?) have different signs. Without loss of generality, we assume that
ν(θ +∆θ ,ω?)≥ 0 and ν(θ −∆θ ,ω?)≤ 0. Define

B(ω?,θ ,∆θ) =
{

ω : 0≤ ν(θ +∆θ ,ω)≤ ν(θ +∆θ ,ω?);0≥ ν(θ −∆θ ,ω)≥ ν(θ −∆θ ,ω?)
}
.

Let Bc(ω?,θ ,∆θ) be the complement set of B(ω?,θ ,∆θ). Then we have

∂

∂θ
E[ψ(θ)1{ν(θ)≥0}] = lim

∆θ→0

E[ψ(θ +∆θ)1{ν(θ+∆θ)≥0}−ψ(θ −∆θ)1{ν(θ−∆θ)≥0}]
2∆θ

=Π1 +Π2,

where

Π1 = lim
∆θ→0

E[ψ(θ +∆θ)1{ν(θ+∆θ)≥0}−ψ(θ −∆θ)1{ν(θ−∆θ)≥0}|Bc(ω?,θ ,∆θ)]P(Bc(ω?,θ ,∆θ))
2∆θ

,

Π2 = lim
∆θ→0

E[ψ(θ +∆θ)1{ν(θ+∆θ)≥0}−ψ(θ −∆θ)1{ν(θ−∆θ)≥0}|B(ω?,θ ,∆θ)]P(B(ω?,θ ,∆θ))
2∆θ

.

Note that

Π2 = lim
∆θ→0

E[ψ(θ +∆θ)1{ν(θ+∆θ)≥0}−ψ(θ −∆θ)1{ν(θ−∆θ)≥0}|B(ω?,θ ,∆θ)]P(B(ω?,θ ,∆θ))
2∆θ

= lim
∆θ→0

E[ψ(θ +∆θ)1{ν(θ+∆θ)≥0}|B(ω?,θ ,∆θ)] lim
∆θ→0

P(B(ω?,θ ,∆θ))
2∆θ

= E[ψ(θ)1{ν(θ)≥0}|ω?] lim
∆θ→0

∫ ν(θ+∆θ ,ω?)
0 fθ+∆θ (t)dt +

∫ 0
ν(θ−∆θ ,ω?) fθ−∆θ (t)dt

2∆θ

and that ∫
ν(θ+∆θ ,ω?)

ν(θ−∆θ ,ω?)
inf

θ̂∈(θ−∆θ ,θ+∆θ)
f
θ̂
(t)dt ≤

∫
ν(θ+∆θ ,ω?)

0
fθ+∆θ (t)dt +

∫ 0

ν(θ−∆θ ,ω?)
fθ−∆θ (t)dt

≤
∫

ν(θ+∆θ ,ω?)

ν(θ−∆θ ,ω?)
sup

θ̂∈(θ−∆θ ,θ+∆θ)
f
θ̂
(t)dt.

By the mean value theorem, we have

(∂ν(θ ,ω?)
∂θ

∗2∆θ +o(∆θ)
)

inf
θ̂∈(θ−∆θ ,θ+∆θ)

f
θ̂
(ν1)≤

∫
ν(θ+∆θ ,ω?)

0
fθ+∆θ (t)dt +

∫ 0

ν(θ−∆θ ,ω?)
fθ−∆θ (t)dt

≤
(∂ν(θ ,ω?)

∂θ
∗2∆θ +o(∆θ)

)
sup

θ̂∈(θ−∆θ ,θ+∆θ)
f
θ̂
(ν2),
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where ν1 ∈ (ν(θ −∆θ ,ω?),ν(θ + ∆θ ,ω?)) and ν2 ∈ (ν(θ −∆θ ,ω?),ν(θ + ∆θ ,ω?)), and o(∆θ) represents higher order
terms of ∆θ .

Then we have

Π2 = E[ψ(θ)1{ν(θ)≥0}|ν(θ) = 0]
∂ν(θ ,ω?)

∂θ

= E[ψ(θ)ν ′(θ)|ν(θ) = 0]

since lim∆θ→0 inf
θ̂∈(θ−∆θ ,θ+∆θ) f

θ̂
(ν1) = lim∆θ→0 sup

θ̂∈(θ−∆θ ,θ+∆θ) f
θ̂
(ν2) = fθ (0).

Now consider Π1. Note that for sufficiently small ∆θ ,∣∣ψ(θ +∆θ)1{ν(θ+∆θ)≥0}−ψ(θ −∆θ)1{ν(θ−∆θ)≥0}
∣∣Bc(ω?,θ ,∆θ)

∣∣
≤
∣∣ψ(θ +∆θ)−ψ(θ −∆θ)

∣∣Bc(ω?,θ ,∆θ)
∣∣

≤ λψ(θ)|∆θ | w.p.1.

The last inequality follows by Assumption 2. Then by the dominated convergence theorem,

lim
∆θ→0

E[ψ(θ +∆θ)1{ν(θ+∆θ)≥0}−ψ(θ −∆θ)1{ν(θ−∆θ)≥0}|Bc(ω?,θ ,∆θ)]
2∆θ

= E[ψ ′(θ)1{ν(θ)≥0}].

Therefore, Π1 = E[ψ ′(θ)1{ν(θ)}≥0], and the theorem is proved.

2.2.1 A Special Case

Now consider a special case of the above theorem. Let ν(θ) = U−φ(θ), where U is a random variable independent of θ

with p.d.f. fU and φ(·) is a deterministic function. If φ(·) is Lipschitz continuous and differentiable, then it is easy to see
that ν(θ) satisfies Assumption 1, so if Assumption 2 is also satisfied, then by Theorem 1, the estimator (6) becomes

∂

∂θ
E
[
ψ(θ)1{ν(θ)≥0}

]
= E

[
ψ
′(θ)1{U≥φ(θ)}

]
− fU (φ(θ))E

[
ψ(θ)φ ′(θ)|U = φ(θ)

]
.

3 SENSITIVITY ANALYSIS FOR BARRIER OPTIONS

Now we come back to sensitivity analysis for continuously-monitored barrier options. First we analyze the pricing problem
for “standard” barrier options, based on which we derive a gradient estimator using the SPA estimator. To price the barrier
option following the general diffusion model given by (2), we use the discretized approximation given by (3). We generate
sample paths by (3) and compare the prices of the option at time t1, t2, · · · , tm with the threshold value H along a simulated
path. If any of the prices at t1, t2, · · · , tm is smaller than H on a given sample path, then obviously the stock price has crossed
the barrier, and the option payoff along that given sample path is zero. However, even if all the prices at the discretely
sampled points are above H on a given sample path, it is still possible that the stock price path crossed the barrier between
two consecutive sampling points by going below and then coming back above. Thus, we need to incorporate this possibility
in our analysis.

3.1 Barrier Option Pricing

Consider the stock price Si−1 > H and Si > H at times ti−1 and ti, respectively. By (3), we know that the stock price follows
a diffusion process with the drift term µ(Si−1, t)dt and the Brownian motion term dBt . Let Li = infti−1<t≤ti St . Then the
option price can be computed as

V = E
[ m

∏
i=1

1{Li>H}(Sm−K)+
]
.

1276



Wang, Fu and Marcus

Given two values Si−1 and Si, then St for t ∈ (ti−1, ti] is a Brownian bridge and Li is the minimum of this Brownian bridge.
By ?, we have

P
(

Li > H
∣∣Si−1,Si

)
= 1{Si>H}ψi(H,Si−1,Si),

where ψi(H,Si−1,Si) =
(

1− exp
(
− 2(Si−1−H)(Si−H)

(ti−ti−1)σ2

))
. Therefore, 1{Li>H} is equivalent to 1{Si>H}1{Ui<ψi}, where Ui is a

random variable uniformly distributed in [0,1] and ψi is the abbreviation of ψi(H,Si−1,Si). Hence we can rewrite the option
price as

V = E
[ m

∏
i=1

1{Si>H}1{Ui<ψi}(Sm−K)+
]
,

which also gives us an algorithm to approximate the option price.
Now we can use Theorem 1 to obtain the sensitivity of the option price with respect to a parameters of interest θ :

∂V
∂θ

= E
[ m

∏
i=1

1{Si>H}1{Ui<ψi}
∂ (Sm−K)+

∂θ

]
+

m

∑
i=1

f{i,H}(0)

E
[ m

∏
j=1, j 6=i

1{S j>H}1{U j<ψ j}1{Ui<ψi}(Sm−K)+
∣∣Si−H = 0

]
+

m

∑
i=1

∂ψi

∂θ
E
[ m

∏
j=1, j 6=i

1{S j>H}1{U j<ψ j}1{Si>H}(Sm−K)+
∣∣∣Ui = ψi

]
= E

[ m

∏
i=1

1{Si>H}1{Ui<ψi}
∂ (Sm−K)+

∂θ

]
+

m

∑
i=1

∂ψi

∂θ
E
[ m

∏
j=1, j 6=i

1{S j>H}1{U j<ψ j}1{Si>H}(Sm−K)+
∣∣∣Ui = ψi

]
,

where f{i,H} is the p.d.f. of the random variable Si−H for i = 1, · · · ,m. The second equality holds because ψi(H,Si−1,H) = 0.
We can condition on a small set where the value of payoff function changes and then take limit to get the result. The details
of the derivation of the above gradient estimator are omitted.

3.2 Barrier Option with Rebates

Now we consider the pricing and sensitivity analysis for a type of barrier option with rebates. The buyers of this type of
option will receive a rebate R if the option is knocked out, and the rebate is payable at the time of knock-out, so the value
of the rebate is the product of the constant rebate value and a discount factor. In order to compute the expected value of
the rebate, we need to know the distribution of the time when the stock price crosses the barrier. Define

C(t) :=
{

ω : inf
τ

Sτ(ω)≤ H, τ ∈ [t, t +dt]
}
.

The p.d.f. of the first time when the stock price crosses the barrier between two end points is given by (Metwally and Atiya
2002)

gi(t) = P
(
C(t)

∣∣Si−1,Si
)

=
Si−1−H

2y(ti− ti−1)σ2 (t− ti−1)−3/2(ti− t)−1/2

exp
(
−
[ (Si−H−µ(ti− t))2

2(ti− t)σ2 +
(Si−1−H + µ(t− ti−1))2

2(t− ti−1)σ2

])
, (7)
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where

y =
1√

2π(ti− ti−1)σ
exp
(
− Si−1−Si + µ(ti− ti−1)

2σ2(ti− ti−1)

)
.

Define η := min{i : S j > H,∀ j = 1, · · · , i−1;Si ≤ H}, which is the index of the time when the stock price crosses the
barrier the first time. If the stock price never crosses the barrier, we let η = 0. The payoff of the down-and-out barrier
option along a simulated path can be computed as

V̂ =
Γ

∑
i=1

R
i−1

∏
j=1

1{S j>H}1{U j<ψ j}1{Ui≥ψi}1{Si>H}Epi [exp(−rτi)]+1{η 6=0}R
Γ

∏
j=1

1{S j>H}1{U j<ψ j}1{SΓ+1≤H}

E[exp(−rτΓ+1)]+1{η=0} exp(−rT )(Sm−K)+
m

∏
j=1

1{S j>H}1{U j<ψ j}, (8)

where Γ = η − 1, i f η 6= 0; Γ = m, i f η = 0; Let Λi be the event that the stock price crosses the barrier, given two end
points Si−1,Si. τi = {inf t : St = H|Si−1,Si,Λi}; pi = P

(
C(s)

∣∣Si−1,Si,Λi
)
; {U j, j = 1, · · · ,Γ} are uniformly distributed random

variables in [0,1], which are independent of each other and {Si, i = 1, · · · ,m}. Note that

Epi [exp(−rτi)] =
∫ ti

ti−1

exp(−rs)
P
(
C(s)

∣∣Si−1,Si
)

P(Λi)
ds.

We can use the following algorithm to simulate the price of the barrier option with rebates.

Algorithm 1.

1 Initialization: let n = 1.
2 If n > N, go to step 3. Otherwise, according to (3), simulate stock price Si, i = 1, · · · ,m by generating standard

normal distributed random variables zi, i = 1, · · · ,m. Let i = 1, and perform the following iteration.
[2a] If Si > H, generate Ui, which is uniformly distributed in [0,1], and compute ψi, then go to step 2b; if

Si ≤ H, let V̂n =
∫ ti

ti−1
exp(−rs)gi(s)ds. let n = n+1 and go to step 2.

[2b] If Ui < ψi and i = m, let V̂n = exp(−rT )(Sm−K)+; If Ui < ψi and i < m, let i = i+1, go to step 2a. If
Ui ≥ ψi, let V̂n =

∫ ti
ti−1

exp(−rs)gi(s)ds. let n = n+1 and go to step 2.
3 V̄ = 1

N ∑
N
i=1 V̂i.

By the above algorithm, we can easily obtain an approximation of the option price using Monte Carlo simulation. Now
we will use SPA technique to derive a gradient estimator for the barrier option with respect to parameters of interest. Note
that the expectation of the payoff given by (8) is different from the function (4) considered in Theorem 1. For payoff (8),
when we condition on a small set which contains the points where the value of the indicator functions change, the random
variable Γ changes, and hence changes the form of the payoff function. However, in Theorem 1, if the value of the indicator
function becomes zero, the value of the payoff functions changes to zero.

It is not difficult to see that the payoff function (8) is continuous in H at points {Si = H}. We only need to use conditional
expectation to smooth out the indicator function 1{U j<ψ j}. Following the same spirit as the method used to prove Theorem
1, we have

∂E[V̂ ]
∂H

= Λ1−Λ2 + lim
∆H→0

o(∆H), (9)
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where

Λ1 = RE
[ Γ

∑
i=1

i−1

∏
j=1

1{S j>H}1{U j<ψ j}1{Si>H}1{Ui≥ψi}
∂

∂H
Epi

[
exp(−rτi)

]]
+

R
[
1{η 6=0}

Γ

∏
j=1

1{S j>H}1{U j<ψ j}1{SΓ+1≤H}
∂

∂H
E[exp(−rτΓ+1)]

]
,

Λ2 = E
[ Γ

∑
i=1

∂ψi

∂H

{
R

i−1

∏
j=1

1{S j>H}1{U j<ψ j}1{Si>H}Epi

[
exp(−rτi)

]
−

Γ

∑
l=i+1

l−1

∏
j=1

1{S j>H}1{U j<ψ j , j 6=i}1{Ul≥ψl}1{Sl>H}Epl

[
exp(−rτl)

]
−

1{η 6=0}R
Γ

∏
j=1

1{S j>H}1{U j<ψ j , j 6=i}1{SΓ+1≤H}E
[

exp(−rτΓ+1)
]
−

1{η=0} exp(−rT )(Sm−K)+
m

∏
j=1

1{S j>H}1{U j<ψ j , j 6=i}

∣∣∣Ui = ψi

}]
,

and o(∆H) are the higher order term of ∆H. Since there are multiple indicator functions in (8), when we condition on small
sets involving more than one discontinuous points, we have such higher order terms.

3.3 Gradient Estimator

When Algorithm 1 is used to price the barrier option, we need to estimate the integral
∫ ti

ti−1
exp(−rs)gi(s)ds, given two end

points Si−1 and Si. It is not easy to sample from p.d.f. gi(s) directly. However through some algebraic operation, (7) becomes

gi(t) =
Si−1−H√

2π(t− ti)3σ2

√
ti− ti−1

ti− t

exp
(
− [(Si−1−H− (Si−H))(t− ti−1)− (Si−1−H)(ti− ti−1)]2

2(ti− ti−1)(t− ti−1)(ti− t)σ2

)
. (10)

Note that the inverse Gaussian process random variable has the following p.d.f.:

fi(y,ηi,λi) =

√
λi

2πy3 exp
(−λi(y−ηi)2

2η2
i y

)
,

which has a similar form with (10). It is not difficult to show that if a random variable Y has density fi(y,ηi,λi) with

ηi = − Si−1−H
Si−H and λi = (Si−1−H)2

(ti−ti−1)σ2 , then ti−1 + (ti−ti−1)Y
1+Y has density (7). Therefore

∫ ti
ti−1

exp(−rs)gi(s)ds can be easily
approximated using Monte Carlo simulation by generating samples of the random variable Y (Glasserman 2004).

To obtain the gradient estimator (9), we need to estimate the gradient of
∫ ti

ti−1
exp(−rs)gi(s)ds with respect to H. Since

H only exists in the probability density function gi(s), we can obtain a likelihood ratio (LR) gradient estimator easily, which
is given as follows:

∂

∂H

∫ ti

ti−1

exp(−rs)gi(s)ds =
∂

∂H

∫
∞

0
exp(−rti−1 +

(ti− ti−1)y
1+ y l

) fi(y,ηi,λi)dy

=
∫

∞

0
exp
(
− r
(

ti−1 +
(ti− ti−1)y

1+ y

))
∂ ln fi(y,ηi,λi)

∂H
fi(y,ηi,λi)dy.
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Table 1: Sensitivity Estimation Result for Barrier Options without Rebates (standard errors in parentheses)

r = 0.125,σ = 0.5,K = 100,H = 98
∂V/∂H m = 5 m = 10 m = 15 m = 20
Exact -1.293 -1.293 -1.293 -1.293
FD -1.11(0.45) -0.92(0.40) -0.92(0.42) -0.87 (0.53)
SPA -1.292(0.04) -1.24(0.04) -1.377(0.05) -1.312(0.05)

Table 2: Sensitivity Estimation Result for Barrier Options with Rebates (standard errors in parentheses)

r = 0.02,σ = 0.5,K = 100,H = 95
∂V/∂H m = 10 m = 20 m = 40 m = 80 m = 160

FD -2.63(0.8) -2.09(0.5) -1.77(0.6) -1.57(0.5) -1.86 (0.6)
SPA -2.14(0.03) -2.11(0.06) -2.26(0.08) -2.22 (0.09) -2.11(0.1)

4 NUMERICAL RESULTS

In this section, we give numerical results for two examples to demonstrate the efficiency of the estimators. For simplicity, we
consider a Black-Scholes model with parameters S0 = K = 100, r = 0.125, σ = 0.5, T = 1, and H = 98. For the Black-Scholes
model, we can obtain the exact gradient values for all parameters of interest. We compare the performance of our estimator
with the exact values and also with finite difference estimates. When we derive the finite difference estimator, we make
a fine discretization of the stochastic process that governs the stock price: {Sti , i = 1, · · · ,mF}, where mF is the number
of the discretized points. The discretized time step is T/mF = 2 ∗ 10−4. We use mini=1,··· ,mF Sti to approximate inft≤T St
and generate N = 10000 sample paths to get one estimate. From the simulation results, we can see that the SPA gradient
estimator generally works well, whereas the finite difference gradient estimator has bias with comparatively larger variance.
Moreover from the simulation result, we can see the performance of our gradient estimator doesn’t change a lot with the
changing of m, which is the number of discretization points. Since H is in the indicator function, there will be an abrupt
change in the performance function when the change of H reaches a certain level. Therefore the finite difference estimator
tends to have larger variance.

In our second example, we consider sensitivity analysis for barrier options with rebates. For simplicity, we also
consider Black-Scholes model with parameters S0 = K = 100, r = 0.02, σ = 0.5, T = 1, H = 95, and R = 5. Even for this
Black-Scholes model, it is not clear whether there is an analytical solution. Therefore we mainly compare our result with the
finite difference gradient estimator. We obtain the finite difference gradient estimator by discretizing the stochastic process
with a very small time step h = 2∗10−4. The first discretized time when the stock price crosses the barrier will be the time
when the rebate is paid. If there is no barrier crossing before T , we get payoff exp(−rT )(Sm−K)+. We generate N = 10000
sample paths to get one estimate. As in the previous example, the SPA estimator is clearly superior to the FD estimator in
terms of precision, and the difference is even wider, as the standard error of the FD estimate has increased.

5 CONCLUSIONS

Motivated by the sensitivity analysis problem for barrier options, this paper explores the connection between SPA and the
gradient estimator derived in (Hong 2008), which involves construction of auxiliary variables. Specifically, a general class of
sample performance functions with an indicator function discontinuity is considered. By conditioning on a small set (interval)
that contains the discontinuity point, we can smooth out the discontinuity of the sample performance function and thus
obtain an unbiased pathwise gradient estimator. A drawback often cited in applying SPA to a specific problem setting is the
difficulty of choosing what set to condition on. Here, we demonstrate that for the setting of a sample performance function
with a given point of discontinuity, we only need to condition on a small set around the discontinuity point and then take
the appropriate limit. Furthermore, this approach can be generalized beyond the form of the sample performance function
consider in Theorem 1. Here, we consider continuously-monitored barrier options and in conjunction with a Brownian bridge
construction, apply the approach to derive gradient estimators for the basic case and then generalize the estimator to barrier
options with rebates. Numerical results indicate that our estimators work well.
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