Proceedings of the 2009 Winter Simulation Conference
M. D. Rossetti, R. R. Hill, B. Johansson, A. Dunkin and R. G. Ingalls, eds.

A NOVEL MESSAGE-ORIENTED AND SOA BASED REAL-TIME MODELING AND SIMULATION
FRAMEWORK FOR PEER-TO-PEER SYSTEMS'

Hengheng Xie
Azzedine Boukerche
Ming Zhang

Paradise Research Lab
University of Ottawa
Ottawa, ON, K1N 6NS5, Canada

{ hxie072, boukerch, mizhang} @site.uottawa.ca

ABSTRACT

Recent advances in Service Oriented Architecture (SOA) provides many exciting opportunities for developing next-
generation of distributed simulation frameworks and tools. At the mean time, Peer-to-Peer (P2P) based network technique al-
so challenges the traditional view of distributed simulations. Indeed, the integration of SOA and P2P techniques can poten-
tially help on developing more flexible, scalable distributed simulation framework. In this paper, we present our design and
implementation of a real-time distributed simulation framework based on SOA concept and JXTA P2P technique. Our simu-
lation framework can be effectively used for evaluating most of SOA related algorithms and schema including but not limited
to: dynamic service composition, service path selection, load-balancing algorithms, and etc. Meanwhile our framework can
also be applied to emergency preparedness class of applications to identify the critical parameters for designing more effi-
cient emergency response systems.

1 INTRODUCTION

Service Oriented Architecture (SOA) (Erl 2005) rapidly becomes a dominant approach for system development and integra-
tion, which allows different software service components to exchange information through various networks. SOA is based
on the concept of “services”, which defines some software units that use pre-defined protocols to communicate with each
other. In service-oriented system, services expose themselves using interfaces, and service consumers access the services
through these interfaces without the awareness of the detailed service implementation. The main advantages of SOA are flex-
ibility, interoperability and reusability. Indeed, SOA is a promising technique, which has attracted many developers to im-
plement their key software backbones using SOA architecture.

As a matter of fact, more and more researchers dedicate themselves on discovering the new features of SOA. However,
one of the biggest concerns is how to effectively design a SOA based system considering its design complexity. With the in-
creasing usage of services in a SOA based system, the system designers may be overwhelmed due to large number of service
components. On the other hand, in order to satisfy the requirements such as security and reliability, more functionalities need
to be added to the original service based system. For instance, the description of recent business processes is becoming more
and more complicated, which requires the designers to consider more on how to initialize and maintain the interoperations of
the whole system.

In this paper, we propose a novel service oriented real-time modeling and simulation framework which aims at solving
design problems of SOA based systems. We implement our framework using Sun’s JXTA P2P API. Our framework is built
on JXTA’s service backend, thus, it can easily and accurately modeling and simulating many of the real world and real-time
SOA based systems, especially P2P based system architectures. Moreover, our framework is based on message layers and
P2P based services, which makes it suitable for simulating SOA based systems in a real-time fashion. Because our frame-
work is built upon existing JXTA API, the services in our framework can easily communicate with each other using JXTA

! This work is partially supported by Canada Research Chair Program, NSERC, Ontario Distinguished Researcher Award, Ontario Early Researcher Award,
EAR Award and ORF Funds.

978-1-4244-5771-7/09/$26.00 ©2009 IEEE 1039

Xie, Boukerche and Zhang

protocols. Meanwhile, a set of services can be organized as a group in our framework, which reduces the complexity of the
interoperation of services. Taking the advantage of the discovery protocol of JXTA, services in our framework can publish
or discover each other efficiently across network. Furthermore, services residing at different subnets can communicate with
each other using the super, rendezvous and relay peers. Inheriting these key features of JXTA, it’s very easy to model and
simulate a service-oriented system using our framework.

The rest of the paper is organized as following: Section 2 presents the related works for SOA based modeling and simu-
lation approaches; Section 3 proposes our design; Section 4 demonstrates how we implement our framework using JXTA;
Section 5 describes two related experiments; and finally Section 6 concludes the paper with some suggested future work.

2 RELATED WORKS

Service Oriented Architecture (SOA) has become an emerging technique in recent years. Thus, many novel techniques have
been proposed for improving the functional or non-functional features of SOA. However, due to the increasing complexity of
service-oriented systems, it is generally difficult to design and organize such systems. In terms of modeling SOA based sys-
tem, many researchers proposed new techniques and methods (Zeigler, Kim and Prachofer 2000). Normally, these techniques
can be classified as functional modeling and non-functional modeling. The purpose of functional modeling is to describe the
functions and processes of the system, which helps to obtain the necessary information and to identify the basic function of
the system. For instance, Sloane proposed a hybrid approach for modeling SOA systems using Colored Petri Nets (CPN) and
MESA/Extend (Sloane et al. 2007), which model the SOA system in two different layers: component level and black-box
level. These two levels do not affect each other and can be validated separately. Similarly, Kogekar presented a Middleware
Building Block approach for SOA system modeling and performance analysis using Stochastic Reward Net (SRN) (Kogekar
et al. 2006). SRN is very close to designer’s intuition and is very helpful for understanding the created model. Model Driven
Development approach(Vale and Hammoudi 2008) has also been used for modeling SOA based system. For instance, Vale
and Hammoudi presented a Context-aware Service Oriented Architecture based on such approach. In terms of modeling web
services, Krause demonstrated an approach to integrate existing system with intelligent models(Krause et al. 2007). They
used semantics modeling ontology to describe web services.

On the other hand, non-functional modeling tries to illustrate the specified criteria that is used to judge the operation of
the system without focusing on its behaviors. For instance, Quality of Service (QoS) is one kind of non-functional require-
ments, which intends to provide guaranteed performance to users. With regard to the research for modeling the non-
functional aspects of SOA systems, Wada proposed a non-functional modeling approach with UML profile (Wada, Suzuki
and Oba 2006), which can specify and maintain the SOA’s non-functional features in an implementation independent manner.
They also presented another new Model Driven Development (MDD) framework to model the non-functional constrains of
SOA system(Wada, Suzuki and Oba 2007). Similarly, Zhiang and Junzhou proposed a QoS-Resource Graph Model (QRGM)
for modeling end-to-end QoS (Zhiang and Junzhou 2007).

Peer Group

JXTA Virtual Network

Figure 1: JXTA Virtual Network (Boukerche and Ming 2008)

It worth noting that the above surveyed approaches all focused on modeling SOA systems, however, they cannot be used
to directly simulating the modeled systems. In this paper, we propose a novel SOA based simulation framework which is
built upon JXTA overlay network and can effectively model and simulate real SOA implementations. We build a Message
Layer on top of our P2P services framework to support high level SOA modeling and simulation. The virtual network built

1040

Xie, Boukerche and Zhang

on JXTA in our framework is shown on Figure 1, in which, a set of JXTA peers can be organized as group and then commu-
nicate with each other within the same group. Peers in different groups can exchange messages only through some special
peers.

3 FRAMEWORK DESIGN

In this paper, we design and implement a message-oriented and real-time SOA based modeling and simulation framework on
top of JXTA P2P protocols. In our framework, all services and components are implemented as JXTA entities, which are able
to create JXTA pipes to communicate with each other. Services can publish advertisements on the network, and they can be
discovered by other services easily through JXTA discovery protocol. For the JXTA entities residing on different sub-
networks, we use super, rendezvous and relay peers to support inter-subnet message communication. In an ordinary JXTA
network, entities can initialize connections with other entities after discovering their advertisements. However, each JXTA
pipe is maintained as an Java object in the memory. When the number of JXTA entities and connections increases, the usage
of memory can increase dramatically at the same time.

In order to solve this problem, we create a Message Layer in our framework, as shown in Figure 2. This message layer is
responsible for managing the whole message exchanging process, including pipe creation, messages sending and messages
receiving. In particular, our approach separates the process of advertisement’s discovery from pipe initialization. In the pipe
initialization process, entities do not create any real pipes. If an entity need to send a message, it first discovers the adver-
tisement of its destination, and then send the message to the Message Layer. When the Message Layer receives any messages,
it redirects them to the destination. In other words, all messages in our framework use Message Layers for exchanging mes-
sages. Meanwhile, we also implement a Component Platform, which works as a monitoring and organizing manager for each
node.

Message Layer

Figure 2: Framework design for SOA on JXTA

The advantages of our system structure are: 1) It reduces the number of pipe objects that need to be maintained. In many
cases, part of the pipe objects may not be used frequently in the system, but they still exist in memory, which results in a
waste of system resource. Thus, decreasing the number of pipe objects can save the system resource ; 2) In our approach, we
simplifies the process for component migration when necessary. In SOA systems, components may need to be moved from
one node to another node during a load balancing or fault tolerant process. In our solution, components do not need to be
aware of the migration of other components. All components can still work as before after the migration and they do not need
to establish the connections again; and 3) We also simplify the implementation of reliable JXTA pipes. In our solution, we
can implement the reliable features of JXTA pipes on the Message Layer, without implementing them on all services used in
the system.

4 SYSTEM IMPLEMENTATION

In our framework, we try to best utilize existing features of JXTA, such as the concept of peer group and peer advertisement,
pipe and service discovery protocols, and etc. All these features can make the applications more flexible and configurable.
However, we still have to do some improvements in order to implement our design presented in the previous section.

As we know, JXTA P2P network is a virtual overly network. In order to use the JXTA overlay network, an application
needs to start a JXTA virtual network at first. It also need to create a global netPeerGroup object. In some cases, there exists
a set of services running on one node, and they do not modify the netPeerGroup object. Usually, these services only create

1041

Xie, Boukerche and Zhang

new peer group under the netPeerGroup object. Our idea is to share one netPeerGroup object among all the applications on
the same node. As a result, the Component Platform is implemented as a process in order to fulfill this idea. Moreover, in our
approach, the JXTA entities on the same node are implemented as threads under the Component Platform, which all shares
one netPeerGroup object. Another advantage of our implementation is that all JXTA entities share the same cache folder,
which is used to save the discovered advertisements for future usage. When one JXTA entity finds an advertisement, it saves
it in the cache folder. Due to the cache folder sharing mechanism, other services can access the same advertisement, which
can significantly save the time for searching advertisements.

Another problem that we have to solve in the implementation is that the Message Layer doubles the message that needs
to be sent. In our design, each unit entity needs to send the message to Message Layer first, and then Message Layer will re-
direct it to specified unit entity. This procedure makes each message goes through two routes: One from unit entity to Mes-
sage Layer and another from Message Layer to unit entity. To solve this problem, we improve the Message Layer to a coope-
rated Message Layer on each node, as shown on Figure 3. In such an approach, there is a Message Layer running on each
node, and all these Message Layer components can connect to each other to form a larger Message Layer across the network.
JXTA entities work the same way as we described previously in section 3. However, the JXTA entities residing in the same
node do not send message to Message Layer through JXTA pipes, instead, they directly use method call to send message to
the Message Layer which is much faster. In other words, if two entities are running on the same node, their communication is
totally manipulated by local method call without using any JXTA message. Thus, by using the cooperated Message Layer,
we significantly reduce potential communication overhead among JXTA entities.

Node Node

Figure 3: Improved cooperated Message Layer structure

In order to separate the discovery process from the pipe initialization process, we did some improvement on the discov-
ery process. The real JXTA pipes only exist among Message Layers, so we do not need to create any JXTA pipe in JXTA
entities. However, in the service advertisement of JXTA, it needs to contain the pipe advertisement for other entities in order
to create the connection. In our framework, each entity does not contain any pipe information any more. We still want to use
the discovery process that JXTA supplies, therefore, we have to do some improvements when encapsulating the advertise-
ment. When creating the service advertisement, we do not embed the pipe advertisement of entities, instead, we put the pipe
advertisement of Message Layer, which represents the entity for the message exchange. For example, when entity A discov-
ers the service advertisement of entity B, it can retrieve the pipe advertisement of entity B’s Message Layer from the service
advertisement. Afterwards, entity A sends the pipe information to its Message Layer to create connection to entity B’s Mes-
sage Layer. Now entity A is able to send message to entity B.

It worth mentioning that our solution does not affect other features of JXTA network. User is still able to create peer
group to confine the communication between entities and to organize the overall system structure. Although all Message
Layers are on the same peer group (which means there are no communication limit on the Message Layer), the process of ad-
vertisement discovery is still under control by peer group policy. That’s also one of the reasons that we want to separate the
communication process and the advertisement discovery process. As an example, Entity A in Group 1 wants to talk with Ent-
ity B in Group 2. Technically, Entity A is able to connect to Entity B through the Message Layer. However, Entity A will
never find the service advertisement of Entity B because we still keep the discovery protocol of JXTA, which prevents such
situation.

1042

Xie, Boukerche and Zhang

5 EXPERIMENTS

We conducted some experiments on our SOA based simulation framework. In this section, we present two of them to illu-
strate how to model and simulate SOA system using our framework. The first experiment aids our design of QoS-aware sys-
tem on P2P network (Xie et al. 2008). The second experiment evaluates a load balancing algorithm for the system that we de-
signed in the first experiment.

5.1 Simulating a QoS-aware Service Composition and Management System

In this experiment, we implemented a QoS-aware system on our SOA framework. The architecture of the QoS-aware system
is shown in Figure 4(a). We compare our design to the flat service structure shown in Figure 4(b), which is widely used in
service composition system. We implement and simulate both structures using our SOA based framework to compare the
performance of these two systems.

Main Service Manager

(a) (b)

Figure 4: (a) Architecture for QoS-aware system (b) Architecture for flat service structure (Xie et al. 2008)

In our design, there are two main components in the system, manager and service. Both of them are implemented as
JXTA entities. The basic functions of manager are to manage the services, to assign tasks and to evaluate the performance of
the services. The Main Service Manager is the main manager that receives the tasks from the user and makes the final deci-
sion to assign the task to the services. Other Service Managers are controlled by the managers on the upper level. In this sys-
tem, services are the unit functions of the system, and each service can finish one kind of unit tasks. The Service Mangers
need to compose a set of services to finish certain task that is submitted by users. Each Service Manager only knows the
components directly connected to it. When the Main Service Manager receives a task from a user, it forwards it to the Service
Managers that it controls. The Service Manger that receives task from the higher level will propose a plan of service compo-
sition for part of the task. Then, it eliminates that part of the task and send it to the Service Manage on low level that it con-
trols. After the whole task has been assigned, the system will start the execution process from the bottom to the top, and the
final result is generated at the Main Service Manager. As a matter of fact, the Service Managers that do not depend on each
other work in parallel. In contrast, in the Flat Service structure, only one Main Service Manager handles the service composi-
tion as well as monitoring the underlying services.

It’s straightforward to compare above two system architectures using our simulation framework as shown in Figure 5.
On the virtual communication layer that is built by the Message Layer, each component is able to connect to the components
that it discovers. Components do not need to know the node on which the destination component runs. We can see from Fig-
ure 5, the Main Service Manager runs on a separated node because it needs more resource to process the tasks. As a matter of
fact, we can run the service managers, services in whatever fashion we want in a cluster of computers. Our real-time simula-
tion experiments demonstrated that our proposed architecture shown in Figure 4(a) had a better performance compared to the
architecture in Figure 4(b).

5.2 Simulating a Load Balancing Scheme Based on Genetic Algorithm

In this experiment, we simulated a load balancing scheme for the QoS-aware system that we described in section 5.1. This
load balancing scheme include two parts: a dynamic task scheduling algorithm and a service migration algorithm.

In the dynamic task scheduling algorithm, we create certain dynamic QoS properties for monitoring and estimating the
performance of the services. Based on this QoS property, the service manager makes the decision for assigning the tasks. In
the service migration algorithm, there is a load balancing manager monitoring the whole system that it controls. It probes
every services and gets the big picture of the whole system. Then, it uses Genetic Algorithm to generate one of the best ar-

1043

Xie, Boukerche and Zhang

rangement for the system. After getting the final blueprint of the system, service manager starts the service migration in order
to get the final arrangement created by Genetic Algorithm. It worth noting that we also implemented a user monitoring ser-
vice in our simulation framework for monitoring the system across the subnets.

Node 3

Figure 5: Implementation of QoS-aware system on the SOA framework

The system structure is almost the same as shown in Figure 5. However, we implemented some additional components in
order to add the new scheduling function and service migration function. Due to the unique features of our framework, the
service manager and services do not need to establish any connection to the migration service. The migration service only
needs to communicate with the service manager when it starts and finishes the migration. We also evaluated the overhead of
the service migration through simulation in our framework, and found that the overhead is within an acceptable level. In fact,
the services that are built on our framework are able to migrate easily and efficiently from one node to another, which is very
useful to simulate and evaluate various service composition schema and load-balancing algorithms.

Moreover, we also created some JXTA super peers to support the communication across network. As shown in Figure 6,
Super Peer runs on both sub-networks that need to communicate with each other. The involved JXTA entities have to register
to the super peer in order to publish and discover the advertisements to other subnets. We have also conducted some simula-
tion experiments based on such scenario.

Figure 6: Super peer creates virtual connection between two subnets

6 CONCLUSION AND FUTURE WORK

In this paper, we propose a novel message-oriented and SOA based real-time modeling and simulation framework focusing
on simulating SOA and P2P based systems. We present the detail of our design and implementation to illustrate how our
framework is suitable for real-time simulation of SOA based system architectures. We also introduce some related simulation
experiments we have conducted to demonstrate the effectiveness of our framework on simulating and evaluating SOA based
systems. The experiments demonstrate that our framework can support high-level of modeling and simulating SOA systems,
with which, designer can focus on the workflow of the services as well as the service composition algorithms. Furthermore, it

1044

Xie, Boukerche and Zhang

is transparent to realize a simulated SOA architecture to a real one because our framework itself is built upon distributed real-
time SOA architecture.

For the future work, we plan to integrate the web service into our framework in order to expand the coverage area of our
framework. We are also interested in integrating this framework with the P2P time management scheme (Boukerche, Zhang
and Xie 2008) to establish distributed simulation across different sub-networks.

REFERENCES

Boukerche, A. and M. Zhang. 2008. Towards Peer-to-Peer Based Distributed Simulations on a Grid Infrastructure. In Pro-
ceedings of Simulation Symposium, 2008. ANSS 2008. 41st Annual. 212 —219. Ottawa, ON, Canada.

Boukerche, A., M. Zhang, and H. Xie. 2008. An Efficient Time Management Scheme for Large-Scale Distributed Simulation
Based on JXTA Peer-to-Peer Network. In Proceedings of The 12-th IEEE International Symposium on Distributed Simu-
lation and Real Time Applications. 167-172. Vancouver, BC, Canada.

Erl, T. 2005. Service-Oriented Architecture: Concepts, Technology, and Design. Indianapolis, IN, USA: Prentice Hall PTR

JXSE 2.5 Programmers Guide: JXTA Concepts, Available via
https://jxtaguide.dev.java.net/source/browse/*checkout*/jxtaguide/trunk/src/guide_v2.5/JXSE_ ProgGuide v2.5.pdf [ac-
cessed May 2009]

JXTA Protocols Specification, Available via <http://jxta-spec.dev.java.net> [accessed May 2009]

Kogekar, A., D. Kaul, A. Gokhale, P. Vandal, U. Praphamontripong, S. Gokhale, J. Zhang, Y. Lin and J. Gray. 2006. Model-
driven generative techniques for scalable performability analysis of distributed systems. In Proceeding of 20" Parallel
and Distributed Processing Symposium. Rhodes Island, Greece.

Krause, L.S., L.A. Lehman, B.R. McQueary, A.P. Stirtzinger and S.A. Stirtzinger. 2007. The Role of Intelligent Models in
the Implementation of Service Oriented Architectures. In Proceeding of International Conference on Integration of
Knowledge Intensive Multi-Agent Systems. 63 — 68. Waltham, Massachusetts, England.

Sloane, E., T. Way, V. Gehlot, R. Beck, J. Solderitch and E. Dziembowski. 2007. A Hybrid Approach to Modeling SOA Sys-
tems of Systems Using CPN and MESA/Extend. In Proceeding of 1st Systems Conference, ed. Mo Jamshidi, 1 — 7, Ha-
waii, USA

Vale, S. and S. Hammoudi, 2008. Model Driven Development of Context-aware Service Oriented Architecture. In Proceed-
ing of 11th IEEE International Conference on Computational Science and Engineering Workshops. 412 — 418. Sao Pau-
lo, SP, Brazil.

Wada, H., J. Suzuki and K. Oba. 2007. A Feature Modeling Support for Non-Functional Constraints in Service Oriented Ar-
chitecture. In Proceeding of IEEE International Conference on Services Computing, ed. Liang-Jie (LJ) Zhang, Wil van
der Aalst and Patrick C. K. Hung. 187 — 195.Salt Lake City, Utah, USA.

Wada, H., J. Suzuki and K. Oba. 2006. Modeling Non-Functional Aspects in Service Oriented Architecture. In Proceeding of
IEEE International Conference on Services Computing. 222 — 229. Chicago, USA.

Wu, Z. and J. Luo. 2007. QoS-Resource Graph Model for Web Service Composition in Service Oriented Computing. In Pro-
ceeding of Sixth International Conference on Grid and Cooperative Computing. 411 — 416. Urumchi, Xinjiang, China.

Xie, H., A. Boukerche, M. Zhang and B.P Zeigler. 2008. Design of A QoS-Aware Service Composition and Management
System in Peer-to-Peer Network Aided by DEVS. In Proceeding of 12th IEEE/ACM International Symposium on Distri-
buted Simulation and Real-Time Applications. 285 —291. Vancouver, BC, Canada.

Zeigler, B. P., T.G. Kim, and H. Prachofer. 2000. Theory of Modeling and Simulation. 2nd ed., New York, NY, USA: Aca-
demic Press

AUTHOR BIOGRAPHIES

HENGHENG XIE is a Master student in the Engineering Department at the University of Ottawa. He is a research assistant
in the Paradise Research Lab. His research interests include distributed and parallel system, service composition and load ba-
lancing. His email is <hxie072Quottawa.ca>.

AZZEDINE BOUKERCHE is a Full Professor and holds a Canada Research Chair position at the University of Ottawa. He
is the Founding Director of PARADISE Research Laboratory at University of Ottawa. Prior to this, he held a Faculty position
at the University of North Texas, USA, and he was working as a Senior Scientist at the Simulation Sciences Division, Metron
Corporation located in San Diego. He was also employed as a Faculty at the School of Computer Science McGill University,
and taught at Polytechnic of Montreal. He spent a year at the JPL/NASA-California Institute of Technology where he contri-

1045

Xie, Boukerche and Zhang

buted to a project on the specification and verification of the software used to control interplanetary spacecraft operated by
JPL/NASA Laboratory. His current research interests include wireless ad hoc and sensor networks, wireless networks, mobile
and pervasive computing, wireless multimedia, QoS service provisioning, performance evaluation and modeling of large-
scale distributed systems, distributed computing, large-scale distributed interactive simulation, and parallel discrete event si-
mulation. His email is <boukerch@site.uottawa.ca>.

MING ZHANG is currently a Post-Doc Researcher at PARADISE Research Laboratory at the University of Ottawa. He ob-
tained his Ph.D. at Arizona Center of Integrated Modeling and Simulation at University of Arizona. His research interests are
modeling and simulation, large-scale distributed system and DEVS. His email is <mizhang@site.uottawa.ca>.

1046

