
Proceedings of the 2009 Winter Simulation Conference
M. D. Rossetti, R. R. Hill, B. Johansson, A. Dunkin, and R. G. Ingalls, eds.

A Wiener Measure Theoretic Approach to Pricing Extreme-Value-Related Derivatives

Nan Chen
Zhengyu Huang

Department of Systems Engineering and Engineering Management
609 William Mong Engineering Building

Chinese University of Hong Kong
Shatin, Hong Kong

ABSTRACT

Discretization schemes converge slowly when simulating extreme values for stochastic differential equations. Using a Wiener
measure decomposition approach, this paper constructs an unbiased estimator for pricing extreme-value-related derivatives,
such as barrier and lookback options, under a diffusion market model. A strong condition on the coefficients is needed in the
derivation of the estimator. We also propose a truncation technique to remove this requirement and show that the truncation
error decays exponentially. The numerical experiments reveal that this estimator is accurate and efficient.

1 INTRODUCTION

In option pricing applications, path dependence enters through extreme values of an underlying asset over the life of the
option. Typical examples include barrier and lookback options. The payoffs of barrier options depends on whether or not
the underlying price crosses a barrier and a standard lookback option gives the holder a right to buy/sell an asset at its
lowest/highest price up to the maturity of the option.

To apply Monte Carlo recipe for pricing such derivatives, we have to simulate the running maximum or minimum to compute
the payoffs along each sample path. The most straightforward way is through discretization. Simulate a time-discretized
approximation to the underlying process over a time grid and take the maximum/minimum of the approximation as an
approximation to the maximum/minimum of the original continuous-time model. However, the singular dynamic of the extreme
values renders standard discretization procedures for SDE simulation inefficient. Asmussen, Glynn, and Pitman (1995) show
that the error associated with the Euler scheme for simulating such values has both a strong and weak order of convergence
of 1/2. This contrasts with the faster order 1 the Euler scheme can achieve for simulations of the process values at grid
points.

Some ideas are suggested in the literature to address this difficulty. Andersen and Brotherton-Ratcliffe (1996) and
Beaglehole, Dybvig, and Zhou (1997) use Brownian bridge interpolation for pricing lookback options. Baldi (1995) analyzes
related techniques in a more general setting. Glasserman and Staum (2001) consider estimator for barrier options based on
conditional Monte Carlo. Baldi, Caramellino, and Iovino (1999) develop approximations to one-step survival probabilities
for reducing discretization error in a general class of barrier option simulation problems. All of these efforts can be viewed
as corrections on basis of discretization schemes.

This paper explores how to construct an unbiased estimator for pricing extreme-value-related derivatives. The key
observation is that we can decompose the probability measure defined by the modelling SDE with respect to the so called
Wiener measure, which is defined by a standard Browinian motion. Simulate extreme values under the standard Brownian
motion, which is shown to be easy in Asmussen, Glynn, and Pitman (1995), and then calculate weights for all the samples
according to our measure decomposition. This procedure leads to an important sampling estimator for the option prices. A
strong condition is needed to make sure our estimator is not biased. It turns out that many processes with financial interests
do not satisfy it. The second contribution of the paper is that we propose a truncation method to circumvent this constraint.
We show the error decays exponentially by choosing proper truncation parameters. The numerical experiments illustrate that
the root of mean square error of our method can achieve the convergence rate of t−1/2, which is the optimal rate associated
with unbiased estimation.
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The rest of the paper is organized as follows. Section 2 reviews some preliminary knowledge about extreme-value-related
option and its simulation. In Section 3 we construct an unbiased price estimator using the Wiener measure decomposition
under a technical condition. Section 4 is devoted to the discussion on how to relax the condition and the related truncation
error analysis. We present some numerical examples in Section 5. All of the proofs are deferred to the Appendix.

2 PRELIMINARIES

Let St denote the price of a underlying asset. Suppose that it follows a general diffusion process in the risk neutral probability
measure as follows:

dSt = (St)dt +(St)dWt , S0 = s, (1)

where Wt is a standard Brownian motion,  and  are the drift and volatility coefficients, respectively. Both of them can
be state dependent.  is a positive definite function.

Many popular path-dependent options in the market have a payoff defined on the extreme values of S during the life
time of the option. For instance, a down-and-out put option with a continuously monitored barrier offers the option owner
the payoff of a European put option as long as the underlying asset price stays above a knock-out barrier, or equivalently, as
long as the minimum asset price is above the barrier for its whole life. The payoff of a standard lookback put is determined
by the difference between the running maximum and the spot price at the maturity of the option.

Let Mt and mt denote the running maximum and minimum of S respectively, i.e.,

Mt = max
0≤u≤t

Su and mt = min
0≤u≤t

Su.

In general, the (discounted) payoffs of extreme-value-related options are in the form of g(MT ,ST ) or g(mT ,ST ). Take
the aforementioned knock-out and lookback options as examples. The payoff of the former one can be formulated as
(K−ST )+1{mT >b}, where T is the expiry date of the option, K is the strike price and b is the barrier, b < S0. The latter
option is with a payoff of (MT −ST ).

Some standard non-arbitrage arguments (see, e.g., Björk (1998) or Duffie (2001)) yield that the price of such extreme-
value-related options should be equal to the expectation of discounted future payoffs:

p(s) = E[e−rT g(MT ,ST )|S0 = s] or p(s) = E[e−rT g(mT ,ST )|S0 = s].

To implement a Monte Carlo recipe for evaluating of the above expectations, the key step is to generate samples for the
pair (MT ,ST ) or (mT ,ST ) under (1). A naı̈ve approach is through discretization approximation. Fix a large integer n and let
h = T/n be the length of each time step. Then simulate a discrete process over the time grid {0,h,2h, · · · ,nh} according to
the following Euler scheme:

Ŝi = Ŝi−1 +(Ŝi−1)h+(Ŝi−1)Wi, (2)

where Wi = W(i+1)h−Wih ∼ N(0,h). The continuous-time running maximum/minimum, MT and mT , can be approximated
by the maximum/minimum of the Euler approximation M̂T := max1≤i≤N Ŝi and m̂T := min1≤i≤N Ŝi, respectively. The Monte
Carlo estimators for E[g(MT ,ST )] and E[g(mT ,ST )] are formed by sample averages

1
M

N


j=1

g(m̂ j
T , Ŝ j

nh) and
1
M

N


j=1

g(m̂ j
T , Ŝ j

nh)

across M replications.
However, the simulation of extreme values turns out to be the bottleneck for the whole Monte Carlo method.

Asmussen, Glynn, and Pitman (1995) show that the normalized discretization error

1√
h
[M̂h

T −MT ]
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has a limiting distribution as h → 0. This result implies that the distribution of M̂h
T converges to that of MT at a rate h1/2.

In contrast, recall that the Euler scheme (2) has weak order of convergence 1, i.e.,

|E[g(Ŝnh)]−E[g(ST )]| ≤ ch

for some constant c and all sufficiently small h (see, e.g., Kloeden and Platen (1992)). Thus, the part of M̂h
T slows down the

overall convergence rate of the estimator significantly.

3 A WIENER-MEASURE BASED ESTIMATOR

In this section, we propose an unbiased estimator for such extreme-value-related options on the basis of a Wiener measure
decomposition of the distribution of S. From now on, we will only focus on the estimation of E[g(MT ,ST )|S0 = s] because
the treatment of E[g(mT ,ST )|S0 = s] parallels.

In case of Browinian motion, the difficulty can be circumvented by generating the samples of (MT ,ST ) exactly. Simulate
ST =WT first. It is straightforward because WT follows a normal distribution N(0,T ). Given WT = w, the running maximum
MT = max0≤t≤T Wt follows the so called Rayleigh distribution

G(x) = P[MT ≤ x|WT = w] = 1− e−2x(x−w)/T , x ≥ b

(Karatzas and Shreve (1991), Proposition 2.8.1). We can obtain a sample of MT by substituting a uniform U ∼U(0,1) in
the inverse of G:

MT :=
w+

√
w2 −2T log(1−U)

2
.

This exact simulation scheme does not work if we switch our attention to a general SDE given by (1). The explicit
expression for the joint distributions of (MT ,ST ) is unknown at this time. But we still are able to combine this observation
and the technique of importance sampling to produce an unbiased estimator. The essential step is to figure out the likelihood
ratio between S and W .

3.1 Lamperti Transform and Wiener Measure Decomposition

Now assume that the functions (x) and (x) are infinitely differentiable in x and there is a constant c > 0 such that (x) > c
for all x ∈ (−,). Perform a transform defined as follows:

F(y) =
∫ y

s

1
(u)

du.

This transform is known as the Lamperti transform in the literature (see, e.g., Florens (1999)). Apparently, F is a strictly
increasing function because (u) > 0 for all u. Denote F−1 to be the inverse to F . Transform S into Y defined as Yt := F(St).
Ito’s lemma implies Y satisfies the following diffusion process:

dYt = (Yt)dt +dWt , Y0 = 0, (3)

where  is given by

(y) =
(F−1(y))
(F−1(y))

− 1
2
 ′(F−1(y)).

Simulation of (ST ,MT ) is equivalent to simulation of (YT ,max0≤t≤T Yt). Once we have a pair of samples (YT ,max0≤t≤T Yt),
we can recover (ST ,MT ) by letting ST = F−1(YT ) and MT = F−1(max0≤t≤T Yt). The advantage of introducing Y is that we
are able to find an explicit expression for the likelihood ratio of YT with respect to WT . This helps us to build up a Wiener
measure based estimator for extreme-value-related option prices.

Some technical assumptions are required to prevent Y from “exploding” (i.e., can reach the infinity boundary) in finite
time. This prevention is especially necessary for the discussion regarding extreme-value-related options. The attainability of
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± will make the definitions of max0≤t≤T Yt and min0≤t≤T Yt no sense. For this reason, introduce the following assumption
to rule out this possibility:

Assumption 1 (Boundary Behavior) There exist positive constants B and K such that (y) ≤ Ky for all y > B and
(y) ≥ Ky for all y < −B .
With the restriction of Assumption 1, Y can not grow faster than linearly near infinity boundaries. Aı̈t-Sahalia (2002) shows
that under this assumption, (3) admits a weak solution {Yt , t ≥ 0}, unique in probability law for every initial value Y0. In
addition, he also proves P[limn→Tn =] = 1, where Tn = inf{t ≥ 0 : |Yt |= n}, the first passage time of Y crossing ±n. This
precludes the explosion of Y in finite time. Note that this assumption is almost the best possible. It is easy to show that if
(y) is positive near + or negative near −, and grows faster than linearly, then Y explodes. We refer interested readers
to Chapter 5. 5 of Karatzas and Shreve (1991) for a detailed discussion on Feller’s test for explosions.

With the help of the Lamperti transform, we have
Theorem 1 Under Assumption 1, for any measurable function g,

E[g(ST ,MT )] = E[g(F−1(YT ),F−1( max
0≤t≤T

Yt))]

= E[g(F−1(WT ),F−1( max
0≤t≤T

Wt)) · exp(A(WT )) ·E[exp(−
∫ T

0
(Ws)ds)|T , max

0≤t≤T
Wt ,WT ]],

where T = inf{t ∈ [0,T ] : Wt = max0≤t≤T Wt}, A(y) =
∫ u
0 (u)du and (y) = (2(y)+ ′(y))/2.

The above theorem paves the way to implement an unbiased estimator to evaluate E[g(ST ,MT )]. Let

L(T , max
0≤t≤T

Wt ,WT ) = E[exp(−
∫ T

0
(Ws)ds)|T , max

0≤t≤T
Wt ,WT ]. (4)

We can form an important sampling estimator

1
M

M


j=1

g(F−1(W j
T ),F−1( max

0≤t≤T
W j

t )) · exp(A(W j
T )) ·L( j

T , max
0≤t≤T

W j
t ,W j

T ),

which is unbiased.

3.2 Simulation of T , max0≤u≤T Wu and WT

The explicit knowledge of the joint distribution of (T ,max0≤u≤T Wu,WT ) facilitates us to design an exact simulation scheme.
First, generate T , the first time W attains its maximum over [0,T ]. It should follow the arc-sine law:

P[T ≤ s] =
2


arcsin

√
s
T

, 0 ≤ s ≤ T

according to Problem 2.8.17, Karatzas and Shreve (1991). Sample it by setting T = T sin2(U/2) with U ∼U(0,1).
Conditional on T =  , the closed-form expression for the distribution of max0≤u≤T Wu is available too. It is given by

P[ max
0≤u≤T

Wu ≤ b|T =  ] = 1− exp(− b2

2
),

thanks again to Problem 2.8.17. Thus, a random number generator for max0≤u≤T Wu is obtained if we let

max
0≤u≤T

Wu =
√

−2 log(1−V )

for an independent V ∼U(0,1). This can also be implemented as max0≤u≤T Wu =
√−2 log(V ) because V and 1−V have

the same distribution.
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Given T =  and max0≤u≤T Wu = b, the distribution function of WT is

P[WT ≤ w|T =  , max
0≤u≤T

Wu = b] = (T −) · exp(− (b−w)2

2(T −)
)

for all w ≤ b. Letting

WT = b−
√

2(T −)(− log(Z/(T −))), Z ∼U(0,1)

will produce a desired sample of WT .

3.3 Brownian Meanders and Unbiased Estimator for L

Some preliminary knowledge about the Brownian motion path decomposition is needed before proceeding to form an unbiased
estimator of L. For a standard Brownian motion, Williams (1970) and Denisov (1984) find a path decomposition at T :
given T =  , max0≤u≤T Wu = b and WT = w, the processes

{b−W−u, 0 ≤ u ≤ } and {b−W+u, 0 ≤ u ≤ T −}

are two independent Brownian meanders. As noted by Imhof (1984), the law of Brownian meanders can be further represented
in terms of three independent Brownian bridges. Combining all of the above results, we can show that (see Proposition 2
in Asmussen, Glynn, and Pitman (1995))

{Wu, 0 ≤ u ≤ } d= b−
√

(b( −u)/ +B1,1
u )2 +(B1,2

u )2 +(B1,3
u )2, (5)

and

{Wu,  ≤ u ≤ T} d= b−
√

((b−w)(u−)/(T −)+B2,1
u )2 +(B2,2

u )2 +(B2,3
u )2, (6)

where B1,i,1 ≤ i ≤ 3 are three independent Brownian bridges from 0 to 0 over [0, ] and B2,i,1 ≤ i ≤ 3 are three independent
Brownian bridges from 0 to 0 over [ ,T ].

Equations (5) and (6) provide us an approach to generate samples of {Wt1 , · · · ,Wtn ,Wtn+1 , · · · ,Wtm} for a collection of
time instances: 0 ≤ t1 < · · ·< tn <  < tn+1 < · · ·< tm ≤ T when we know T =  , max0≤u≤T Wu = b and WT = w. This task
can be accomplished in two steps: generate two independent sets of {B1,i

t1 , · · · ,B1,i
tn }i=1,2,3 and {B2,i

tn+1
, · · · ,B2,i

tm }i=1,2,3 and then
substitute them into (5) and (6), respectively. The simulation of Brownian bridges is a standard procedure in the literature.
One may refer to Glasserman (2004) for a detailed description.

Evaluation of the conditional expectation L (cf. (4)) is the crucial step for the option pricing problem. In general, its
closed-form expression is not available. Here we propose an unbiased estimator to it under an extra assumption about  :

Assumption 2 There exist two constants k < K such that k < (x) < K for all x ∈ (−,).
Under this assumption, we have the following theorem, which lays out a foundation for the construction of an unbiased
estimator for L.

Theorem 2 Suppose that N is a Poisson random number with parameter K− k and 0 ≤ 1 < · · · < N ≤ T are the
order statistics of N independent uniform random numbers in [0,T ]. Given W1 , · · · ,WN , we have

E[exp(−
∫ T

0
((Ws)− k)ds)|Wt ,0 ≤ t ≤ T ] = E[

N


i=1

(
K−(Wi)

K− k

)
|Wt ,0 ≤ t ≤ T ].

Following the above theorem, we obtain an algorithm for unbiased estimation of the option price:

1. Generate T , max0≤u≤T Wu and WT .
2. Generate N ∼ Poisson(K− k) and N independent uniforms u1, · · · ,uN ∼U(0,T ).
3. Sort u1, · · · ,uN to obtain the order statistics 1 < · · · < N .
4. Simulate W1 , · · · ,WN for given T , max0≤u≤T Wu and WT .
5. Calculate L̂ = N

i=1(K−(Wi)/(K− k).
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Repeat these 5 steps and we can form an important sampling estimator by taking average across all M samples

1
M

M


j=1

g(F−1(W j
T ),F−1( max

0≤t≤T
W j

t )) · exp(A(W j
T )− kT ) · L̂ j.

4 TRUNCATION ERROR ANALYSIS

Unfortunately, many popular models in financial applications do not satisfy Assumption 2. In this section, a truncation
method on the function  is proposed to make it fit the preceding simulation algorithm. Of course, that would invite biases
into simulation outcomes. However, the error will be negligible if we truncate it properly under some assumptions on the
asymptotic behavior of  , the drift coefficient of the transformed process Y . More specifically, introduce the following
assumption:

Assumption 3 The drift function  satisfies either:
(i). sublinear growth condition: there exists a constant 0 <  < 1 such that 0 < limy→+(y)/y < + and − <

limy→−(y)/|y| < 0.
or
(ii). mean-reverting condition: there exist positive constant  ,E and C such that (y) < −Cy for y > E and (y) > Cy

for y < −E.
In addition, we require the function (y) has a lower bound.

Essentially, conditions (i) and (ii) limit the growth rate of (y) near ±. It either grows slower than a linear function
or mean reverts. This assumption is not strong on account of the fact that Y explodes when (y) grows faster than linearly.
Also, we can easily see that lower bound exists when  is a polynomial. Therefore, the assumption covers many processes
in financial applications.

Let k be a lower bound of the function  . Select two sufficiently large numbers U−,U+ and truncate the original
function  as follows:

̃(y) =

⎧⎨⎩
(U+), y > U+;
(x), −U− ≤ y ≤U+;
(−U−), y < −U−,

(7)

where we make a convention that U+ = + (−U− = −) if limy→+ (y) < + (limy→− (y) < +). The truncated ̃ is
bounded between k and K := max((U+),(−U−),maxy∈[−U−,U+] (y)). Implementation of the preceding algorithm with

replacing  by ̃ will provide us an unbiased estimator for

p̃ = E[g(F−1(WT ),F−1( max
0≤t≤T

Wt)) · exp(A(WT )) · exp(−
∫ T

0
̃(Ws)ds)].

The following theorem is regarding the error of our truncation.
Theorem 3 Suppose that the payoff function g satisfies that E[g2(F−1(WT ),F−1(max0≤t≤T Wt))] < +. Under

Assumption 3,

|E[g(ST ,MT )]− p̃| ≤C1(exp(−C2(U+)2)+ exp(−C3(U−)2))

for some positive constants C1,C2 and C3.

5 NUMERICAL EXAMPLES

In this section we present several numerical examples to illustrate the efficiency of our method. Two kinds of models are
considered: geometric Brownian motion and Ornstein-Uhlenbeck mean-reverting process. The former one has a constant
function  and hence the algorithm after Theorem 2 can be implemented directly. The function (y) of the latter one tends
to infinity as y→+. We apply the aforementioned truncation technique on it. The numerical results reveal that our method
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is accurate. Use two options, lookback put and up-and-in call, as tests. Their payoffs are defined as

max
0≤t≤T

St −ST and (ST −K)+1{max0≤t≤T St>b}

respectively.

5.1 Geometric Brownian motion

In the geometric Brownian motion

dSt

St
= dt +dWt , S0 = s,

it is easy to verify that the Lamperti transform is given by F(y) = ln(y/s)/ and the transformed process Y follows

dYt =
(


− 1

2


)
dt +dWt , Y0 = 0.

Theorem 1 provides us the corresponding measure decomposition for the lookback put and up-and-in call prices under this
model. They are

Lookback = e−rT E[ max
0≤t≤T

St −ST ]

= se−rT E[(emax0≤t≤T Wt − eWT ) · exp((/ −/2)WT ) · exp(−(/ −/2)2T )]

and

Up-and-In = e−rT E[(ST −K)+ ·1{max0≤t≤T St>b}]

= e−rT E[(seWT −K)+ ·1{sexp(max0≤t≤T Wt )>b} exp((/ −/2)WT ) · exp(−(/ −/2)2T )]

Table 1 shows a comparison between our algorithm and the Euler scheme. Within comparable computational budget,
our method yield better outcomes than the Euler scheme. The average reduction rate of RMSE is 0.3049 for our method
when the computational budget increases 16 times, almost the same as the optimal 0.25. But the reduction rate for the Euler
scheme is 0.6368 when the budget increases. Table 2 illustrates the results for the up-and-in call option. We can draw similar
conclusion by the comparison.

Table 1: Lookback put option under the GBM. r = 0.1, = 0.4,S0 = 50,T = 1. The true price is 14.9718. The RMSE is
calculated based on 10 trials. Here we follow the Duffie-Glynn rule to allocate the budget for the Euler scheme. When the
computational budget increases 16 times, generate 161/3 ≈ 2.5198 times more steps within each path and 162/3 ≈ 6.3496
times more paths because the convergence rate of max1≤i≤N Ŝi to MT is in the order of 1/

√
N.

Wiener Decomposition Euler Scheme

SampleNum Price Time(s) RMSE SampleNum StepNum Price Time(s) RMSE
256 15.0496 0.125162 0.7111 1625 40 12.8032 0.399455 2.1835
4096 14.9461 2.011741 0.0944 10321 102 13.4937 3.936076 1.4811
65536 14.9866 32.260256 0.0397 65536 256 14.059 42.793687 0.9134

1048576 14.9656 513.613986 0.0085 416128 645 14.3865 574.086363 0.5855
16777216 14.9715 8181.592503 0.0023 2642246 1625 14.6033 8582.284487 0.3686
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Table 2: Up-and-in call option under the GBM. r = 0.1, = 0.4,S0 = 50,K = 50,b = 70,T = 1. The true price is 9.2877.
The RMSE is calculated based on 10 trials.

Wiener Decomposition Euler Scheme

SampleNum Price Time(s) RMSE SampleNum StepNum Price Time(s) RMSE
256 9.7103 0.135501 1.037 1625 40 8.9996 0.424713 0.5148
4096 9.3028 2.017299 0.3893 10321 102 9.0379 4.205301 0.3318
65536 9.2888 32.293416 0.0422 65536 256 9.1352 44.822045 0.1669

1048576 9.2939 519.651756 0.0192 416128 645 9.2034 579.509574 0.0878
16777216 9.2888 8269.052527 0.0053 2642246 1625 9.2409 8663.148775 0.0479

5.2 OU process

Consider a process

dSt = a(b−St)dt +dWt , S0 = s,

with a,b are two positive constants. Note that the drift is positive when St < b and negative when St > b. Thus S is pulled
toward level b, a property generally referred to as mean reversion. Such model is used to model short rates by Vasicek (1977).
Its Lamperti transform is F(y) = (y− s)/ and it has an unbounded function

(y) =
a2(b− (y+ s))2

2 −a.

As y →±, (y) tends to +. Thus truncation is necessary.
Table 3 gives the outcomes of our experiment to price lookback put option under this model. It is worth pointing out

that the purpose of this experiment is to test the algorithm’s capability of dealing unbounded  . In practice, there is rarely
extreme-value-related options traded on basis of short rates.

Table 3: Lookback put option under the OU process. a = 0.2,b = 0.05, = 0.1,r = 0.05,S0 = 0.04,T = 1. We truncate the
process at −U− = −6,U+ = 6. No analytical expression for the option value is known. We use the estimator derived from
the Wiener decomposition to approximate the true price. Simulate 5 million samples and the approximate price is 0.0728.
The RMSE is calculated based on 10 trials.

Wiener Decomposition Euler Scheme

SampleNum Price Time(s) RMSE SampleNum StepNum Price Time(s) RMSE
640 0.073 2.780127 0.0021 10321 102 0.0674 3.778244 0.0054

10240 0.0727 33.83485 4.32 ×10−4 65536 256 0.0695 44.065133 0.0033
163840 0.0729 531.035579 1.11 ×10−4 416128 645 0.0706 583.816921 0.0022
2621440 0.0728 8642.666819 3.22 ×10−5 2642246 1625 0.0714 8863.63471 0.0014

We can see that our algorithm outperforms the Euler scheme once again in terms of the reduction rate of RMSE. The
RMSE of our method will shrink at an average speed of 0.259 as the computational budget increases 16 times. However,
the Euler scheme decreases the RMSE at a rate of 0.6380.
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A PROOFS OF THE THEOREMS

Proof of Theorem 1. Denote Use a generalized Girsanov theorem (Karatzas and Shreve (1991), Exercise 5.5.28) that for
every finite T > 0, any x,y ∈ R,x < y,

P[YT ∈ dx,MT ∈ dy, lim
n→+

Tn > T ] = E

[
exp

(∫ T

0
(Wu)dWu − 1

2

∫ T

0
2(Wu)du

)
·1{WT∈dx,max0≤t≤T Wt∈dy}

]
, (8)

where Tn = inf{t ≥ 0 : |Yt | = n}.
Applying Ito’s lemma on A(Wt) for any t will yield that

∫ t

0
(Wu)dWu = A(Wt)−A(x)− 1

2

∫ t

0
 ′(Wu)du = A(Wt)− 1

2

∫ t

0
 ′(Wu)du. (9)

On the other hand, Assumptions 1 and 2 preclude the possibility that Y explodes in finite time. Therefore, P[limn→+Tn >
T > T ] = 1. Combining (8) and (9),

P[YT ∈ dx,MT ∈ dy] = E

[
exp

(
A(WT )−

∫ T

0
(Wu)du

)
·1{WT∈dx,max0≤t≤T Wt∈dy}

]
,

where  = (2 + ′)/2. From this, we can easily complete the proof of Theorem 1. �

Proof of Theorem 2. Note N ∼ Poisson(L− l) and (1, · · · ,N) are the order statistics of N independent uniforms in
(0,T ). Conditional on the whole sample path of {Wt ,0 ≤ t ≤ T},

E[
N


i=1

(
K−(Wi)

K− k

)
|Wt ,0 ≤ t ≤ T ] = E

[
+


N=0

e−(K−k)T ((K− k)T )N

N!

(
1
T

∫ T

0

[
K−(Wu)

K− k

]
du

)N

|Wt ,0 ≤ t ≤ T

]

Some routine algebra shows the right hand side of the above equality is equal to

E[exp(−
∫ T

0
((Wu)− k)du)|Wt ,0 ≤ t ≤ T ]. �

Proof of Theorem 3. We know that

|E[g(ST ,MT )]− p̃|
≤ E[|g(F−1(WT ),F−1( max

0≤t≤T
Wt))| · exp(A(WT )) · exp(−

∫ T

0
̃(Ws)ds) · |1− exp(−

∫ T

0
((Ws)− ̃(Ws))ds)|]

≤ E[|g(F−1(WT ),F−1( max
0≤t≤T

Wt))|2]1/2 ·E[exp(2A(WT )) · exp(−
∫ T

0
2̃(Ws)ds) · |1− exp(−

∫ T

0
((Ws)− ̃(Ws))ds)|2]1/2,

(10)

where the last inequality holds because of Cauchy-Schwartz inequality.
By the condition of the theorem, E[|g(F−1(WT ),F−1(max0≤t≤T Wt))|2]1/2 < +. The truncation rule presented in Section

4 implies that  ≥ ̃ and that

exp(−
∫ T

0
((Ws)− ̃(Ws))ds) < 1

if and only if max0≤t≤T Wt > U+ or min0≤t≤T Wt < −U−. Furthermore, ̃ ≥ l, the lower bound of  . So, the second term
in (10) is bounded by

exp(−lT ) ·E[exp(2A(WT )) ·1{max0≤t≤T Wt>U+ or min0≤t≤T Wt<−U−}]1/2.
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When  satisfies condition (i) in Assumption 3, A(y) grows at most at the rate of |y|+1. The expectation

E[exp(2A(WT ))·1{max0≤t≤T Wt>U+ or min0≤t≤T Wt<−U−}]≤E[exp(|WT |+1)·1{max0≤t≤T Wt>U+}]+E[exp(|WT |+1)1{min0≤t≤T Wt<−U−}].

The joint distribution of (WT ,max0≤t≤T Wt) is known explicitly (see, e.g., Proposition 2.8.1, Karatzas and Shreve (1991)).
Thus,

E[exp(|WT |+1) ·1{max0≤t≤T Wt>U+}] =
2√

2T 3

∫ +

U+

∫ b

−
exp(|a|+1)(2b−a)exp

(
− (2b−a)2

2T

)
dadb. (11)

Under a change of variable u = b−a, the integral on the right hand side of (11) will be equal to

2√
2T 3

∫ +

U+

∫ 

0
exp(|b−u|+1)(b+u)exp

(
− (b+u)2

2T

)
dudb

≤
∫ +

U+

∫ 

0
exp(c|u|+1 + c|b|+1)(b+u)exp

(
− (b+u)2

2T

)
dudb

for a constant c. Note that the term exp
(
− (b+u)2

2T

)
decays to zero faster than any other terms in the integral. We can show

that the integral will be dominated by C1 exp(−C2(U+)2) for sufficiently large U+. Emulating the same arguments, we can
obtain a similar upper bound for E[exp(|WT |+1) ·1{min0≤t≤T Wt<−U−}].

When satisfies condition (ii) in Assumption 3, (y) will be positive if y <−E and negative if y > E. So, A(y) =
∫ y
0 (u)du

has a global maximum, which yields that

E[exp(2A(WT )) ·1{max0≤t≤T Wt>U+ or min0≤t≤T Wt<−U−}] ≤ MP[ max
0≤t≤T

Wt > U+ or min
0≤t≤T

Wt < −U−].

Note that the right hand side of the above inequality decays exponentially as U+ or −U− tend to . In summary, we show
that the theorem is true for both conditions of  . �
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