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ABSTRACT

The notion of logical processes is a widely used modeling paradigm in parallel and distributed discrete-event simulation.
Yet, the comparison among different simulation algorithms for LP models still remains difficult. Most simulation systems
only provide a small subset of available algorithms, which are usually selected and tuned towards specific applications.
Furthermore, many modeling and simulation frameworks blur the boundary between model logic and simulation algorithm,
which hampers the extensibility and the comparability. Based on the general-purpose modeling and simulation framework
JAMES II, which has already been used for experiments with algorithms several times, we present an environment for
the experimental analysis of simulation algorithms for logical processes. It separates model from simulator concepts, is
extensible (in regards to the benchmark models, the algorithms used, etc.), and facilitates a fair comparison of algorithms.

1 INTRODUCTION

Many algorithms have been proposed in modeling and simulation during the last decades, but most of them have merely
been implemented in the modeling and simulation systems created around these algorithms (Perumalla 2005). From the
view of the “Experimental Algorithmics” community (McGeoch 2001, McGeoch 2007, Johnson 2002), this makes a fair
comparison of the algorithms difficult or even impossible. In addition, many simulation systems do not separate model and
simulation algorithm instances clearly. This leads to a questionable mixture, which cannot guarantee that the simulation
algorithm works correctly for all kinds of valid models. According to (Zeigler, Praehofer, and Kim 2000), the separation of
model and simulator should allow the exchange of both parts independently from each other. One could think of alternative
implementations of a model specification (all sharing a predefined interface), and the same holds for simulators: there might
be a variety of simulators for each model interface. Providing different implementations of the same algorithm is also a
prerequisite for validating simulators against each other, which reduces the risk of invalid simulation outcomes. A thorough
and reliable evaluation of existing solutions is therefore highly demanded, at best in an open environment which allows
others to reproduce the obtained results later on. This should also help to overcome the various pitfalls one encounters when
analyzing algorithms empirically (e.g., cf. (Johnson 2002, Gent et al. 1997)).

The term logical process (LP) was introduced to parallel and distributed discrete-event simulation (PDES) as a metaphor
for the physical processes a system consists of. It is widely used as a modeling paradigm in the domain of PDES. Sometimes
it is referred to as a synonym for any sequential simulation or simulator (Fujimoto 2000, p. 40), and it has been introduced
to sequential simulation branching (Curry et al. 2005, Peschlow, Geuer, and Martini 2008). In time-parallel simulation,
which decomposes the model temporally, every computation unit is also called LP (Fujimoto 2000, p. 177 et sqq.). We
regard LPs as the core units of execution during the simulation (Chandy and Misra 1979, Misra 1986). They interact with
each other by exchanging events. This definition of LPs as model entities is common in the field of parallel and distributed
discrete-event simulation, e.g., in (Fujimoto 2000).

We also would like to emphasize here that there are other levels of parallelism that can be exploited for parallel simulation,
e.g., executing replications in parallel (e.g., (Leye et al. 2008)), or by conducting parallel computations within an LP. This
paper focuses on parallelism on the level of LPs, but the environment can be used to evaluate the other variants as well -
e.g., the coarse-grained execution is automatically supported for all simulation algorithms.
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2 BACKGROUND AND MOTIVATION

Over the last decades, many solutions for the simulation of LP-based models have been proposed (Fujimoto 2000). They
usually aim at overcoming the performance bottleneck of a sequential discrete-event simulation (Misra 1986), i.e., to achieve
a speed-up in comparison to a sequential simulation. There are several associated techniques, for example, partitioning
and synchronization, which are two important issues that strongly influence the performance of a parallel and distributed
simulation: A partitioning policy has to decide how the LPs, i.e., the model entities, are mapped onto the available processors
that shall execute them. This is a fundamental problem in parallel and distributed computing (Hendrickson and Kolda 2000).

Of even more importance is the synchronization protocol. Since LPs are executed concurrently in a PDES, communication
among them has to be synchronized. The existing protocols can be characterized as conservative, optimistic, or hybrid (Jha
and Bagrodia 1994, Perumalla 2005), and they have a strong impact on PDES performance. More details on synchronization
are given in Section 5.

Many existing PDES solutions have been proposed for specific hardware architectures, e.g., (Jefferson et al. 1987,
(Fujimoto and Hybinette 1997, Chen and Szymanski 2005, Perumalla 2007)). Tuning algorithms towards specific hardware
hampers the reproducibility of obtained performance results on other platforms, but is often inevitable for delivering good
performance for the application at hand. Today’s hardware architectures with their long CPU pipelines and multiple
cache layers exhibit non-trivial runtime behavior. This makes the performance analysis of algorithms executed on them
a non-trivial task (McGeoch 2007). Consequently, computational complexity theory is often insufficient for assessing an
algorithm’s real-world performance (LaMarca and Ladner 1997). Still, the theoretical analysis of algorithms may provide
valuable insights regarding certain design decisions, although it usually requires strong assumptions and the results are rather
general or inconclusive (e.g., (Nicol 1998, Gupta, Akyldiz, and Fujimoto 1991)). The importance of empirical algorithm
performance analysis has been stressed by the “Experimental Algorithmics” community over the last years, which deals
with its methodological issues (McGeoch 2007, Johnson 2002). Following their guidelines regarding a fair comparison of
algorithms, it is essential to compare all algorithms based on the same benchmark models, and to only compare algorithms
that are executed on the same platform. Moreover, a single implementation should not be trusted too much – it might turn
out to be erroneous if thoroughly validated. In addition, it could rely on some operation that acts as a performance bottleneck
– which could be avoided, and which thus renders the results achieved not to be valid in general. This is particularly true
for parallel simulation algorithms, as they are challenging to implement and inconsistencies can be very hard to find. To
make things worse, most research papers present new algorithms compared to only one or two old ones, and the researchers
might simply have spent more time on optimizing their own algorithm. All these inaccuracies are hard to avoid and may
shed doubt on the obtained results.

Hence, it is neither sufficient to only compare two algorithms in theory, nor to compare their performance across different
platforms, programming languages, and simulation systems – which is a central motivation for an experimental environment
that ensures a fair comparison. Recent emergence of new application demands, techniques, and hardware platforms results in
enhancements to traditional techniques and the formulation of new methods for parallel and distributed simulation (Perumalla
2006). Thus, research on PDES algorithms could benefit from a flexible and efficient way to evaluate and compare old and
new PDES algorithms.

JAMES II provides a fixed experimental setup and the extensibility for new algorithms by design, and thus forms
a solid base for the experimental analysis of simulation algorithms (Himmelspach and Uhrmacher 2007b). Anyone can
add an implementation of a certain algorithm to the system and compare it to the performance of existing alternatives.
Thus developers can concentrate on “their” algorithms, and while time passes the list of available, and hopefully tuned,
implementations increases constantly. In addition anyone can add new benchmark models: the performance of a certain
algorithm may strongly depend on the concrete input (here: a model) it is applied to. The more and better benchmark models
there are, the more reliable are the experimental results. Still, in the first instance the most commonly used models should
already be provided – only this makes it possible to compare newly obtained results from our framework to those that are
already documented in the literature. Detailed descriptions of the experimental setup form the base for a sound experimental
analysis, which is provided by the JAMES II experimentation layer (Himmelspach, Ewald, and Uhrmacher 2008). These
details make it easier to discuss and compare results, and may make them “future safe”, i.e., a reliable source of information
for future research. Especially the latter aspect requires the usage of abstract, normalized performance measurement values
instead of providing just some general information about the platforms used (Johnson 2002). We believe that work on
re-evaluation and standardized benchmarking may help to ensure the research quality of the PDES community, an important
issue that has recently been recognized as crucial for the M&S community in general (Smith et al. 2008).
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3 RELATED WORK

There have already been several attempts to provide a solid base for the comparative analysis of simulation algorithms
following the logical process paradigm, albeit for certain specific algorithm families, such as synchronization algorithms. One
example for this is WARPED (Martin et al. 2003), which was intended to be “freely available to the research community
for analysis of the Time Warp design space.” (Martin, McBrayer, and Wilsey 1996, p. 1). Other simulation systems, such as
APOSTLE (Wonnacott and Bruce 1996), focused on the impact of granularity, i.e., the time ratio between executing a single
event and transferring it to another processor. In (Ferscha, Johnson, and Turner 2001), a thorough performance comparison
for several well-known synchronization algorithms is conducted. The selected algorithm variants are carefully realized by
activating certain code segments. While it reduces the code redundancy for the realized variants, it does not provide a flexible
plug-in architecture for testing new methods, i.e., it is not easily extensible. Several theoretical performance analyses have
been conducted for PDES as well, e.g., (Nicol 1998, Gupta, Akyldiz, and Fujimoto 1991). While they provide important
insights into the nature of PDES, their assumptions are often quite strong, which prevents their results from being easily
transferable to real-world systems. As our environment is built on top of JAMES II, it is implemented in Java. Java is
nowadays a pretty common choice for the implementation of modeling and simulation tools. Its advantages are its ease
of use, platform independence, as well as its built-in support for multi-threading and serialization. Consequently, there are
several PDES systems programmed in Java, for example JTED (Cowie 1998), JWARP (?? 1998), SPADES/JAVA (Teo and
Ng 2002), IDES (Nicol et al. 1998), CLUSTERSIM (Goes, Ramos, and Martins 2004), and even web-based systems (Ferscha
and Richter 1997). This (incomplete) list should illustrate that Java is a common and accepted language in PDES research.
Some concerns may arise because Java bytecode is interpreted by a Java virtual machine (JVM), which means that it cannot
directly exploit special hardware features and also degrades the performance of Java programs. On the other hand, specific
hardware could be exploited on the level of the JVM or the libraries that are used, so that this dependency can also be
regarded as another impact factor to be controlled, very much like the operating system underneath. Concerns regarding
runtime performance are partially true, but we think that ease of implementation (e.g., due to garbage collection), free access,
and the fact that a comparison is still fair, as long as all algorithms are implemented in Java, are good arguments to use it
as a base for such an environment. Even more so as the performance gap to C/C++ can be narrowed by using just-in-time
compilers etc. Finally, Java is freely available and widespread – essential prerequisites for an experimentation environment
that aims at integrating research efforts from others.

4 MODELING IN THE LOGICAL PROCESS PARADIGM

A model expressed in the logical process paradigm solely consists of “logical processes” as atomic model entities, and their
interconnections. Hence, a logical process model can be represented as a graph M = (LP,C), with LP being the set of nodes,
each of which represents a logical process, and C being the set of edges to denote communication between the LPs.

JAMES II provides support for different ways of getting an instantiated version of the model to be simulated. The first
and recommended one is to use an explicit modeling language. Then, getting an executable model of a system can be split
up into two steps: the first one is the creation of a symbolic model (in the specialized modeling language), the second one is
the conversion of the created model into an executable one. This process has two major advantages: (1) The symbolic model
can be independent of platform, programming language, and simulation system. (2) The executable model can be based
on different implementations of the data structures used internally. Thereby executable models can either be dynamically
generated in memory (by using predefined classes, in combination with “interpreting” state change rules), or by generating
new source code for the models, compiling the source, and executing the result. This transformation is done in JAMES
II by using a “model reader” mechanism. The second possibility is to retain to coding models directly in Java (based on
the executable model interfaces). However, here you loose the possibility to exchange the model’s data structures easily:
you have to recode the model. Due to the lack of a specialized language for LP based models so far, we have to use this
mechanism for now. But this is no serious problem, because these models can coexist with others defined in any language
for LP-based models later on. A well-defined interface of models provides the flexibility to evaluate different combinations
of model and simulator implementations. Currently we have designed a lean interface for expressing the semantics of logical
processes in JAMES II only comprising an event execution method and a method to return any new events.

5 SIMULATING LOGICAL PROCESSES

There is a large number of different simulation algorithms for the logical process paradigm (Fujimoto 2000). In general,
these solutions can be subdivided into sequential and distributed algorithms, and the latter can be further subdivided into
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algorithms based on a conservative or an optimistic synchronization protocol, or a combination of both. In the following
we give a brief overview, focusing on some basic algorithms which have already been realized and evaluated by others. We
implemented these for our environment, and together with the provided models they form a solid foundation which can and
should be extended in the future.

5.1 Sequential simulation

Sequential discrete-event simulation may often be the best way to simulate LP-based models, especially if a model is
sufficiently small to fit into the memory of a single computer, if it does not take too long to be computed, or if it can be
combined with a coarse-grained parallel simulation, i.e., distributing replications of a sequential simulation run over several
processors. Sequential simulation means that the simulation algorithm sequentially computes the model and thus there is no
need to partition it, to balance the load, or to deal with communication overhead. In addition, implementations of sequential
algorithms put the results achieved by the PDES versions into perspective, and thus provide a baseline for the identification
of model classes for which PDES actually pays off. A simple sequential algorithm manages all events in an event queue. It
retrieves all events with a minimal time stamp and then executes them one after the other. Each event is executed by the
model at first. Then, all newly generated events caused by its execution are added to the global event queue.

5.2 Conservative, distributed simulation

Conservative synchronization protocols ensure the local causality constraint by letting each processor only process those
events that are safe, i.e., for which it is sure that no straggler event will arrive. Such protocols are well-known and
have been studied intensely with respect to their implementation (Fujimoto 2000) and their theoretical properties (Nicol
1993, Korniss et al. 2003). We select the null message algorithm (Bryant 1977, Chandy and Misra 1979) and the barrier
synchronization algorithm (Hennessy and Patterson 2002) as examples for conservative distributed simulation algorithms
because they are relatively simple to implement and have already been examined thoroughly. The null-message algorithm
used in our comparisons is based on the original Candy/Misra/Bryant edition. The simple Barrier Synchronization protocol
used in our comparisons makes use of a centralized mechanism for synchronization. We also implemented the Breathing
Time Bucket protocol (Steinman 1991).

5.3 Optimistic, distributed simulation

Conservative synchronization protocols face several problems. Many, e.g., the null-message protocol, require to define a
lookahead: a guaranteed time stamp difference between a processed event and new events it causes at other LPs. Some
protocols may also lead to dead-locks, i.e., situations where the simulation comes to a halt because no processor can be sure
to execute the next event. To detect and resolve deadlocks costs additional processing time.

In contrast, optimistic synchronization protocols execute events without being sure that time stamp order is not violated.
Hence, straggler events may occur, and they require to roll back the model to a former state, from which the computation can
then be continued. Storing model states costs memory, so optimistic protocols usually have to calculate the global virtual
time (GVT), i.e., the minimum time stamp of all unprocessed events throughout the running simulation. The GVT allows to
identify model states that are not necessary anymore, so that their memory can be deallocated. The Time Warp algorithm
provides a general scheme for synchronizing a distributed computation optimistically (Jefferson 1985). It can exploit a
significant degree of parallelism and is deadlock-free. Also, Time Warp operates transparently to the model being simulated
and does not require model-specific knowledge, such as a look-ahead. However, Time Warp has certain performance pitfalls
and trade-offs. Many optimizations that enhance the original algorithm have been proposed in the literature (Fujimoto 2000).
In the current implementation, we use a synchronous algorithm for GVT calculation. A GVTController starts GVT
calculation after sleeping for a certain amount of wall clock time.

6 AN EXTENSIBLE FRAMEWORK OF LP SIMULATORS

Logical processes are independent entities that communicate via events. How these events are transferred and how processes
are triggered to execute them depends on the synchronization protocol, i.e., the actual simulation algorithm. As we separate
model and simulator, the simulation algorithms, realizing the different synchronization schemes, obviously need to be
“exchangeable entities” – particularly, as their performance may vary greatly with the characteristics of the model they are
applied to (see Section 7.3). In addition, there is a large variety of auxiliary algorithms that can be combined with the
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Figure 1: The general structure of the experimentation environment: Based on the JAMES II core classes and interfaces
(grey), we developed separate classes and interfaces for models (horizontal lines) and backbone classes for PDES algorithms
(diagonal lines). As an example, the integration of the central classes for Time Warp is outlined (dots).

simulation algorithms, e.g., event queues, partitioning methods, and algorithms for load-balancing. New classes of algorithms
might be devised in the future, making it challenging to find an architecture that allows for future extensions in all these
directions.

Figure 1 outlines some central entities in the experimental analysis environment. Model and simulation entities are
clearly separated; simulators have access to model entities, but not vice versa. The set of LPs that defines a model is
represented by IScenario. As JAMES II requires a processor to allow stopping, pausing, and resuming a simulation, the
PDES simulators consist of two components: a protocol simulator, which implements all operations demanded by JAMES
II, and the actual simulators for LPs, which get notified by the protocol simulator when they shall stop or resume. Much of
the processor’s standard execution logic has already been realized in a general ExecutionControl component, so that
the protocol simulator merely has to implement the notification of its subordinate LP simulators. As can be seen in Figure 1,
many central entities are just Java interfaces and thus do not provide any logic. This allows to exchange almost every aspect
of this framework with alternative implementations – a prerequisite for extensibility in general and for the fairness of the
environment in regards to comparability. The framework provides default implementations to keep the implementation effort
in testing new algorithms low.

6.1 Algorithm Combinations

The algorithms to be combined with the simulation algorithms can be divided into three categories: Firstly, there are
algorithms that affect simulation performance but need no direct interaction with the simulators, so that they can be hidden
behind interfaces provided by the simulation system. For example, the partitioning framework of JAMES II was designed
to be transparent to the actual simulation algorithms – the processor factories merely take the results of the partitioning step
into account when instantiating the processors (Ewald, Himmelspach, and Uhrmacher 2006). Similarly, there are various
ways to store observed data. Since JAMES II employs the Observer and Mediator patterns here, observation is completely
decoupled from execution. Yet, both partitioning and observation may have a strong impact on overall performance.

Secondly, a simulation algorithm may delegate sub-tasks to sub-algorithms. A classic example for this are event queues.
JAMES II provides several event queue implementations as plug-ins, and it could be shown that their performance is dependent
on both model and simulator (Himmelspach and Uhrmacher 2007a). Extending a PDES simulator by such sub-algorithms is
quite straightforward, as JAMES II provides a plug-in registry that can be queried for available algorithms (see Section 6.2).
Hence, this kind of algorithm is easy to integrate, provided that the programmer of the simulator identifies all important
sub-tasks and requests a plug-in for each of them from JAMES II. The interaction between simulator and sub-algorithm
is controlled by the simulator, which invokes methods from the interface that comes along with the corresponding plug-in
type. Thereby, new kinds of sub-algorithms can be integrated easily.

Finally, there are algorithms that interact with PDES simulators by controlling them. Load balancing (LB), for example,
requires to gather load information from the processors and to select eligible parts of the model, before deciding on a
new placement of model and simulator entities (Zhou 1988). Transferring entities at runtime typically involves starting and
stopping the simulators, so these kinds of algorithms need to control the PDES simulators to a certain extent, and not vice
versa. As an additional difficulty, some aspects of LB might be dependent on the synchronization protocol (e.g., (Carothers
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Figure 2: Relation between a PDES simulator that supports load balancing and the load balancing algorithm

and Fujimoto 1996)), while others, such as actually moving models and simulators to other machines, should be shared
between all approaches. We tackled the problem of supporting future algorithms ’on top’ by introducing some additional
structures for LB, as depicted in Figure 2.

The basic idea is quite simple: by pre-defining the interaction between a PDES simulator and an associated algorithm,
such as a load balancer, we could rely on the Observer pattern (Gamma et al. 1995, p. 293 et sqq.). A processor supporting
LB could implement a specific interface, ILBProcessor, which implements the functions the load balancer needs for
re-partitioning, i.e., the transfer of model entities. Similarly, the load balancer needs to know about neighbor simulators to
which the load could be transferred. Additionally, the processor has to notify the load balancer when relevant events, such
as a roll-back, happen. This allows the load balancer to continuously gather runtime statistics. While Figure 2 suggests that
a load balancer is associated with each PDES simulator, it is important to notice that different kinds of load balancers may
be employed in a simulation. For example, one setup could associate very basic load balancers to all simulators except one,
which in turn collects the runtime information from the basic load balancers, decides on a re-partitioning, and then triggers
the corresponding basic load balancers to start transferring specified model entities. This central LB scheme is as easy to
implement as completely decentralized LB, and any kind of hybrid approach is realizable as well. Current work is dedicated
towards testing this approach by implementing several standard LB approaches.

6.2 Exploiting JAMES II

JAMES II’s design principle is the “Plug’n simulate” concept (Himmelspach and Uhrmacher 2007b). Most parts of
the framework can be exchanged because the concrete functionality is realized as a plug-in. This concept matches the
requirements of an extensible experimentation environment for combinations of algorithms quite well. An experimentation
layer (Himmelspach, Ewald, and Uhrmacher 2008) supports the definition and execution of experiments in a flexible and
scalable manner. A variety of different experiments, e.g., for optimization, analysis, and validation, can be executed in
JAMES II. Thus, any insights gained by performance analysis of PDES algorithms can be used to tune the setup of new
experiments on LP-based models. In addition, experiments on LP-based models could benefit from other exchangeable parts
in JAMES II, e.g., the random number generators, the probability distributions, a.s.o. The resulting plethora of possible
combinations provides the base for novel research insights by giving the opportunity to explicitly identify aspects that may
have a significant influence on performance results, and by offerring means to select an algorithmic setup that performs
best (Ewald, Himmelspach, and Uhrmacher 2008). The environment is sketched in Figure 3. The simulation algorithm and
the model used for any simulation can be freely chosen, and thus combined. Both sets (simulation algorithms and models)
can be extended by anyone – and this includes all additional algorithms and data structures as well. Figure 4 depicts the
general idea of the experimentation process, and how the different parts are combined to set up an experiment.

JAMES II is mostly independent from the platform it is executed on: single-core CPUs, multi-core CPUs, and various
distributed set-ups can serve as computation back-end. The possibility to reuse the different parts, i.e., algorithms and data
structures, on this variety of platforms will facilitate the development and evaluation of new solutions.
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Figure 4: Experiment execution by using the environment.
Any “loop” about sub configuration parts, e.g., certain model
parameters, or auxiliary algorithms is fine.

7 EXPERIMENTAL ANALYSIS

As motivated in Section 2, a comparative analysis of algorithms has to be based on a fixed and fair experimental setup.
This includes using a fixed framework, that each algorithm is realized, validated, and tuned with equal care, and that the
benchmark models are designed carefully.

It is is hard to implement a set of algorithms in a comparably efficient manner, as strong optimization for one implementation
introduces a serious bias to the overall comparison. Johnson suggests that “[...] the efficiency of the code you test should
be (at least to within a constant factor in practice) as good as that of a code you would expect people to use in the real
world” (Johnson 2002, p.15). We tried to realize our algorithms in this manner – not heavily optimized toward our hardware,
but without serious performance bottlenecks. Our experimental results should therefore be regarded as a starting point for
the comparison with additional algorithms and enhanced implementations.

7.1 Benchmark models

Suitable benchmark models (problem instances) are the cornerstone for a meaningful study on PDES algorithms. Common
questions that arise in a PDES context are the scalability of an algorithm, i.e., the conservation of its performance characteristics
when increasing problem size and number of available machines (Nicol 1998), its speed-up with respect to a sequential
simulation, and its (in)dependence regarding certain model properties, e.g., granularity or interconnectedness of LPs. To
investigate these aspects means to alter size and structure of the model at hand. Parameterizable benchmark models can reflect
such characteristics and mimic the behavior of real-world samples. Fortunately, there are several well-known benchmark
models for assessing PDES algorithm performance; we present two of them in the following. Both have been studied
frequently in the last decades, and will therefore allow us to re-evaluate our results with respect to the literature. However,
our approach is not limited to these two models.

PHOLD This model (Fujimoto 1990) was originally introduced to benchmark optimistic synchronization protocols.
It is a parallel version of the HOLD model (Jones 1986), which is used to evaluate the performance of event queue
implementations. Our experimental environment should support developers in basing their analysis on comparisons with
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Figure 5: PHOLD toroidal grid Figure 6: PHOLD ring
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such classic contributions, so that it is important to have an implementation of this model at hand. Although it has been
introduced almost 20 years ago, it is still used in recent publications (e.g., cf. (Bauer Jr, Carothers, and Holder 2009)). A
PHOLD model consists of an arbitrary number of LPs, each of which sends an event to a neighbor when an event is received.
The number of events in the whole system is therefore constant and can be parameterized, as each processed event results
in the generation of exactly one new event. Defining the number of events in the initial state allows to control the inherent
parallelism of the model and to determine the size of the event queue in the sequential simulator (cf. (Fujimoto 1990)).
Another important parameter is the movement function, by which the neighbor receiving the next event is selected. In the
model, the neighbor is chosen randomly, with uniform probability. The time stamp increment defines the time difference
between processed and generated event. We defined this to be normally distributed with µ = 4 and σ = 3. If a negative
number was drawn from this distribution, we set the time stamp increment to zero. Finally, the model allows to configure the
computational grain by executing some synthetic load when processing an event. PHOLD is widely used as a benchmark
for TimeWarp realizations, which can thereby be compared across different implementations, software architectures, and
hardware platforms. For example, GEORGIATECH TimeWarp (GTW) (Das et al. 1994) and µsik (Perumalla 2005) were tested
with a PHOLD model for their parallel performance. In our experiments, we used PHOLD to benchmark both conservative
and optimistic synchronization protocols.

Generator/Buffer/Processor This is another well known benchmark model (e.g., cf. (Zeigler, Praehofer, and Kim
2000)), due to its simplicity and representativeness for queueing networks simulations. It is a combination of a generator LP
that creates “jobs” at a certain rate, which are then buffered by a buffer LP until a processor LP is ready to execute them.
There are many variations of this queuing model, e.g., with multiple generators, buffers, or processors. Its most important
parameters are the probability distribution for job generation and the computational load imposed by executing a single job.
We focus on a simple variant as a model for maximal throughput, by assigning a variable number or processors to a central
buffer that is fed by a single generator (see Figure 7).

7.2 Experimental setup

The simulation runs have been executed on a Windows XP 64 workstation with two 2.5 GHz QuadCore Xeon Processors
and 8 GB of RAM. It achieves a Java Scimark 2.0 (Java Scimark ) result of 765.3 points. So far, the PDES algorithms were
only tested on this multi-core machine, using a single virtual machine – instead of executing them on a set of hosts that
communicate over a network connection. Hence, communication costs are low in comparison to classical PDES experiments
on multiple hosts. This moves the focus of the experiments towards the question of how large the protocol-induced overhead
in relation to the speed-up by using multiple cores really is – a use case that might become more and more important, as the
number of cores per CPUs is likely to increase over the next years. We used JAMES II version 0.6 and Sun’s JRE 1.6.07
for 64-bit Windows.

Several PHOLD topologies were tested: f ull denotes a complete LP graph, i.e., each LP has all other LPs as neighbors,
grid is a two-dimensional toroidal grid (Figure 5), and in ring all LPs form a ring, so that each LP has only two neighbors
(Figure 6). These topologies allow us to test PDES algorithm performance for tightly, medium, and sparsely connected models
respectively. Moreover, we chose PHOLD model sizes from {4,16,36,64,100,144,196}, the number of events was set to
half the model size, and a synthetic computational load was introduced. The load parameter is chosen from k ∈ {10,20,30},
and denotes k ·20000 additional floating point operations.

The Generator/Processor/Buffer model was initialized with different amounts of processors, and hence different degrees
of model-inherent parallelism.
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EventQueue
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Figure 8: PHOLD performance of sequential simulation using
various event queues, using a fully connected LP network
with 10×10 processors
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Figure 9: PHOLD performance of a sequential simulation,
depending on the model size

7.3 Performance Results

At first, we evaluated the dependence of the sequential simulator performance on its central sub-algorithm, the event queue
implementation. Although they play an important role in other application domains, they hardly affect the simulation runtime
when executing the PHOLD model, as depicted in Figure 8. Figure 9 shows the PHOLD performance of the sequential
simulator for various model sizes and the three pre-defined topologies. As expected, different topologies have no impact on
the run time of the sequential simulator, and the required execution times grow linearly with the number of events to be
computed.

We then explored the PHOLD performance of the parallel simulation schemes. Figure 10 illustrates the potential
interdependency between synchronization protocol and model topology. While the execution times of the barrier synchronization
protocol are almost identical for all three topologies, the performance of null message synchronization clearly depends on
the interconnectedness of the LPs. In case of a fully connected graph, its performance suffers from the overhead of sending
null messages to all neighbors. Figure 11 compares the PHOLD performance of two PDES simulators, BTB and barrier
synchronization, to that of the sequential simulator. While it is not surprising that the PDES simulators are able to exploit
more of the system’s resources and therefore outperform the sequential simulator, the figure also suggests that the relation
of the PDES execution times is depending on the model size – the difference between barrier synchronization and BTB is
much larger for a 64-LPs model than it is for an 196-LPs model. One reason for this might be the damping of performance
differences by increased threading overhead. In a last PHOLD experiment, we added different amounts of synthetic load to
the model, so that the granularity was increased. As shown in Figure 12, the sequential simulator behaved as expected again,
since it exhibited a linear growth in execution time. Direct comparison with BTB, barrier synchronization, and TimeWarp
once again confirms that a high granularity has a positive impact on PDES speed-up – a common finding in PDES studies,
e.g., in (Wonnacott and Bruce 1996).

Finally, Figure 13 presents PDES performance for the Generator/Buffer/Processor model, for different numbers of
processors. These results were surprising, as they did not only show a large advantage for the sequential simulator – which
could be expected, due to the low model-inherent parallelism – but also that the performance characteristics between the PDES
algorithms differ greatly. The conservative barrier synchronization approach is not able to exploit the inherent parallelism
at all, as indicated by the linear growth of execution time (due to increased synchronization overhead for larger models).
However, TimeWarp execution times decrease with model size, which led us to the conclusion that this particular model setup
is quite suitable for optimistic protocols, i.e., very few roll-backs occur. The modeled processors, which work concurrently
in the model, are independent of each other, so that an optimistic PDES approach has huge advantages.

All in all, these examples suggest that the performance behavior of PDES algorithms is by no means trivial and highly
problem-dependent – which again motivates the development of a clean environment for experimental analysis.

8 CONCLUSIONS

The benefits of the plug’n simulate concept in JAMES II have been demonstrated before, e.g., in the context of event
queues (Himmelspach and Uhrmacher 2007a), simulators (Himmelspach et al. 2007), and partitioning schemes (Ewald,
Himmelspach, and Uhrmacher 2006). By supporting the logical process metaphor, we broaden the scope of JAMES II and
address the particularly challenging field of evaluating parallel and distributed discrete-event simulation algorithms. First
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Figure 12: PHOLD performance with varying synthetic delay
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Figure 13: PDES performance for Generator-Buffer-
Processor model

evaluation results for well-known algorithms have been presented, which not only confirmed what is already known but
also provided some surprising insights (see discussion on G/B/P performance in section 7.3). However, the main objective
of the endeavor has been to introduce an environment for the development and experimental analysis of algorithms for
the logical process paradigm. The focus of future research will be to develop and evaluate further simulation algorithms.
The interplay of the simulation algorithms with other algorithms and data structures, e.g., partitioning and load-balancing
schemes, shall be explored carefully. The insights, gained by using current hardware such as multi-core CPUs, might lead
to new efficient and well-evaluated solutions. We hope that the presented architecture contributes to these developments by
helping researchers to soundly evaluate their solutions: by using the same benchmark model implementations, by considering
different infrastructures, and by keeping everything except the suggested improvement fixed.

The performance database of JAMES II will allow us to capture essential details of these performance studies and
their experimental set-ups on a large scale. This could foster data analyses that yield new perspectives on the performance
trade-offs among distributed simulation algorithms (Ewald, Himmelspach, and Uhrmacher 2008). For the framework to grow
into a research resource for distributed simulation algorithms, potential evaluation schemes, and performance data alike, we
invite other people to join us: to repeat our findings, to add new benchmark models and algorithms, and to evaluate those.
The JAMES II framework is available at http://www.jamesii.org. It is distributed under a dual license, allowing
open source and proprietary usage.
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