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ABSTRACT

Simulation algorithm implementations are usually evaluated by experimental performance analysis. To conduct such studies

is a challenging and time-consuming task, as various impact factors have to be controlled and the resulting algorithm

performance needs to be analyzed. This problem is aggravated when it comes to comparing many alternative implementations

for a multitude of benchmark model setups. We present an architecture that supports the automated execution of performance

evaluation experiments on several levels. Desirable benchmark model properties are motivated, and the quasi-steady state

property of such models is exploited for simulation end time calibration, a simple technique to save computational effort

in simulator performance comparisons. The overall mechanism is quite flexible and can be easily adapted to the various

requirements that different kinds of performance studies impose. It is able to speed up performance experiments significantly,

which is shown by a simple performance study.

1 INTRODUCTION

Even after several decades of research in simulation algorithms, it still requires much effort to thoroughly analyze the

performance of a newly developed simulation algorithm. One reason for this might be that the notion of performance has

many facets: users are not only concerned with execution speed, but also with memory consumption or the accuracy of the

obtained results. In many cases, a delicate trade-off between these requirements has to be found. It is also mandatory to

compare the performance of a new implementation to alternative solutions. This is of particular importance in research, as

the relation of a new approach to existing ones allows to show the scientific contribution, a major issue the M&S community

is currently discussing (Smith et al. 2008).

Both aspects of the problem can be alleviated to some extent: the fair comparison of algorithms can be achieved by

implementing them (equally well) in the same language and running them on the same hardware and benchmark models,

thereby allowing them to re-use the same data structures and sub-algorithms, e. g., event queues. Comparative studies are

particularly well-suited for extensible open source simulation systems such as JAMES II (Himmelspach and Uhrmacher

2007b), a Java-based framework for which the presented mechanisms have been implemented. Such tools allow to freely

combine existing code with new implementations, and hence to test every new component against all others.

On the other hand, the ability to freely combine algorithms may lead to a combinatorial explosion. For example, there

are scenarios where flexible simulation tools like JAMES II offer virtually thousands of algorithms, e. g., combinations

of random number generator, event queue, parallel discrete-event simulator, and partitioning algorithm: having only ten

implementations for each component would still result in 105 algorithm combinations! This motivates large-scale performance

experiments, and consequently leads to an overabundance of algorithm performance data. To analyze it conveniently, the

data could be written to a dedicated performance database, followed by a semi-automated analysis, e. g., by data mining

methods.

However, there is a third aspect: even if there is a set of comparable simulation algorithms and there are means to store

their performance data and analyze it afterward, how should the performance comparison experiment be designed? This task

is usually done manually – which is not necessarily bad, as the developer often knows intuitively which specific properties of

the algorithm have to be investigated with particular rigor. Still, when faced with dozens or hundreds of competing algorithms
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or benchmark models that are highly parameterizable, a manual experiment definition can be very time-consuming and may

lead to inconclusive results due to insufficient data. Some performance studies even seem quite impossible without some

degree of automation, as illustrated in section 6.

Several techniques can be combined to tackle this issue. The problem of designing sequential experiments, i. e.,

experiments which will be adjusted during their execution by considering intermediate results, has a long tradition in statistics

(e. g., cf. (Robbins 1952)). Such experiment design approaches have to be combined with techniques from experimental
algorithmics (McGeoch 2007), a field that is concerned with the empirical analysis of algorithms in general. Finally, the

context of simulation allows us to deal with some aspects of the overall problem in a more specific manner, e. g., when it

comes to define suitable problem instances for benchmarking.

2 BACKGROUND AND RELATED WORK

A fundamental approach to algorithm comparison is complexity theory, as it highlights the essential differences between

alternative solutions and thereby supports the development of new algorithms. Nevertheless, classical complexity theory

is insufficient to characterize overall algorithm performance with a level of detail that is satisfactory for all practical

considerations. For example, specific properties of the given input instance (Cheeseman, Kanefsky, and Taylor 1991) or

hardware (LaMarca and Ladner 1997) may have a high impact, which is generally hard to predict, quantify, or formalize.

This led to some advancements in complexity theory (Fellows 2001), but also to the adoption of a more empirical perspective

on algorithm performance (Johnson 2003). Experimentation with algorithms can be facilitated by various techniques, but

there are also many pitfalls that must be avoided to obtain unbiased and meaningful results.

An important issue in performance studies is the design of representative input data. It is usually not sufficient to merely

consider some randomly created instances, since ”‘[...] real inputs are not random, but rather have lots of hidden structure
[...]”’ (Fellows 2001, p. 298). If such structures are not taken into account, the comparison is likely to be biased towards

algorithms that perform well under circumstances that rarely occur.

Taking advantage of structured random instances, however, lets the experimenter exploit their flexibility regarding size

and other parameters (see discussion in (Johnson 2003) and section 3). Examples for structured random benchmark instances

can be found in many fields, e. g., compiler optimization (Yu, Zhang, and Rauchwerger 2004) or theoretical computer

science (Gagliolo and Schmidhuber 2006), where standardized problem libraries are used to test heuristics for hard problems.

The compilation of such libraries is greatly facilitated by additional knowledge on algorithmic challenges, e. g., the existence

of phase transitions (Cheeseman, Kanefsky, and Taylor 1991, Hogg, Huberman, and Williams 1996), although this focus on

particularly hard problem instances may also divert the research focus to rather unrealistic scenarios (Johnson 2003). For

simulation studies, benchmark models are either built for specific applications, e. g., (Cao, Li, and Petzold 2004), for specific

simulation algorithms, e. g., (Fujimoto 1990), or for specific formalisms like DEVS (Glinsky and Wainer 2005).

If a set of benchmark input is defined, e. g., in form of a set B = {b1, . . . ,bn} that shall be tested on a set of computer

systems C = {c1, . . . ,cm}, a performance space of the algorithm set A = {a1, . . . ,ak} can be defined as P = A×B×C. The

general goal of performance studies is to associate every element of P with an element of R
x, a vector that contains all desired

performance information, e. g., mean and standard deviation of the required execution time. This simplified formalization

resembles that of (Rice 1976), who formally defined the algorithm selection problem on similar concepts. The key idea

behind algorithm selection is to provide a user with means to automatically select a suitable algorithm for a given problem,

and hence requires the analysis of past performance data, e. g., cf. (Ramakrishnan, Rice, and Houstis 2002).

It is also in this context that ”‘[...] the process of searching itself as an interesting and challenging problem”’ (Vuduc,

Demmel, and Bilmes 2001, p. 125) has been subject to research. This is because the performance space P is usually much

too large to simply enumerate it and execute each configuration one-by-one. Moreover, runtime performance metrics may

vary from execution to execution, so that replications, i. e., repeated executions of an algorithm on the same input data,

are necessary to obtain statistically significant results. This problem is of particular importance when studying simulation

algorithms, since many models contain stochastic elements and hence impose varying workloads per replication. There

are many variance reduction techniques that could alleviate the problem (McGeoch 1992), but applying them can also be

counterproductive – statistically (Ankenman, Nelson, and Staum 2008), and because a realistic variance estimation might

be of interest as well. Besides stochastic models, there are also stochastic simulation algorithms, e. g., in Computational

Biology, where performance analyses face the same problem (Jeschke and Ewald 2008). This motivates the investigation of

performance space exploration techniques that are tailored to the field of simulation algorithms.

For the empirical tuning of compilers, (Vuduc, Demmel, and Bilmes 2001) introduced a stopping rule for a random

search in A, where |B| = |C| = 1. It estimates the probability that the currently best known algorithm does belong to the
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overall best ε percent of algorithms in A: the user can now stop the random search in A automatically when, for example,

the probability that the best found algorithm belongs to the top ε = 10% is above 95%.

For smaller sets of algorithms, it may suffice to conduct factorization experiments, which allow to assess the sensitivity

of investigated parameters and their interactions. (Yu, Zhang, and Rauchwerger 2004) use such a setup for evaluating

different reduction algorithms for parallel computing. (Ferscha, Johnson, and Turner 2001) have done similar experiments for

some parallel and distributed discrete-event simulation algorithms. Their factorization experiment included, besides various

algorithmic variables, different execution platforms and models. However, a full factorization with n parameters requires 2n

simulation setups, each of which usually has to be replicated. Even if the number of resulting simulation runs is feasible or

was reduced by any of the classical approaches like (Plackett and Burman 1946), only two values per parameter have been

evaluated, which might be unsatisfying, e. g., for scalability studies. The field of experiment design, which aims at improving

the efficiency and validity of experiments by considering more sophisticated statistical methods, originated from the work

of Fisher in the 1920s (Box 1980). Today, advanced statistical models can be used to steer experiments into interesting

regions, e. g., (Ankenman, Nelson, and Staum 2008) employ stochastic kriging for meta-modeling and thereby identify the

regions in the parameter space that will yield most surplus in statistical terms. Such meta-modeling methods could also steer

performance experiments through unknown parameter spaces.

Another interesting sub-field of experiment design is concerned with the so-called multi-armed bandit problem, which is

a sequential experiment design problem (Robbins 1952) and relates to various real-world applications, e. g., clinical trials (Jun

2004). In its most simple form, the task is to design an experiment that extracts the maximal reward from a gambling

machine with two arms within x rounds. For each round it has to be decided which arm to pull, afterwards the experimenter

receives a random reward from the chosen arm’s unknown reward distribution. Although optimal solutions exist for specific

cases (Gittins 1989), various heuristics have been proposed and evaluated in more general settings (Auer, Cesa-Bianchi,

and Fischer 2002, Vermorel and Mohri 2005). None of the aforementioned methods has been specifically developed for

algorithmic performance analysis, but almost all of them are applicable to the problem in some manner.

Which of the aforementioned experiment design techniques – (fractional) factorization, kriging, or bandit policies – is

the most effective? This strongly depends on the nature of the study (see section 5.1). We believe that the bevy of existing

methods requires a structured and extensible mechanism that makes sophisticated experimental techniques available to all

simulationists concerned with performance.

3 BENCHMARK MODELING FOR SIMULATOR PERFORMANCE ANALYSIS

3.1 Requirements

Using benchmark models for performance evaluation is commonplace in the field of simulation – however, there seems

to be little guidance from the modeling and simulation literature about how to create them: What makes a model a good

performance benchmark model? How do the properties of a benchmark model reflect its purposes?

The performance evaluation community mainly distinguishes between macro- and micro-benchmarks. Micro-benchmarks

are small and relatively simple programs that are constructed for analyzing a particular aspect of the system under study (Small

et al. 1997). Macro-benchmarks subsume real-world applications or application kernels (i. e., their most characteristic parts),

but also recorded traces of application executions and synthetic benchmarks (Agrawal et al. 2008, Small et al. 1997).

Synthetic macro-benchmarks are constructed to mimic relevant aspects of real-world applications. They can, e. g., be derived

from micro-benchmarks (Agrawal, Arpaci Dusseau, and Arpaci Dusseau 2008) and are useful for exploring different realistic

scenarios by changing parameters (Skadron et al. 2003). Some of these benchmark types can be translated to simulator

performance evaluation: real-world models can be regarded as application benchmarks, whereas simple benchmark models

to determine the cost of certain operations can be regarded as micro-benchmarks, e. g., to study the performance impact

of roll-backs in an optimistic parallel discrete-event simulation. For evaluating the overall performance of a simulation

algorithm, parameterizable synthetic benchmark models should usually be preferred over application benchmarks. This is

because application benchmarks often lack some important properties that makes them ill-suited for automated performance

studies (Jeschke and Ewald 2008):

Parameterization Application benchmarks have parameters to adjust them to all scenarios of interest. These parameters

usually affect a model’s behavior and therefore also the performance of the simulation algorithm – but only indirectly. In

contrast, the parameters of synthetic benchmark models should be specifically designed to explore all possible behaviors that

models of the given type can possibly exhibit. Although this might make the parameter space very large, the correlation

between parameters and algorithm performance could be stronger and more straightforward, and so will be the findings of
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Figure 1: Models need to be in a steady state (w.r.t. computational load)

if the wall-clock time shall grow linearly with the simulation time interval.

If not (see red trajectories in left plot), this means that the computational

load of the model changes over time (right plot).

Wall clock time opt

S
im

. t
im

e

max
min

max

tend 1

2

3

Figure 2: Calibration means to identify a

simulation end time so that algorithms of

differing speed (1: slowest, 3: fastest) finish

execution after ≈ twct
opt all clock time

the performance study. Moreover, well-chosen benchmark model parameters may allow to identify the features of all models

a simulation algorithm works well on, e. g., for the later application of algorithm selection techniques.

Scalability Application benchmarks are often not scalable enough for thorough performance studies – a problem that

is closely related to the parameterization issue. This is of particular importance when studying new algorithms for parallel

and distributed simulation, as these may only show advantageous performance for models that are large enough. Moreover,

some interesting phenomena, e. g., the effects of caches (LaMarca and Ladner 1997), do not occur when testing models that

are too small. Automated performance analysis could address scalability studies in various ways, e. g., by providing simple

means for setting up the experiments, or for statistically analyzing the growth of the measurements under scrutiny.

Simplicity and comparability Real-world application models tend to be rather complex and intricate. In contrast,

a synthetic benchmark model should be as simple as possible. This reduces the error potential when implementing or

specifying the model for the setup at hand, and one might also gain some analytical insights into its behavior, or can facilitate

debugging, simulator validation, and the interpretation of the performance experiment’s results. However, the major benefit of

simplicity is comparability, which also motivates the use of simple and established benchmark models. It allows to compare

performance across different simulation systems, hardware platforms, or single algorithms. To ensure that the benchmarking

results are indeed comparable, it is best to keep the benchmarking models simple.

Quasi-steady state Another desirable property of benchmark models is quasi-steady state behavior with respect to

the characteristics of the computational load it imposes on the simulator in a given simulation time interval. Application

models often have warm-up phases and therefore do not comply to this property, so that simulation time does not grow

linearly with wall-clock time – there even might be different phases in model execution that are advantageous for different
simulators. The arising uncertainty about the current state of the model, and hence the workload a simulation algorithm is

confronted with, is a strong source of variance in experiments regarding execution times. Since workload characteristics

and their impact on simulator performance are of particular interest in many studies, this issue should rather be investigated

explicitly. Therefore, it is advantageous to construct models that remain in very similar states throughout the execution, which

is often bought with some additional parameters, i. e., a higher-dimensional instance space B that requires more efforts to

explore. However, steady-state behavior also facilitates the usage of automatic mechanisms for simulation time calibration
(see section 4), which may speed up performance analysis significantly (see section 6.2). Note that the state only needs to

be relatively steady with respect to the computational load characteristics, as depicted in Figure 1. For benchmark models

without such a quasi-steady state, the time at which the simulation is stopped affects which algorithm is deemed to be the

fastest. If, for example, two discrete-event simulators are compared, one might work best when encountering relatively few

but complex events, e. g., until t1 is reached (Figure 1). Afterwards, the load characteristics of the model change and at time

t2 the second algorithm might be faster. In such situations, execution time comparisons are essentially futile.

3.2 Example: PHOLD

As an example for the outlined benchmark modeling requirements, consider the PHOLD model (Fujimoto 1990), a widely

used synthetic benchmark for parallel and distributed discrete-event simulators (Bauer Jr, Carothers, and Holder 2009). Its

compliance with the four design principles (parameterization, scalability, simplicity, and quasi-steady state) might explain its

widespread use. It is derived from the HOLD benchmark for event queues (Jones 1986) and indeed very simple to implement:

basically, a set of model entities exchange timestamped events at random. The total number of events in the system is fixed.
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If a model entity receives an event, it creates a new event with a future time stamp and sends it to a randomly chosen

neighbor. The model is also scalable in at least two dimensions: increasing the number of events will increase the amount

of model-inherent parallelism, so that model parallelism can be set into direct relation to the performance of parallel and

distributed simulators. Increasing the number of model entities increases the memory footprint of the model. PHOLD is

parameterizable in many other aspects: the topology of the model can be adjusted, i. e., which model has which neighbors,

as well as the probability distribution to create future event time stamps or the synthetic computational load each event

imposes on the simulator.

Very much like application models, synthetic benchmark models have to be used with care. Before conducting any serious

study, it has to be analyzed if the parameters of the model actually allow to investigate the aspects of interest. For example,

PHOLD as such does not lend itself to studies on dynamic load balancing algorithms, as it also fulfills the quasi-steady state
requirement: the computational load of the model does not change over time. It is always the same number of events that

is propagated through the same neighborhood. Consequently, PHOLD needs to be adjusted when algorithms that rely on

exactly this kind of model dynamics, such as load balancers, shall be studied. For example, a subset of nodes with additional

behavior can be added (Low 2002). Note that the benchmark model may retain the quasi-steady state behavior for larger

intervals of simulation time, e. g., by controlling model dynamism with fixed parameters for frequency and amplitude of

load changes.

Finally, it should be noted that all performance studies, however interesting their results may be, are worth nothing

unless the benchmark input space B is chosen so that it represents real-world problems. In other words, the benchmark

model parameter space has at least to include the model size, structure, and behavior that can also be found in comparable

application models. This is hard to achieve and usually involves application-specific surveys, as well as conjectures regarding

future model properties. Representativeness is nevertheless crucial to the interpretation of the results, e. g., when it comes

to deciding which algorithm scales better and should therefore be ported to a cluster machine – consequently, lack of

representativeness is an often raised criticism of performance analyses (Gagliolo and Schmidhuber 2006, Johnson 2003,

Small et al. 1997). Ideally, one would address this problem by additional application-based benchmarking for the validation

of the general findings.

4 SIMULATION TIME INTERVAL CALIBRATION

This section describes how the simulation end time can be calibrated for a given benchmark model, in order to speed up

experiments concerned with execution speed. Calibration refers to the process of setting the time interval for which a given

benchmark model shall be simulated. Without loss of generality, we assume that a benchmark model is executed from

simulation time 0 to tsim
end . The general idea behind simulation time interval calibration is to find a suitably small tsim

end for a

newly parameterized instance of a benchmark model, e. g., by considering similar parameterizations and the tsim
end values that

were found for them. The point behind all this is that good benchmark models in the sense of section 3.1 are scalable and

have parameters that strongly impact the computational workload a simulator is faced with. Consequently, the computational

loads of the elements in B will vary strongly, and with it the wall clock time it takes to execute them. An execution speed

comparison requires fairness, i. e., all algorithms should be tested on the same model and for the same time interval – but

that does not mean that this interval has to be fixed for all benchmark model setups, i. e., for all parameterizations of the

model. It is the task of a calibration algorithm to find a suitable tsim
end for a new benchmark model parameterization.

What does ’suitable’ mean in this context? First of all, the simulation time interval should not be too small, it should

be large enough to ensure a representative quasi-steady state behavior of the overall model (as discussed for PHOLD and

load balancing in section 3.2). This lower simulation time limit, tsim
min, is complemented by an upper simulation time limit

tsim
max. Why not just always choose the smallest simulation time interval, which is [0, tsim

min]? While this would speed up the

performance study as much as possible, the results of the study would suffer from a potentially large bias when the exploration

considers elements from B that are relatively easy to simulate: important runtime aspects might not be recognizable anymore

and unobserved variables – i. e., state of the hardware, the operating system, and the concurrently executed programs, such

as virus scanners – have a large impact that may change results dramatically. This is why the end time needs to be adapted

automatically – for small-scale studies and rather small sets of algorithms this can be done manually, but it is much harder

for large performance studies that might take days to complete, where the hardness of the problem instances to be explored

is inhomogeneous and difficult to predict.

A calibration algorithm should be equipped with another parameter, twct
opt , which is the wall clock time (WCT) the

performance analyst desires as the duration of a single simulation run, averaged over all simulation algorithms and benchmark

model instances. An optimal wall clock time should at least be in seconds or tens of seconds, to reduce the impact of

operating system etc. Johnson also argues strongly against ”‘the millisecond testbed”’ (Johnson 2003, p. 11), as he regards
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the performance of algorithms that solve problems that fast as irrelevant in most cases. However, this point does not hold

here: the goal of such experiments is to compare algorithms that are usually executed for much longer. Finally, the user

may also define a maximal wall clock time twct
max, which should not be exceeded by any execution of a benchmark input.

Since the benchmark model should have quasi-steady state characteristics within an interval of [0, tsim
min], its execution

times for a larger interval of duration tx can be approximated by extrapolation with the factor x = tx/tsim
min. This implies that

the relative performance of the algorithms is not affected by letting them run longer: x·per fa
x·per fb

= per fa
per fb

. Hence, studies with

calibrated simulation time intervals may need less time and still support the same conclusions than those studies without

calibration, as long as the benchmark model fulfills the quasi steady-state property. However, a latter normalization of the

results might be necessary to avoid biased analyses (Vuduc, Demmel, and Bilmes 2004, p. 81). The wall clock time saving

of choosing tsim
min instead of tsim

max could be considerable, particularly if a large benchmark input space B has to be explored

(see section 6).

4.1 A Simple Calibration Algorithm

A simple calibration algorithm may just use a sample set of algorithms A⊆A for searching a suitable simulation end time.

Each algorithm could be applied once to the current benchmark model setup. If the algorithms are sufficiently representative

for A, averaging over their execution times should result in a rather good estimate of the overall average execution time.

Sample size and the criterion for generating the sample are definable by the user (see section 6.2). The core of the very

simple algorithm is briefly outlined in algorithm 1.

Algorithm 1 A simple algorithm for simulation end time calibration

1 public void calibrate(double[] durationsWCT) {
2 //Initialization [...]
3
4 //Calculate average WCT over all algorithms in the sample

5 runtimewct = avg(durationsWCT);
6
7 //Check if current simulation end time is better then the best end time found so far

8 if(|bestAvgWCTime - twct
opt |> |runtimewct − twct

opt |) {

9 bestEndTime = currentSimEndTime; bestAvgWCTime = runtimewct;}
10
11 //Check if calibration is finished since achieved WCT is close enough to optimum

12 if(runtimewct ∈ [twct
opt · (1−θ), twct

opt · (1+θ)])
13 done = true;
14
15 //Search by linear extrapolation; works because of quasi-steady state property of benchmark model

16 currentSimEndTime = max(min(currentSimEndTime * twct
opt / runtimewct, tsim

max),tsim
min);}

The basic idea is that, since the benchmark model should have the quasi-steady state property for all simulation times

≥ tsim
min, a linear extrapolation can be used for searching a simulation end time with the desired characteristic (line 16). This

is checked in line 12, where the average execution time of all algorithms in the sample is checked to be in the interval

around twct
opt . The size of that interval can be controlled by another user-defined parameter θ ∈ [0,1]. Finally, the user can

also configure the maximal number of search steps, so that an overly long calibration phase can be avoided in principle.

To underestimate tsim
end is much less costly than to overestimate it (since execution is faster for smaller time intervals), so

the algorithm is initialized with tsim
min as the currently best simulation time. Line 16 ensures that the simulation end time

candidates are always in [tsim
min, t

sim
max]. If a simulator exhibits an execution time twct > twct

max for a currentSimEndTime > tsim
min,

a watchdog procedure outside the main calibration algorithm stops testing the suitability of currentSimEndTime and

re-sets the algorithm to try max(tsim
min,currentSimEndTime·twct

max/(1.05 · twct)) as a new candidate. Again relying on a simple

linear interpolation, the new simulation end time should result in a wall clock execution time for this simulator that is just

5% below twct
max (and not smaller than tsim

min). If tsim
min is initialized correctly, i. e., not too small for the benchmark model at hand,

and the steady-state property of the model holds, the algorithm ensures an end time tsim
end that allows a valid performance

analysis (tsim
end ≥ tsim

min), while the average wall clock time performance of the algorithms should be near to twct
opt .

Enhancements The simple algorithm can be enhanced in many ways. For example, it should be straightforward to

integrate simple prediction methods, e. g., nearest neighbor, that generate ’good guesses’ for the initial tsim
end by considering

the solutions for rather similar setups of the benchmark model. When discrete-event simulators are to be evaluated, one
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could also alter the algorithm to calibrate the overall number of events to be simulated, instead of the simulation end time.

While this would be a more ’natural’ metric for such algorithms, it does not work for approximative methods (see section 6).

5 SIMULATION SPACE EXPLORATION

5.1 Requirements

Given that there is a good benchmark model to explore the performance of an algorithm set A, it is still unclear how to

automate the actual experimentation and what issues arise in practice. We identified three major kinds of experiments that

are commonplace in performance studies on simulation algorithms, differentiated by their objectives:

• Algorithm-centric (AC): Experiments that thoroughly explore the behavior of a single algorithm.

Major concern: Where are the bottlenecks of the algorithm? In which dimension does it scale? How does it compare
to alternative approaches?

• Trade-Off-centric (TC): Experiments that identify regions in the benchmark parameter space where the order of

algorithms with respect to a performance measurement, e. g., execution speed, is changing.

Major concern: Where does algorithm A start to outperform algorithm B?
• Exploration-centric (EC): Experiments that compare a set of algorithms.

Major concern: Which algorithm is best under which circumstances, i. e., benchmark model setups?

Following the categorization of empirical research on algorithms from (Johnson 2003, p. 3), algorithm-centric studies are

typically conducted to support ”‘horse race papers”’, i. e., publications of new algorithms, and shall evaluate the benefits of

the new algorithm (in comparison to other implementations). In contrast, TC and EC studies are performed for ”‘experimental
analysis papers”’, i. e., papers that provide comparative analyses for larger sets of algorithms. We distinguish between TC

and EC studies based on their focus on either the specific trade-off points of algorithms, which might suffice for experimental

analysis, or on a thorough algorithm performance exploration, even in regions where tipping points are unlikely. While

EC studies are generally the most exhaustive ones and also contribute to the validation of the involved algorithms, TC

experiments might be executed much faster by relying on extrapolation methods for finding ’interesting’ regions of the overall

performance space P – which could then be thoroughly investigated by EC experiments.

A major requirement for an architecture that automates runtime performance analysis of simulation algorithms is to

support all three kinds of studies. All study types can be enhanced by sophisticated methods from statistics or experimental

design. Making the integration of such methods as easy as possible will help simulationists in setting up effective and

meaningful performance experiments. Finally, the architecture should allow for a calibration of the simulation end time as

discussed in section 4, and should be able to exploit available resources to speed up the overall study.

5.2 A Flexible Performance Space Exploration Architecture

We developed a simple yet flexible architecture for automating simulator runtime performance evaluation in the context

of JAMES II. Its major components are outlined in Figure 3. The central entity is ISimSpaceExplorer, an interface

that extends IExperimentSteerer, a general interface for all components that are able to dynamically interfere with

the execution of an experiment, e. g., algorithms for optimization or sensitivity analysis. The interface is implemented by

the AbstractSimSpaceExplorer class, which is based on the Strategy pattern (Gamma et al. 1995, p. 315) for all

explorations of P. It handles the interplay between the (optional) calibration of the benchmark model’s simulation end time

by an implementation of IModelCalibrator on one hand, and the algorithm that chooses benchmark model setups, i. e.,

the elements from B to be explored, on the other hand. To do so, AbstractSimSpaceExplorer distinguishes three

phases – START CALIBRATION, CALIBRATION, and EXPLORATION:

1. The first phase is needed to initialize the calibrator and to select the benchmark model setup of interest, i. e., the

element of B that shall be explored now. The element is selected by the concrete exploration algorithm, so the

abstract method newModelSetup() is called.

2. In the CALIBRATION phase, the simulation explorer queries the calibrator and then propagates the tested end time

tsim
end and the sample algorithm to the experimental layer of JAMES II (Himmelspach, Ewald, and Uhrmacher 2008).

It will continue to work as a proxy for the calibrator until IModelCalibrator.done() is true. Then, the best
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AbstractSimSpaceExplorer
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IModelCalibrator
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IExperimentSteerer

SimpleModelCalibrator
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SimpleSimSpaceExplorer

+START_CALIBRATION
+CALIBRATION
+EXPLORATION

«enumeration»
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Figure 3: The main structure of the performance space exploration architecture: the simulation space explorer (blue), the

calibrator (red), and the parameter block management (green). Most are linked with fundamental JAMES II entities (grey).

Extension points, i. e., plug-in types, are marked by bold dotted borders.

found tsim
end is retrieved from the calibrator and the EXPLORATION phase begins. If no calibrator is set, the default

simulation end time will be used and this phase of the algorithm is skipped.

3. In the last phase, the explorer selects the elements of A, i. e., the algorithms to be tested on the current benchmark

model setup. This is done by continuously calling the abstract method explore() until it returns null. The

abstract nextProblem() method is called to decide whether the exploration has finished or the whole process

starts over again.

Plug-in types & auxiliary components Both calibration and exploration algorithms, i. e., implementations of

IModelCalibrator and ISimSpaceExplorer, are likely to incorporate methods from experimental design or ad-

ditional heuristics. We therefore decided to define plug-in types for them, i. e., extension points for the plug-in system

of JAMES II (Himmelspach and Uhrmacher 2007b). This means that both calibrators and exploration algorithms can be

exchanged quite easily. Furthermore, the plug-in system makes it possible to automatically retrieve all combinations of

algorithms that are able to simulate a given benchmark model. Since simulation algorithms in JAMES II are usually not

built in a monolithic manner, but rather by combining existing plug-ins in new ways, each of these combinations is treated

as a single simulation algorithm: the performance of a discrete-event simulator, for example, might be greatly affected by

the event queue plug-in it is combined with (Himmelspach and Uhrmacher 2007a). Configuring JAMES II to use a certain

algorithm, i. e., a particular combination of plug-ins, requires to define a ParameterBlock. This is a generic tree structure

that holds the parameters for the algorithms involved. Generating corresponding ParameterBlock instances for all suitable

algorithm combinations is done by a SelectionTreeSet instance, which does so by analyzing entities from the plug-in

system (Factory, IParameter). The model’s parameter space is defined by a set of BaseVariable instances, which

belong to the experimentation system. Finally, the UpdateGenerator implements the automatic generation of updates

for key simulation parameters. It is required for the automatic calibration of the simulation end time.

Adaptive simulation runner JAMES II delegates the management of simulation run executions to a simulation runner
component, which is also implemented as an exchangeable plug-in. In case of trade-off- or algorithm-centric experiments, one

could harness the adaptive simulation runner (Ewald, Leye, and Uhrmacher 2009) to reduce the computational effort when

testing a single parameterization of the benchmark model at hand. This is done by exploiting policies for the multi-armed

bandit problem, i. e., policies that automatically identify the best algorithm by subsequently choosing an implementation

and interpreting their runtime performance on the fly (see section 2 or (Auer, Cesa-Bianchi, and Fischer 2002)). The better

an algorithm performs, the more often will it be chosen for execution. This allows us to reduce the number of required

replications. For example, when investigating a set of 30 algorithms, instead of replicating the execution of each algorithm

20 times (30 ·20 = 600), the adaptive simulation runner can carry out the choice of interesting algorithms on its own and

just execute 300 replications. In this example, we could reduce the number of required replications by 50% and will still

have more than 20 replications, i. e., more experimental data, for all algorithms that perform relatively well (on the expense

of the worse-performing algorithms).

Performance data storage and analysis The experimental data that is generated by the performance exploration

system needs to be stored for later analysis. This is done by a performance recorder that feeds the data directly into the

JAMES II performance database (Ewald, Himmelspach, and Uhrmacher 2008). Afterwards, the data can be analyzed with
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Figure 4: Different setups of the automatic performance exploration architecture

a custom data mining framework, SPDM (Ewald, Uhrmacher, and Saha 2009), which provides wrappers for several popular

data mining systems (e. g., WEKA (Witten and Frank 1999)).

Configuring the architecture for AC/TC/EC studies Figure 4 shows how to set up the performance space exploration

architecture for the different kinds of studies described in section 5.1. When evaluating the performance of a new algorithm

(left schema), an algorithm-centric study can simply re-use suitable benchmark model setups from the database. By taking

advantage of the adaptive simulation runner, the number of required replications can be greatly reduced by letting it decide

between the new algorithm and the fastest known algorithm for this problem instance, identified by the performance database.

Having only two options will make a multi-armed bandit policy converge quickly.

If only the trade-off points between two algorithms shall be found (center schema), the exploration algorithm should

take the algorithm performance directly into account, so that those regions can be identified in which tipping points are

likely (by specialized implementations of ISimSpaceExplorer). Since these regions are usually unknown before, the

calibration mechanism should be applied to newly created benchmark model setups. Again, the adaptive simulation runner

can be used to reduce the number of required replications. A thorough exploration of all available algorithms (right schema)

also includes to explore the variance of each algorithm throughout the benchmark model parameter space. Therefore, using

the adaptive simulation runner is not advisable for this setup, since it may execute badly performing algorithms only once

per problem instance. Similar to the setup for trade-off - centric studies, obtained results are fed back to the exploration

algorithm, so that it can decide upon new problem instances to be investigated. Exploration algorithms for TC and EC

studies could be inspired by similar problems in optimization, artificial intelligence, or statistical modeling.

6 EVALUATION

6.1 Benchmark Models

To illustrate the functioning of our architecture, we applied it to investigate the performance of stochastic simulation algorithms

(SSA), a family of discrete-event algorithms that can be used to simulate biochemical reaction networks in Computational

Biology (Gillespie 1977). For illustrating the use of quasi-steady state benchmarks models, we apply τ-leaping (Cao, Gillespie,

and Petzold 2006), an approximative SSA variant, to two benchmark models: the Linear Chain System (LCS (Cao, Li,

and Petzold 2004)) and the Cyclic Chain System (CCS (Jeschke and Ewald 2008)), both of which have been developed for

benchmarking SSA performance. LCS represents a linear chain of reactions between species Xi, having the form X1 → X2,

X2 → X3, . . .Xn−1 → Xn. We initialized it with 100 reactions and therefore 101 species. In its initial state, there are only

particles of the species that is first in the chain, i. e., X1. We set |X1|= 107. It is clear from the structure of LCS that there

is no steady state it could ever be in, apart from the end state where |X1|= . . . = |Xn−1|= 0 and |Xn|= 107.

CCS, in turn, was designed to stay in a steady state. Although the simulated reactions change the state of the system,

there is always a reverse reaction whose propensity will then increase. It is called a cyclic system because all reactions are

of the form Xi +Xi+1 + . . .→ Xi+ j + . . ., where all indices are calculated modulo the number of available species. The CCS

has three parameters that are worth exploring: number of species, number of reactants per reaction, and number of reactions

per species. For the first experiment, they have been set to ten, three, and one, respectively. The number of reactions per

species also equals the number of products per species. In the initial state of CCS, each species has the same amount of

particles. We set |Xi|= 105 in all experiments. Since CCS is in a steady sate, the amounts of the Xi only vary slightly over

time. The results in Figure 5 suggest that CCS can be calibrated (see section 4.1)). LCS simulation speed, on the other

hand, grows nonlinearly for τ-leaping (we used the default parameters from (Cao, Gillespie, and Petzold 2006)). This does

not hint at any methodological problem in previous studies, as these did not rely on simulation time interval calibration. It

just shows that there are benchmark models, like LCS, which are unsuitable for this calibration mechanism.
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for algorithms applied to the calibrated setups from Figure 7

6.2 Exploration Schemes

We evaluated the functioning of the architecture by letting different setups explore the same elements of the CCS parameter

space B: each instance had between 2 and 10 species, between 1 and 5 reactions per species, and between 1 and 10 reactants

per reactions. Hence, |B|= 9 ·5 ·10 = 450, from which we randomly sampled 20 benchmark model setups. As elements of

A, we chose 14 algorithms: one is the Direct Method (DM, (Gillespie 1977)) and the others are variants of the Next Reaction

Method (NRM, (Gibson and Bruck 2000)). The latter can be combined with one of the various event queue implementations

from JAMES II (Himmelspach and Uhrmacher 2007a), from which we selected 13. A similar study has already been

presented in (Jeschke and Ewald 2008), but here we focus on automating performance experiments, and therefore test the

novel calibration algorithm and its interplay with the adaptive simulation runner. The calibrator parameters were twct
opt = 1s,

twct
max = 20s, tsim

min = 0.01s, tsim
max = 1.5s, and the tolerance θ = 30%. A sample of three algorithms was considered. Configurations

with differing simulation schemes were preferred over those that just varied in their event queue implementation – in this

simple case, the calibrator always sampled the DM simulator along with two combinations of NRM and event queue. Apart

from the setup with the adaptive simulation runner, where the number of replications was set to 2 · |A|= 28, every algorithm

in A had to be replicated four times for each of the 20 benchmark inputs, resulting in 14 ·4 ·20 = 1120 simulation executions.

We tested three setups: Calibration (calibration activated), Basic (no calibration, tsim
end = 0.545709, which is a rather

good guess that equals the overall average calibrated tsim
end times from Calibration), and Adaptive (calibration and

adaptive simulation runner activated).

Figure 6 shows the overall results in terms of the CPU time it took each setup to explore the desired fraction of the

performance space, i. e., to apply the 14 algorithms to the 20 benchmark model setups. The exploration of unknown model

setups is much faster when using Calibration instead of Basic, with a speed-up of more than 500%. Adaptive,

in turn, outperforms Calibration with a speed-up of 60%, but this is only due to the reduced number of replications

(on top of calibration). In Figure 7, the simulation end times found by Calibration are plotted, and Figure 8 depicts

the corresponding wall clock time statistics. It can be seen that the calibration works as intended: while the calibrated tsim
end

times vary greatly (Figure 7), the average wall clock times are seldom outside their tolerance region of +/- θ , i. e., +/- 30%.

All experiments in this section have been conducted on a 2.0 GHz two-core AMD 3800+ CPU with 1GB RAM and a Java

SciMark (Scimark ) score of 230.2 Mflops.
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7 CONCLUSIONS

In this paper, we discussed how experiments concerned with the runtime performance of simulation algorithms can be

automated. Firstly, we argued for the usage of synthetic benchmark models that are parameterizable, scalable, simple, and

in a quasi-steady state (section 3). We then introduced a simple yet effective algorithm to calibrate the simulation end

time for such benchmark models (section 4). Finally, we presented a simple architecture for the realization of various

experimentation strategies. It can be easily reconfigured to serve different objectives: algorithm-centric, trade-off-centric, or

exploration-centric (section 5). The functioning of the presented architecture has been shown by applying it to a realistic

research problem (section 6). Although the algorithms that were used to improve experimentation are quite simple – and

hence easy to implement in other systems as well – we could reduce the execution time of a rather typical performance

study by more than 850%.

We hope that our results will stir future research in this area, as there are still several open issues. For example, some

algorithms like τ-leaping have large parameter spaces on their own. The parameter space of the τ-leaping algorithm described

in (Cao, Gillespie, and Petzold 2006) is four-dimensional, and the parameters affect both accuracy and execution speed. Such

algorithms are still very challenging to analyze – the presented solutions may work for rather large sets of algorithms, but

not for really large sets, where additional methods for interpolation and statistical analysis are required, such as (Ankenman,

Nelson, and Staum 2008). These interpolation methods might be able to efficiently identify interesting regions of such

parameter spaces. In the end, the presented methods are intended to automate research on simulation algorithms as much as

possible, which is highly desirable in all kinds of experimentation-guided research (Waltz and Buchanan 2009). It should

make the life of simulationists easier and might also contribute to the quality of simulator algorithms, as they can now be

tested both more easily and more thoroughly. In the near future, we plan to consider more sophisticated criteria for stopping

a performance study, and to integrate various experiment design methods. Current releases of JAMES II can be found at

http://www.jamesii.org.
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