
Proceedings of the 2009 Winter Simulation Conference
M. D. Rossetti, R. R. Hill, B. Johansson, A. Dunkin, and R. G. Ingalls, eds.

SIMULATION-BASED COMPUTATION OF THE WORKLOAD CORRELATION FUNCTION
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ABSTRACT

In this paper we consider a single-server queue with Lévy input, and in particular its workload process (Qt)t≥0, focusing
on its correlation structure. With the correlation function defined as r(t) := Cov(Q0,Qt)/VarQ0 (assuming the workload
process is in stationarity at time 0), we first study its transform

∫
∞

0 r(t)e−ϑ tdt, both for the case that the Lévy process has
positive jumps, and that it has negative jumps. These expressions allow us to prove that r(·) is positive, decreasing, and
convex, relying on the machinery of completely monotone functions. For the light-tailed case, we estimate the behavior of
r(t) for t large. We then focus on techniques to estimate r(t) by simulation. Naive simulation techniques require roughly
(r(t))−2 runs to obtain an estimate of a given precision, but we develop a coupling technique that leads to substantial variance
reduction (required number of runs being roughly (r(t))−1). If this is augmented with importance sampling, it even leads
to a logarithmically efficient algorithm.

1 INTRODUCTION

Consider a queueing system, and, more particularly, its workload process (Qt)t≥0. Where one usually focuses on the
characterization of the (transient or steady-state) workload, another interesting problem relates to the identification of the
workload correlation function r(t) := Cov(Q0,Qt)/VarQ0, assuming that the workload process is in stationarity at time 0.
For several queueing systems this correlation function has been explicitly computed; (Morse 1955), for instance, analyzes
the number of customers in the M/M/1 queue. Often explicit formulae are hard to obtain, but the analysis simplified greatly
when looking at the transform

ρ(ϑ) :=
∫

∞

0
r(t)e−ϑ tdt.

(Beneš 1957) managed to compute ρ(·) for the workload in the M/G/1 queue; relying on the concept of complete monotonicity,
(Ott 1977) elegantly proved that, in this case, r(·) is positive, decreasing and convex. We further mention the survey by
(Reynolds 1975), and interesting results by (Abate and Whitt 1994).

The primary aim of this paper is to explore the workload correlation function for the class of single-server queues fed
by Lévy processes. Notice that the M/G/1 queue is contained in this class; then the Lévy process under consideration is a
compound Poisson process with drift. We focus on spectrally one-sided Lévy input processes, distinguishing between those
with only positive jumps (also referred to as spectrally positive), and those with only negative jumps (spectrally negative).
For the spectrally positive case it was already shown in (Es-Saghouani and Mandjes 2008) that r(·) is positive, decreasing,
and convex; our first contribution is that we use results by (Pistorius 2004, Doney 2005) to show that these properties carry
over to the spectrally-negative case. We also estimate the asymptotics of r(t) for t large. These results can be found in
Section 2.

A second contribution of the paper (Section 3) considers an intimately related problem: the analysis of the distribution of
the residual busy period τ , where the queue starts in stationarity at time 0. For spectrally one-sided input we first derive the
Laplace transform of p(t) := P(τ > t). Then we use this transform to estimate the tail of p(t) for the case of light-tailed Lévy
input, which exhibits (essentially) exponential decay. The fact that p(t)→ 0 for t→∞ implies that estimation through ‘naive’
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simulation may take prohibitively long for large t. We develop a logarithmically efficient importance sampling algorithm; in
this scheme the Lévy input (in the interval (0, t]) is given a constant exponential twist, but, remarkably, also the workload
present at time 0 needs to be sampled from an alternative distribution as well.

The third contribution, presented in Section 4, concerns efficient simulation schemes for estimating r(t); these intensively
rely on results that we found for the busy-period distribution p(t). Again, the fact r(t)→ 0 (as t → ∞) entails that naive
simulation will be extremely time-consuming; we show it takes roughly (r(t))−2 runs to obtain an estimate of a given
precision. Then we propose a coupling-based approach yielding substantial variance reduction (so that the number of runs
required is just of the order (r(t))−1. For the light-tailed case (in which r(t) vanishes essentially exponentially) we propose
an importance-sampling based algorithm, of which we prove it is asymptotically efficient (i.e., the number of replications
needed grows subexponentially in t).

2 MODEL AND STRUCTURAL RESULTS

In this section we find an expression for the transform ρ(·) of the correlation function, which is used to derive a number
of structural properties of r(·), as well as asymptotics. We start this section, however, with a formal introduction of our
queueing system.

2.1 Lévy Processes

Let (Xt)t≥0 be a Lévy process, with drift EX1 < 0. We consider two cases.

(A) (Xt)t≥0 has no negative jumps. Then the Laplace exponent is given by the function ϕ(·) : [0,∞) 7→ [0,∞), i.e.,
ϕ(α) := logEe−αX1 . It is known that ϕ(·) is increasing and convex on [0,∞), with slope ϕ ′(0) = −EX1 in the
origin. Therefore the inverse ψ(·) of ϕ(·) is well-defined on [0,∞). In the sequel we also require that Xt is not a
subordinator, i.e., a monotone process; thus X1 has probability mass on the positive half-line, which implies that
limα→−∞ ϕ(α) = ∞.

(B) (Xt)t≥0 has no positive jumps. Now we define Φ(β ) := logEeβX1 , which is well-defined for any β ≥ 0. Again ruling
out that Xt is a subordinator (and recalling that Φ′(0) = EX1 < 0), we see that Φ(β ) is no bijection on [0,∞); we
define the right inverse through Ψ(q) := sup{β ≥ 0 : Φ(β ) = q). Realize that Ψ(0) > 0.

Important examples of such Lévy processes are the following. (1) Brownian motion with drift, being actually both
spectrally positive and negative. We write X ∈ Bm(µ,σ2) when ϕ(α) =−αµ + 1

2 α2σ2. (2) Compound Poisson with drift,
which is spectrally positive. Non-negative jobs arrive according to a Poisson process of rate λ ; the jobs B1,B2, . . . are
i.i.d. samples from a distribution with Laplace transform b(α) := Ee−αB; the storage system is continuously depleted at a
rate 1. We write X ∈CP(λ ,b(·)); it can be verified that ϕ(α) = α−λ +λb(α). Clearly, if the drift would be positive, and
the jobs would be i.i.d. samples from a non-positive distribution (that is, the jumps are downward), the process is spectrally
negative.

2.2 Reflected Lévy Processes; Queues

We consider the reflection of (Xt)t≥0 at 0, which we denote by (Qt)t≥0. It is formally introduced as follows, see for instance
(Asmussen 2003, Ch. IX). Define the decreasing process (Mt)t≥0 and the resulting reflected process (or: workload process,
queueing process) (Qt)t≥0 through

Mt = inf
0≤s≤t

Xs; Qt := Xt +max{−Mt ,Q0};

observe that Qt ≥ 0 for all t ≥ 0. Then the steady-state distribution Q := limt→∞ Qt , which exists due to EX1 < 0, is known
(in terms of its Laplace transform) for both the spectrally positive and spectrally negative case. For spectrally positive input,
we have the generalized Pollaczek-Khinchine formula, usually attributed to (Zolotarev 1964):

κ(α) := Ee−αQ =
αϕ ′(0)
ϕ(α)

. (1)
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This result evidently enable the computation of all moments of the steady-state queue Q (by repeated differentiation and
inserting 0). From now one we assume EQ2 to be finite, so that v := VarQ is well-defined.

For spectrally negative input, realize that Eeβ0Xt is a martingale, with β0 := Ψ(0) > 0. ‘Optional sampling’ (Williams
1991, Ch. A14) thus gives, for any positive x, P(∃t ≥ 0 : Xt > x)eβ0x = 1, and as Q is distributed as the supremum over t ≥ 0
of Xt (‘Reich’s identity’), we obtain Q is exponentially distributed with mean 1/β0. It follows that v = 1/β 2

0 .

2.3 Correlation Structure of the Queue

In this paper we are interested in the correlation structure of the queue process (Qt)t≥0. For the spectrally-positive case,
structural results were already found in (Es-Saghouani and Mandjes 2008). Relying on the transform of QT (where T is
exponentially distributed with mean ϑ−1) given that Q0 = x, see e.g. (Asmussen 2003, Section IX.3) and (Kella, Boxma,
and Mandjes 2006), they found that

ρ(ϑ) :=
∫

∞

0
r(t)e−ϑ tdt =

1
ϑ
− ϕ ′′(0)

2vϑ 2 +
ϕ ′(0)
vϑ 2

[
1

ϑψ ′(ϑ)
− 1

ψ(ϑ)

]
.

Then the machinery of completely monotone functions (Bernstein 1929, Ott 1977) was used to prove that r(·) is a positive,
decreasing, and convex function. We now do the same for the spectrally-negative case.

Following the setup of Chapter 8 of (Kyprianou 2006), we first introduce, for spectrally negative Lévy processes, families
of functions W (q)(·) and Z(q)(·) as follows. Let W (q)(x) be a strictly increasing and continuous function whose Laplace
transform satisfies ∫

∞

0
e−βxW (q)(x)dx =

1
Φ(β )−q

, β > Ψ(q). (2)

In addition,

Z(q)(x) := 1+q
∫ x

0
W (q)(y)dy. (3)

W (q)(·) and Z(q)(·) are usually referred to as the q-scale functions. Then the results of (Pistorius 2004), in conjunction with
Exercise 8.5 (both parts (i) and (ii)) of (Kyprianou 2006) lead, with some abuse of notation, to the following transform (with
respect to t) of the density of Qt , given that Q0 = x:

∫
∞

0
e−qtPx(Qt = y)dt = e−Ψ(q)y Ψ(q)

q
Z(q)(x)−W (q)(x− y).

It is now a matter of straightforward calculus to show that the previous display leads to, with T denoting an exponential
random variable with mean q−1,

∫
∞

0
e−βxExe−αQT dx = I1− I2; I1 :=

∫
∞

0

∫
∞

0
qe−βxe−αye−Ψ(q)y Ψ(q)

q
Z(q)(x)dxdy, I2 :=

∫
∞

0

∫
∞

0
qe−βxe−αyW (q)(x− y)dxdy.

We now compute I1 ≡ I1(α,β ,q) and I2 ≡ I2(α,β ,q) explicitly. Let us first consider the integral I1; using (2) and (3), we
obtain

I1(α,β ,q) =
Ψ(q)

Ψ(q)+α

∫
∞

0
e−βxZ(q)(x)dx =

Ψ(q)
Ψ(q)+α

(
1
β

+
∫

∞

0

∫
∞

y
qW (q)(y)e−βxdxdy

)
=

Ψ(q)
Ψ(q)+α

1
β

(
1+

q
Φ(β )−q

)
.

Likewise,

I2(α,β ,q) =
∫

∞

0
qe−(α+β )y 1

Φ(β )−q
dy =

q
α +β

1
Φ(β )−q

.

Let us perform a few checks; it is readily verified that

• plugging in α = 0 in I1(α,β ,q)− I2(α,β ,q) indeed yields 1/β ;
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• plugging in β = β0 into the expression for
∫

∞

0 βe−βxExe−αQT dx indeed yields the steady-state transform β0/(β0 +α):
when starting in the queue’s equilibrium distribution at time 0, the workload is still in stationarity after an exponentially
distributed time (irrespectively of q).

Now observe that, recalling that T has an exponential distribution with mean q−1,

∫
∞

0
qe−qtE(Q0Qt)dt =

∫
∞

0
β0xe−β0xExQT dx = lim

α↓0

d
dα

[
β · d

dβ

∫
∞

0
e−βxExe−αQT dx

∣∣∣∣
β=β0

]
. (4)

Upon combining the explicit expression for I1(α,β ,q)− I2(α,β ,q) with (4), and recalling that v = 1/β 2
0 (in the spectrally-

negative case), we eventually find, after considerable calculus, the following result.

Theorem 1 For the spectrally-negative case,

ρ(q) :=
∫

∞

0
r(t)e−qtdt =

1
q

+
β 2

0
q2 Φ

′(β0)
(

1
Ψ(q)

− 1
β0

)
.

The following corollary follows from applying ‘L’Hôpital’ twice. It implies that in the spectrally-negative case the
workload process is necessarily short-range dependent. Use that Ψ′(0)Φ′(β0) = 1 and Φ′′(β0)+(Φ′(β0))3Ψ′′(0) = 0, which
follow from repeated differentiation of the relation Φ(Ψ(q)) = q.

Corollary 2 For the spectrally-negative case,

ρ(0) :=
∫

∞

0
r(t)dt =

1
β0Φ′(β0)

+
Φ′′(β0)

2(Φ′(β0))3 < ∞.

We can now use the transform ρ(q) to establish a number of key structural properties of r(·).

Theorem 3 r(·) is positive, decreasing, and convex.
Proof: We mimic the proof in (Es-Saghouani and Mandjes 2008) for the spectrally-positive case. Using integration by parts,
we find that

ρ
(1)(q) :=

∫
∞

0
r′(t)e−qtdt =

β 2
0

q
Φ
′(β0)

(
1

Ψ(q)
− 1

β0

)
.

Analogously,

ρ
(2)(q) :=

∫
∞

0
r′′(t)e−qtdt =−r′(0)+β

2
0 Φ
′(β0)

(
1

Ψ(q)
− 1

β0

)
. (5)

In the proof of Prop. 5 we will show that Ψ(0)/Ψ(q) ∈ C , where C is the class of completely monotone functions (Bernstein
1929, Feller 1971); completely monotone functions are functions that can, up to some positive multiplicative constant, be
considered as Laplace transforms of nonnegative random variables. We conclude from (5) that ρ(2)(q) is in C , and hence
r′′(·) is positive, i.e., r(·) is convex.

We know that f (q) ∈ C implies that, with g(q) := ( f (0)− f (q))/q, also g(q) ∈ C . Taking f (q) = ρ(2)(q), we obtain
that −ρ(1)(q) is in C , and hence r′(·) is negative, i.e., r(·) is decreasing. Applying the same procedure again, we find that
ρ(q) is in C , and hence r(·) is positive. 2

In (Es-Saghouani and Mandjes 2008) the asymptotics of r(t) (for t large) in the spectrally-positive case were addressed.
It turned out that the heavy-tailed regime (leading to r(t) decaying essentially polynomially) and the light-tailed regime
(leading to r(t) decaying essentially exponentially) had to be treated separately. In the light-tailed regime (where we assume
that the equation ϕ(α) = 0 has a negative root) we showed that the exact asymptotics were, up to a multiplicative constant,
of the form t−3/2eϑ?t , where ϑ ? < 0 is the branching point of ψ(·). This means that, with ζ < 0 being the minimizer of
ϕ(·), ϕ(ζ ) = ϑ ?.

Let us now consider the counterpart of these findings for the spectrally-negative case. We will argue that r(t) necessarily
decays exponentially, relying on the Heaviside operational principle. Let ζ > 0 denote the minimizer of Φ(·), so that
Φ(ζ ) = q? < 0; hence q? < 0 is the branching point of Ψ(·). Around q? we have that Ψ(q) looks like ζ +

√
2/vΦ ·

√
q−q?,
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with vΦ := Φ′′(ζ ) > 0. After some calculus we obtain that this entails that, for some (irrelevant) constant κ ,

ρ(q)∼ κ +BΦ

√
q−q?; BΦ :=−

β 2
0 Φ′(β0)
(q?)2ζ 2

√
2

vΦ

< 0,

so that application of Heaviside heuristics (Abate and Whitt 1997) yields, with f (t)∼ g(t) denoting f (t)/g(t)→ 1 as t→∞,

r(t)∼ BΦ

Γ(− 1
2 )
· e

q?t

t
√

t
.

3 AN INTERMEZZO: EFFICIENT ESTIMATION OF THE BUSY PERIOD TAIL DISTRIBUTION

In this section we address the estimation of the tail distribution of the busy period in a Lévy-driven queue by applying
an importance-sampling based simulation procedure. In the next section it will turn out that the insights developed here
are useful when setting up an efficient simulation scheme for estimating the workload correlation r(t). We let τ denote
the busy period duration, starting from steady-state at time 0: τ := inf{t ≥ 0 : Qt = 0}, where Q0 is distributed according
to the stationary distribution. Throughout this section we will denote p(t) := P(τ > t). In this section we first derive the
Laplace transform of p(·), then we consider the corresponding asymptotics, and finally we set up a logarithmically efficient
simulation scheme.

3.1 Transforms

Let us start by considering the spectrally-positive case. We have, with τ(x) := inf{t ≥ 0 : Xt =−x}

∫
∞

0
e−ϑ t p(t)dt =

∫
∞

0

(∫
∞

0
e−ϑ tP(τ(x) > t)dt

)
dP(Q0 < x) =

1
ϑ

∫
∞

0

(
1− e−ψ(ϑ)x

)
dP(Q0 < x).

Application of ‘Pollaczek-Khinchine’ now leads to the following result.

Proposition 4 In the spectrally-positive case, the Laplace transform of p(t) is given by

∫
∞

0
e−ϑ t p(t)dt =

1
ϑ
−ϕ

′(0)
ψ(ϑ)

ϑ 2 .

The spectrally-negative case can be dealt with similarly. First recall that
∫

∞

0 e−qtP(τ > t)dt = q−1 (1−Ee−qτ) . Then,
using part (ii) of Exercise 6.7 in (Kyprianou 2006), we have

Ee−qτ =
∫

∞

0
β0e−β0xEe−qτ(x)dx = β0 ·

κ̂(q,β0)− κ̂(q,0)
β0κ̂(q,β0)

;

here κ̂(q,β ) relates to the transform of the so-called descending ladder process, and is given, in this spectrally-negative
case, by κ̂(q,β ) = (q−Φ(β ))/(Ψ(q)−β ). Using that Φ(β0) = 0, we find that Ee−qτ = Ψ(0)/Ψ(q), and in addition the
following result is obtained.

Proposition 5 In the spectrally-negative case, the Laplace transform of p(t) is given by

∫
∞

0
e−qt p(t)dt =

1
q

(
1− Ψ(0)

Ψ(q)

)
.

3.2 Asymptotics

We again use the Heaviside operational principle (Abate and Whitt 1997) to (heuristically) estimate the decay of p(t) for
t large. We focus on the situation that the Lévy process is (in the upward direction) light-tailed; precise definitions follow
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below. The most important conclusion is that in this light-tailed case p(t) decays to 0 essentially exponentially; up to a
multiplicative constant, the exact asymptotics coincide with those of the workload correlation function r(t).

We again start by considering the spectrally-positive case. As before, we assume that the equation ϕ(α) = 0 has a
negative root. Observe that then Prop. 4 holds for any positive ϑ , but we can consider the analytic continuation up to the
branching point ϑ ? < 0 of ψ(·). More precisely: the idea is to write (with ζ < 0 denoting the minimizer of ϕ(·), so that
ϕ(ζ ) = ϑ ? < 0; notice that vϕ := ϕ ′′(ζ ) > 0), for ϑ ↓ ϑ ? we have that ψ(ϑ)−ζ ∼

√
2/vϕ ·

√
ϑ −ϑ ?.

Hence, around ϑ ?, we have that, for some (irrelevant) constant κ ,

∫
∞

0
e−ϑ t p(t)dt =

1
ϑ
−ϕ

′(0)
ψ(ϑ)

ϑ 2 ∼ κ +Aϕ

√
ϑ −ϑ ?; Aϕ :=− ϕ ′(0)

(ϑ ?)2

√
2

vϕ

< 0,

and hence, applying ‘Heaviside’, we estimate the tail distribution of the busy period by

p(t)∼
Aϕ

Γ(− 1
2 )
· e

ϑ?t

t
√

t
. (6)

We now turn to the spectrally-negative case. Prop. 5 holds for any positive q, but we can consider the analytic continuation
up to the branching point q? < 0 of Ψ(·). Let ζ > 0 denote the minimizer of Φ(·), so that Φ(ζ ) = q? < 0. Similarly to the
spectrally-negative case, we obtain, with vΦ := Φ′′(ζ ) > 0 and κ being some (irrelevant) number,

∫
∞

0
e−qt p(t)dt =

1
q

(
1− Ψ(0)

Ψ(q)

)
∼ κ +AΦ

√
ϑ −ϑ ?; AΦ :=

Ψ(0)
q?ζ 2

√
2

vϕ

< 0,

and hence ‘Heaviside’ estimates the tail of the busy-period distribution by

p(t)∼ AΦ

Γ(− 1
2 )
· e

q?t

t
√

t
. (7)

3.3 Importance-Sampling Based Simulation

As p(t) vanishes exponentially fast in the light-tailed case considered above, estimating P(τ > t) from naive Monte Carlo
simulation would be extremely time consuming. It is known that the number of replications needed (to obtain an estimate
of a certain predefined precision) is roughly of the order (p(t))−1. This motivates the search for more efficient simulation
algorithms. We conclude this section by an algorithm for estimating this probability in an logarithmically efficient way; this
algorithm is based on importance sampling, see e.g. pp. 127-128 of (Asmussen and Glynn 2007), with an exponential twist
of the Lévy process Xt .

We first explain what ‘exponentially twisting’ means in our Lévy setting; we focus here on the spectrally-positive case,
but the spectrally-negative case works analogously. Evidently, the queue is stable under the probability measure P, as we
assumed EX1 < 0. Below we will propose a change of measure, with which we associate Q, under which {τ > t} with
relatively high probability, by application of an exponential twist −ζ > 0. We have that the Laplace exponent ϕ(α) of Xt
is well defined and characterized through, with d, σ2 > 0 and a measure Πϕ(·) such that

∫
(0,∞) min{1,x2}Πϕ(dx) < ∞,

ϕ(α) =−α ·d +
1
2

α
2
σ

2 +
∫

(0,∞)
(e−αx−1+αx1(0,1))Πϕ(dx).

It is now a matter of straightforward calculations to show that ϕ̄(α) := ϕ(α + ζ )−ϕ(ζ ) is a Laplace exponent as well.
Under Q, the Lévy process has Laplace exponent ϕ̄(α); from the convexity of ϕ(·) it is concluded that (in self-evident
notation) EQX1 =−ϕ̄ ′(0) =−ϕ ′(ζ ) = 0, so that the system under the new measure has drift 0. (One can check that under Q
the drift d has increased to d−ζ σ2, the Brownian term remains unchanged, whereas the measure Πϕ̄(dx) is given through
its exponentially twisted counterpart (with ‘twist’ −ζ ).

In importance sampling one simulates under a different measure than the original one, where unbiasedness is recovered
by weighing the simulation output by appropriate likelihood ratios. We first propose an alternative measure, as follows.

1160



Glynn and Mandjes

• Let, in the interval (0, t], the Lévy process be twisted with −ζ =−ψ(ϑ ?) > 0, as described above; ϑ ? is as defined
before.

• We also twist Q0; we do so by a factor κ ≥ 0, for which we identify a suitable value later on. This effectively
means that we sample Q0 from a distribution with Laplace transform Ee−(α−κ)Q0/EeκQ0 .

We call the new measure, consisting of twisting Q0 as well as a twisting (Xs)s∈(0,t], from now on Qκ .
We simulate the process under Qκ till time t. Then the estimator, based on n independent runs, reads n−1

∑
n
i=1 Li1{τi > t},

where Li is the likelihood of run i. Let us write down this likelihood ratio. First there is the contribution due to the twisted
queue at time 0; using ‘Pollaczek-Khinchine’ we obtain

L1 := e−κQ0 ·EeκQ0 = e−κQ0 · −κϕ ′(0)
ϕ(−κ)

.

Then there is the contribution due to the twisted Lévy process between 0 and t:

L2 := eψ(ϑ?)Xt ·Ee−ψ(ϑ?)Xt = eψ(ϑ?)Xt · eϑ?t .

The ‘total likelihood’ is L := L1×L2.
As VarL1{τ > t} ≥ 0, we see that EL21{τ > t} ≥ (EL1{τ > t})2. In this sense, we could call a change of measure

logarithmically efficient if

lim
t→∞

1
t

logEL21{τ > t} ≤ lim
t→∞

1
t

log(EL1{τ > t})2 =−ϑ
?.

Logarithmic efficiency essentially means that the number of replications needed to obtain an estimate with a certain fixed
precision grows subexponentially in the ‘rarity parameter’ t, cf. (Asmussen and Glynn 2007, Ch. VI).

A first important observation is that not twisting Q0 at all (i.e., choosing κ = 0) does not necessarily yield logarithmic
efficiency: recalling that a necessary condition for {τ > t} is {Q0 +Xt > 0}, we find

EQκ
L21{τ > t} ≤

(
−κϕ ′(0)

ϕ(−κ)

)2

e2ϑ?tEQκ
e−2κQ0e−2ψ(ϑ?)Q0 . (8)

For logarithmic efficiency we should have that limsupt→∞ t−1 logEQκ
L21{τ > t} ≤ 2ϑ ?. In other words, when picking κ = 0

we need to have EQ0e−2ψ(ϑ?)Q0 < ∞ for logarithmic efficiency, and this is not a priori clear.
But let us now check whether with another choice for κ logarithmic efficiency can be guaranteed. To this end, note

that ϕ(ψ(ϑ ?)) is finite (to see this, use that ζ is larger than the pole of ϕ(·)). Hence, picking κ := −ψ(ϑ ?) = −ζ does
yield logarithmic efficiency! In other words: we have to exponentially twist Q0 as well to obtain a provably logarithmically
efficient procedure, and κ =−ζ > 0 is a suitable choice.

The next question is: it is clear that for the (Xs)s∈(0,t]-part, a twist by −ζ is optimal, but for the Q0-part, can we do
better than twisting with −ζ ? Interestingly, using

EQκ
e−αQ0 =

α−κ

ϕ(α−κ)
· ϕ(−κ)
−κ

,

the right-hand side of (8) can be rewritten to

(ϕ ′(0))2
(
−κ

ϕ(−κ)

)(
2ζ +κ

ϕ(2ζ +κ)

)
e2ϑ?t . (9)

Observe that it contains of two factors in κ , the first of which increases in κ , the second decreases in κ , so that there is a
trade-off. It is a straightforward exercise to show that the minimum is achieved for κ =−ζ (this can be seen by equating
the derivative to 0, but it also follows using an elementary symmetry-argument). We conclude that the proposed change of
measure is the best possible within the class of exponential twists of Q0, in the sense that it minimizes (9).
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4 SIMULATION-BASED COMPUTATION OF THE CORRELATION FUNCTION

As recalled in the previous section, if a probability tends to 0 as some ‘rarity parameter’ t grows large, then the number of
runs needed to estimate the probability by naive simulation, for a given relative precision, is roughly inversely proportional
to the probability. At the end of Section 2 we observed that the correlation r(t) also tends to 0 as t→ ∞, which raises the
question how many runs would be roughly needed to estimate r(t) by naive simulation. We first answer this question, and then
propose a coupling-based alternative that performs substantially better. This section concludes with a logarithmically efficient
algorithm, that combines the coupling idea with importance sampling. In this section we concentrate on the spectrally-positive
case; in the spectrally-negative case, the decay rates ϑ ? must be replaced by q? (while the proofs are very similar).

4.1 Naive Simulation

In the remainder of this section, we concentrate on estimating r̄(t) := Cov(Q0,Qt), as v = VarQ is known. The naive
estimator of r̄(t) is, in self-evident notation, and recalling that EQ is known,

T (NS)
n (t) :=

1
n

n

∑
i=1

Q(i)
0 Q(i)

t − (EQ)2,

based on n independent runs. The variance of this estimator reads (n−1) ·Var(Q0Qt). Now note that, as t→ ∞,

Var(Q0Qt) = E(Q2
0Q2

t )− (EQ0Qt)2→ (EQ2)2− (EQ)4,

which is positive due to the fact that EQ2 > (EQ)2. Suppose our goal is to simulate until our estimate has a certain given
relative precision ε (defined as the ratio between the width of the confidence interval and the estimate) and confidence α .
The number of runs needed, say n(NS)(t), is roughly equal to the smallest n satisfying

2δα

√
VarT (NS)

n (t)
r(t)

< ε,

for an appropriately chosen percentile of the standard Normal distribution δα . We obtain the following remarkable result
for the naive estimator: it says that the number of runs required blows up exponentially, but it is quadratically inversely
proportional to r(t), rather than just inversely proportional.

Proposition 6 limt→∞ t−1 · logn(NS)(t) =−2ϑ ? > 0.

4.2 A Coupling-based Algorithm

In this subsection we develop a coupling-based simulation procedure that reduces the number of runs needed from quadratically
inversely proportional to r̄(t), to just inversely proportional.

We write

r̄(t) = E(Q0 · (Qt −Q?
t )),

where both Q and Q? are stationary versions of the workload, and Q?
t is independent of Q0. We construct such a coupling as

follows: generate Q0 and Q?
0 independently, sampled from the stationary distribution of the workload. Now use exactly the

same incoming Lévy process Xt over (0, t] to drive both (Qs)s∈(0,t] and (Q?
s )s∈(0,t] from their two independently generated

initial conditions. This makes Qt and Q0 correlated but Q?
t and Q0 independent. The new estimator becomes, in self-evident

notation,

T (CS)
n (t) :=

1
n

n

∑
i=1

Q(i)
0 (Q(i)

t −Q?(i)
t ),

based on n independent runs. The key observation is that |Qt −Q?
t | ≤ |Q0−Q?

0|: the distance between both processes
decreases in time. In particular, after the first epoch that both queues have been empty, the queueing processes coincide.
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We split E(Q0 · (Qt −Q?
t )) into four terms, as follows. Recall that we defined Mt := inf0≤s≤t Xs. We write τ > t iff

Q0 +Mt > 0 (i.e., busy period has not ended at t) and τ? > t iff Q?
0 +Mt > 0. Then r̄(t) = r++(t)+ r+−(t)+ r−+(t)+ r−−(t),

where

r++(t) := E(Q0 · (Qt −Q?
t ) ·1{τ > t,τ? > t}), r+−(t) := E(Q0 · (Qt −Q?

t ) ·1{τ > t,τ? ≤ t}),
r−+(t) := E(Q0 · (Qt −Q?

t ) ·1{τ ≤ t,τ? > t}), r−−(t) := E(Q0 · (Qt −Q?
t ) ·1{τ ≤ t,τ? ≤ t}).

It is evident that r−−(t) = 0, as both queues have been empty and are identical from some time s (smaller than t) on. We
estimate the other three terms separately. Due to |Qt −Q?

t | ≤ |Q0−Q?
0| we thus have that

Var(Q0 · (Qt −Q?
t )) ≤ EQ2

0 · (Qt −Q?
t )

2 ≤ E(Q2
0 · (Q0−Q?

0)
2 ·1{τ > t,τ? > t})

+ E(Q2
0 · (Q0−Q?

0)
2 ·1{τ > t,τ? ≤ t})+E(Q2

0 · (Q0−Q?
0)

2 ·1{τ ≤ t,τ? > t}).

With mk(t) := E(Qk
01{τ > t}), both the first and third term can be bounded from above by E(Q4

0)P(τ > t)+E(Q2
0)m2(t),

whereas the second is majorized by m4(t)+E(Q2
0)m2(t). The claim of Prop. 8 now follows directly from the following

lemma (which is proven in the appendix). The number of runs needed, n(CS)(t), is defined analogously to n(NS)(t).

Lemma 7 For any k ≥ 0, we have that limsupt→∞ t−1 logmk(t)≤ ϑ ?.

Proposition 8 limsupt→∞ t−1 · logn(CS)(t)≤−ϑ ?.

4.3 Importance-Sampling Based Algorithm

We now apply importance sampling on top of the coupling idea presented in the previous subsection. As we are dealing
with the light-tailed case, an importance sampling measure Q is logarithmically efficient if

lim
t→∞

1
t

logEQ(L2Q2
0(Qt −Q?

t )
2)≤ 2ϑ

?.

We again consider four scenarios by comparing τ and τ? with t; the idea is to estimate r++(t), r+−(t), and r−+(t) separately
(recall that r−−(t) = 0).

• First focus on r++(t). We define

T (IS)
n,++(t) :=

1
n

n

∑
i=1

L2
i Q(i)

0 (Q(i)
t −Q?(i)

t )1{τi > t,τ?
i > t},

as an (unbiased) estimator of r++(t). Notice that in this case Qt −Q?
t = Q0−Q?

0. Let, as before, the Lévy process
be twisted with −ζ = −ψ(ϑ ?) > 0, with ϑ ? as defined before. Also Q0 is twisted by a factor κ and Q?

0 by a
factor κ?, for which we identify suitable values below. We simulate the process till time t. Let us write down the
likelihood ratio at time t; we call the new measure Q~κ , with ~κ denoting the vector (κ,κ?). We again find that the
likelihood equals

L =
(

e−κQ0 · −κϕ ′(0)
ϕ(−κ)

)
×
(

e−κ?Q?
0 · −κ?ϕ ′(0)

ϕ(−κ?)

)
×
(

eζ Xt · eϑ?t
)

.

We conclude that the second moment of the estimator reads

EQ~κ

(
L2Q2

0(Q0−Q?
0)

2 ·1{τ > t,τ? > t}
)
.
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It is clear that 1{τ > t,τ? > t} ≤ 1{τ > t}, and on {τ > t} we have that −Xt < Q0. We thus find the upper bound

EQ~κ

((
e−κQ0 · −κϕ ′(0)

ϕ(−κ)

)2

×
(

e−κ?Q?
0 · −κ?ϕ ′(0)

ϕ(−κ?)

)2

×
(

e−ζ Q0 · eϑ?t
)2

Q2
0(Q0−Q?

0)
2

)

≤
(
−κϕ ′(0)
ϕ(−κ)

)2(−κ?ϕ ′(0)
ϕ(−κ?)

)2

e2ϑ?t ×(
EQ~κ

(
Q4

0e−2(κ+ζ )Q0
)

EQ~κ

(
e−2κ?Q0

)
+EQ~κ

(
Q2

0e−2(κ+ζ )Q0
)

EQ~κ

(
(Q?

0)
2e−2κ?Q?

0

))
.

It is now readily seen that the choice κ =−ζ and κ? = 0 yields logarithmic efficiency, as the above display reduces
to a finite number multiplied with e2ϑ?t . We here use, in the same way as in Section 3, that ζ is larger than the pole of
ϕ(·), so that twisting with −ζ keeps all means finite, that is, EQ~κ

Q4
0 < ∞, EQ~κ

Q2
0 < ∞, and EQ~κ

((Q?
0)

2) = EQ2
0 < ∞

• Now consider r+−(t). The estimator T (IS)
n,+−(t) is defined analogously to T (IS)

n,++(t). Apparently Q0 > Q?
0, and therefore

also Qt ≥Q?
t for all t ≥ 0. We also have Qt−Q?

t ≤Q0−Q?
0 for all t ≥ 0. With 1{τ > t,τ? > t} ≤ 1{τ > t}, we can

use the bounds above. We again obtain that κ =−ζ and κ? = 0 yields logarithmic efficiency.
• Finally, the case r−+(t) is essentially identical, but now we should pick κ? =−ζ and κ = 0.

As we can now estimate r++(t), r+−(t), and r−+(t) logarithmically efficiently, we arrive at the following result. Here
n(IS)(t) denotes the number of runs needed to estimate r(t) with a predefined precision, for a given confidence. The result
states that the number of runs needed increases only subexponentially fast in the ‘rarity parameter’ t, and hence we have
achieved a huge improvement over the naive scheme, and a still quite substantial improvement over the coupling-based
algorithm (without importance sampling).

Theorem 9 limt→∞ t−1 · logn(IS)(t) = 0.

5 PRACTICAL ASPECTS AND DISCUSSION

Application of the simulation algorithms proposed in the previous sections, requires the ability to sample Lévy processes.
Guidelines on this issue are presented in (Asmussen and Glynn 2007, Ch. XII).

In addition, one should be able to draw variates from exponentially twisted versions of the stationary workloads. In
the spectrally-negative case this is straightforward, as Q0 has an exponential distribution. In the spectrally-positive case, the
Laplace transform of Q0 is known (by ‘Pollaczek-Khinchine’), and one could use methods as those described in (Devroye
1986) to generate samples. An alternative, only useful in the case of compound Poisson input, is to recognize that then
the steady state workload is distributed as a geometric sum of residual job sizes, and hence so is its exponentially twisted
version; in this situation one could also use the exact sampling technique proposed in (Ensor and Glynn 2000).

Observe, however, that spectrally-positive light-tailed Lévy inputs are always just the sum of (i) Brownian motions,
(ii) compound Poisson processes with light-tailed jobs, (iii) a negative drift. Restricting ourselves to phase-type jobs, it is
readily seen from the generalized Pollaczek-Khinchine formula that also the steady-state workload is phase-type as well,
and hence easy to generate variates from. In addition, the phase-type property is closed under exponential twisting, so it is
straightforward to sample from this exponentially twisted workload.

In this paper we presented efficient algorithms for estimating the tail of the busy period p(t) and the workload correlation
function r(t). In the spectrally one-sided cases Laplace transforms are known in closed-form, so the obvious alternative to
simulation is to perform numerical inversion of these transforms. It should be noted, however, that the importance-sampling
based simulation method can also be applied (and has good variance properties) if the driving Lévy process has both positive
and negative jumps.

Potential subjects for future research are the following. (i) One could try to apply the coupling idea in settings in which
the queue’s input process does not have stationary independent increments. Can we for instance develop an algorithm of
this kind for a queue fed by on-off sources with generally distributed on- and off times, or for queues with Gaussian input
(Mandjes 2007)? (ii) Is it possible to develop a simulation scheme with bounded relative error (Asmussen and Glynn 2007,
p. 159). Is it, perhaps for special cases such as reflected Brownian motion, possible to compute a zero-variance change of
measure?
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A APPENDIX

We here present the proof of Lemma 7. Take ε > 0 arbitrary. Let m denote −EX1 > 0, and mε := bm/εc. By splitting the
interval [0,∞) into intervals [iεt,(i+1)εt), for i = 0,1, . . ., we obtain, using that P(τ(x) > t) increases monotonically in x,

mk(t) =
∫

∞

0
xkP(τ(x) > t)dP(Q0 ≤ x)≤

∞

∑
i=0

((i+1)εt)kP(τ((i+1)εt) > t)P(Q0 > iεt)

≤
mε

∑
i=0

((i+1)εt)kP(τ((i+1)εt) > t)P(Q0 > iεt)+
∞

∑
i=mε +1

((i+1)εt)kP(Q0 > iεt).

With I(a) := supθ (θa− logEexp(θX1)), the Chernoff bound immediately gives P(τ(x) > t)≤ P(X(t) >−x)≤ e−tI(−x/t) for
all x < mt. In addition, Remark 5.3 of (Dȩbicki, Es-Saghouani, and Mandjes 2009) yields that P(Q0 > x)≤ exp(−ξ x), where
ξ := infx>0 I(x)/x. Hence, mk(t) is bounded from above by

mε

∑
i=0

hi(t)+g(t), where hi(t) := ((i+1)εt)ke−tI(−(i+1)ε)e−ξ iεt , g(t) :=
∞

∑
i=mε +1

((i+1)εt)ke−ξ iεt .

It is readily checked that limt→∞ t−1 loghi(t) =−I(−(i+1)ε)−ξ iε. Also
∫

∞

a xke−xtdx∼ s(t)e−at , for some subexponential
function s(·) (as t→∞), which leads to limt→∞ t−1 logg(t)≤ ξ ε−(mε +1)ξ ε. Lemma 1.2.15 of (Dembo and Zeitouni 1998),
stating that the decay rate of a finite sum equals the maximum of the decay rates, now yields that

limsup
t→∞

1
t

logmk(t)≤max
{

max
i=0,...,mε

{−I(−(i+1)ε)−ξ iε},ξ ε− (mε +1)ξ ε

}
.

Note that ki :=−I(−(i+1)ε)−ξ iε is concave in i, and hence k0 > k1 would imply that maxi∈{0,1,...} ki = k0. It is seen that
k0 > k1 is equivalent to ε−1 · (I(−ε)− I(−2ε)) < ξ . Observing that the convexity of I(·) implies that

ξ := inf
x>0

I(x)
x
≥ inf

x>0

I(0)+ xI′(0)
x

> I′(0),

we have that for ε sufficiently small it indeed holds that k0 > k1, and hence limsupt→∞ t−1 · logmk(t)≤ k0 =−I(−ε). Now
letting ε → 0, and realizing that I(0) =−ϑ ?, we have shown the stated. 2.
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