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ABSTRACT 

We describe “first principles” based methods for developing synthetic urban and national scale social contact networks. Un-
like simple random graph techniques, these methods use real world data sources and combine them with behavioral and so-
cial theories to synthesize networks. We develop a synthetic population for the United States modeling every individual in 
the population including household structure, demographics and a 24-hour activity sequence.  The process involves collecting 
and manipulating public and proprietary data sets integrated into a common architecture for data exchange and then using 
these data sets to generate new relations.  A social contact network is derived from the synthetic population based on physical 
co-location of interacting persons.  We use graph measures to compare and contrast the structural characteristics of the social 
networks that span different urban regions.  We then simulate diffusion processes on these networks and analyze similarities 
and differences in the structure of the networks.  
 

1 INTRODUCTION  

The explosion in urban population in recent decades has resulted in very high social connectivity with a  “small-world” struc-
ture. This has provided a perfect conduit for the spread of diseases, and as illustrated in the SARS epidemic from a few years 
back, diseases can spread on a global scale very quickly, and need quick response and interventions to prevent them from 
turning into large epidemics. Understanding the urban social-contact structure is critical for social scientists, urban planners, 
infrastructure companies, and governments, because a number of recent studies have shown that the spatial distribution of 
population in a city and mobility patterns of people have a significant impact on the disease transmission (Eubank et al. 
2004). Additionally, social networks do not form and operate in isolation, and there is a significant amount of interaction and 
co-evolution between social and infrastructure networks (e.g., the transport and communication networks) (Stokman and Do-
rien 1997, Snijders et al. 2006, Steglich et al. 2007).  Therefore, realistic models for social networks need to take other net-
works into account. There are very few tools or realistic social network models available for policy planners to understand 
the structure of such social networks, primarily because of the immense difficulty in collecting reliable data for social con-
tacts. Some of the existing models involve small data sets, with a few thousands individuals (Newman 2003, Framingham 
Heart Study <http://www.framinghamheartstudy.org/index.html>, AddHealth 
<http://www.cpc.unc.edu/projects/addhealth>). 

For many network applications, such as the Internet, the web graph and the power grid, researchers have realized the im-
portance of detailed network modeling. Here again, the real network structure is not easily available, partly because of com-
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mercial and security concerns, and a number of sophisticated methods have been developed to infer the network structure by 
indirect measurements. However, no such methods are known in the case of social contact graphs, because of the kinds of 
different information sources needed for building them. The goal of this paper is to develop a methodology to construct rea-
listic social networks, using a combination of public and private data sets and statistical and large-scale agent based tech-
niques. We have used these methods to construct synthetic population models for a number of urban regions in the United 
States. These population models have been the basis for a number of studies on public health and transportation policy plan-
ning, conducted for government agencies, e.g. (Eubank et al. 2005, Halloran et al. 2008). The detail and theory used in the 
construction of the above social contact networks is essential. In contrast to several recent results (Newman 2003), we show 
that activity based social contact networks generated as above differ from classical models of random networks – they are not 
scale-free or small-world, and have more complex degree distributions, but have higher local clustering than random graphs 
with the same degree distribution. Hence, decisions based on relative simplistic networks such as random networks might not 
be very accurate. 

1.1 Related Work 

Building realistic social network models has been of interest for researchers in many different areas for a long time. Many of 
the constructed networks have been restricted to specific activities, locations or demographics. Two data sets which involve 
extensive real data measurements collected over a number of years are (National Longitudinal Study on Adolescent Health), 
which collected extensive longitudinal data on school children over several years, and the Framingham Heart Study; both 
these data sets also provide demographic information for the individuals involved in the studies. Most other data sets availa-
ble in literature only have information about the contact structure (i.e., no demographic information), e.g., the Enron email 
network (Enron Email Dataset), Karate club (Newman 2003), etc. Also, these networks usually capture contacts in the form 
of communications (e.g., emails), which are somewhat easier to observe or model, instead of physical contacts. Note that ac-
tual physical contacts are needed in order to study disease spread in these systems. There has been significant amount of re-
search on inferring the structure of infrastructure networks, e.g., the Internet (Li et al. 2004, Seshadri et al. 2008), the Web 
graph (Kumar et al. 2000), recommender system graphs (Leskovec et al. 2006) and the power grid. Most of these networks 
share characteristics such as scale free degree distribution, high clustering, small diameter (Newman 2003, Barabasi and Al-
bert 1999). Most of the social networks studied have very high robustness to both random and targeted attacks, while the in-
frastructure networks, such as the Internet have been found to be robust to random attacks, but highly vulnerable to targeted 
attacks (Eubank et al. 2004, Newman 2003, Barrett et al. 2007). The classical graph models, such as Erdos-Renyi do not ex-
hibit such properties, and a number of more sophisticated random graph models have been developed (Newman 2003, Barrett 
et al. 2007). However, it has been observed that such random graph models can capture properties of realistic networks only 
to certain extent, and there has been a lot of interest in developing “first principles” methods for the Internet graph, which ex-
plicitly take into account the technological and economic issues arising in the construction of these networks (Li et al. 2004). 

However, none of the network models in literature deal with large heterogeneous urban populations, which would be 
needed for understanding human disease spread. Collecting all the data needed to build such models is very difficult, because 
of privacy and security concerns. Therefore, any detailed population model has to be built by combining a variety of data 
sets. The population model we describe in this paper is the most refined model known, to our knowledge. 

2 SOCIAL NETWORK CONSTRUCTION 

We describe “first principles” based methods for developing synthetic urban and national scale social contact networks. Un-
like simple random graph techniques, which attempt to match certain aggregate properties (e.g., degree and clustering coeffi-
cient distributions), these methods use over a dozen real world data sources and procedural knowledge about urban mobility 
and combine them with behavioral and social theories to synthesize networks, e.g., (Macy et al. 2002). We develop a synthet-
ic population for the United States that models every individual in the population, though our techniques could be used in any 
region, with appropriate data and expert knowledge, thus making this a “first-principles” approach, analogous to the research 
done for in the case of the Internet (Li et al. 2004).  Household structure and demographics are derived from U.S. Census da-
ta.  Each synthetic individual is assigned a 24-hour activity sequence including geo-locations for each activity.  A social con-
tact network is constructed based on physical co-location of the interacting persons. We use graph measures to compare and 
contrast the structural characteristics of the social networks that span different urban regions.  Our results show that realistic 
social contact networks: (i) are structurally different than synthetic networks generated using simple random processes, (ii) 
show interesting commonalities as well as differences as a function of the underlying urban region.   

Our work builds on our earlier work in synthesis and analysis of large relational networks. Initial work was done under 
the TRANSIMS and NISAC projects (Barrett et al. 2001, Beckman et al. 1996, Eubank et al. 2004, Eubank et al. 2005, Bar-
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rett et al. 2007) and more recently new methods have been developed under the Simfrastructure project. Our approach for 
synthesizing urban scale social contact networks involves the following steps (see (Eubank et al. 2005, Barrett et al. 2007) for 
more details). Step 1 creates a synthetic urban population by integrating a variety of databases from commercial and public 
sources into a common architecture for data exchange. The process preserves the confidentiality of the original data sets, yet 
produces realistic attributes and demographics for the synthetic individuals. The synthetic population is a set of geographical-
ly located people and households (referred to as a proto-population), each associated with demographic variables drawn from 
any of the demographics available in the census. Each synthetic individual is placed in a household with other synthetic 
people and each household is located geographically in such a way that a census of our synthetic population yields results 
that are statistically indistinguishable from the original census data, if they are both aggregated to the block group level. In 
Step 2, a set of activity templates for households are determined, based on several thousand responses to an activity or time-
use survey. These activity templates include the sort of activities each household member performs and the time of day they 
are performed. Thus for a city - demographic information for each person and location, and a minute-by-minute schedule of 
each person's activities and the locations where these activities take place is generated by a combination of simulation and da-
ta fusion techniques; this information can be captured by a dynamic social contact network. See (Chowell et al. 2003) for 
analyses done using synthetic networks that were generated using our overall methodology for the city of Portland. Note that 
it is impossible to build such a network by simply collecting field data; the use of generative models to build such networks is 
a unique feature of this work. Recently Anderson et al. have persuasively argued the value of such an approach and proposed 
a similar method for constructing IP and ISP networks (Li et al. 2004, Seshadri et al. 2008). 

A substantial effort has been spent on calibration and validation of our relational networks; see (Barrett et al. 2001, 
Chowell et al. 2003, Eubank et al. 2004, Barrett et al. 2007) for details. First, the design of the system is based on a formal 
theory of simulation called Sequential Dynamical Systems (Eubank et al. 2005, Barrett et al. 2003, Barrett et al. 2007). Vari-
ous microscopic and macroscopic quantities produced by TRANSIMS have been validated in the city of Portland, including 
(i) traffic invariants such as flow density patterns and jam wave propagation;  (ii) macroscopic quantities, such as activities 
and population densities in the entire city, number of people occupying various locations in a time varying fashion, time va-
rying traffic density split by trip purpose and various modal choices over highways and other major roads, turn counts, num-
ber of trips going between zones in a city, etc. Results on population mobility and social network construction were presented 
and reviewed annually (Barrett et al. 2001). The results were also reviewed in the context of epidemic modeling as a part of a 
letter report by the National Academies and published in (Halloran et al. 2008). 

The current paper extends our earlier work in several directions. First new sources of data and surveys are used for infer-
ring these social networks. Second, using these methods, we have created synthetic social contact networks for the entire US 
and report in this paper our analysis of social networks that span urban regions of the country. The choice of these regions 
was based on covering various parts of US based on demographics, geography and city structure. Third, most of our early 
work was based on handling flat files. These solutions although adequate for constructing a single network were found to be 
inadequate in terms of desired diversity. We have thus developed efficient methods using current database technology.  We 
also undertake a comparative analysis of the social networks that span urban and rural regions in the US. No such study has 
been reported prior to this work. 

2.1 Synthetic Population Generation 

The description in this section is based on (Barrett et al. 2005). Recall the definition of proto-populations described above; 
they can be generalized to represent a person, a vehicle, or an infrastructure element such as a hospital or a switch (Barrett et 
al. 2007). Here, we concentrate on creation of synthetic urban populations.  Figure 1 shows a schematic diagram. 
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Figure 1:  Synthetic social network generation. Generic actors are individuals or active devices that interact with each other.   

Joint demographic distributions can be reconstructed from marginal distributions available in typical census data using 
an iterative proportional fitting (IPF) technique (Beckman, Baggerly, and McKay 1996). The synthetic population is statisti-
cally indistinguishable from the census data. Since they are synthetic, the privacy of individuals within the population is pro-
tected. The synthetic individuals carry with them a complete range of demographic attributes collected from the census data, 
including variables such as income level and age. 

2.2 Social Network Construction 

A set of activity templates for households is determined, based on several thousand responses to an activity or time-use sur-
vey. These activity templates include the sort of activities each household member performs and the time of day they are per-
formed. Each synthetic household is then matched with one of the survey households, using a decision tree based on demo-
graphics such as the number of workers in the household, number of children of various ages, etc. The synthetic household is 
assigned the activity template of its matching survey household. For each household and each activity performed by this 
household, a preliminary assignment of a location is made based on observed land-use patterns, tax data, etc. This assignment 
must be calibrated against observed travel-time distributions. However, the travel-times corresponding to any particular as-
signment of activities to locations cannot be determined analytically. Using techniques in combinatorial optimization, ma-
chine learning and agent based modeling the populations, their activity locations, and their itineraries may be refined so as to 
be structurally and statistically consistent (Barrett et al. 2001). 

The activities are modeled to take place at geographically located sites using data from commercially available databases 
of possible activity locations. Work, retail and recreation activity locations are derived from data from Dun & Bradstreet.  
School and college locations were constructed from data from National Center for Educational Statistics.  Location choice for 
the activities is calibrated to the travel time data in the National Household Travel Survey (NHTS) (National Household Tra-
vel Survey 2001).  NHTS contains data on the length and time of each trip taken by each individual in the survey. The pur-
pose of the trips is also recorded. The trip purposes are denoted by H (home), W (work), S (shop), O (other) and C (school or 
college). Of these Home, Work, and School or College are considered “anchor” activities. These symbols are combined to 
designate a trip, for example HW is a trip from home to work. 

The following methodology is used to assign the activity locations. The locations of all anchors in a home-to-home tour 
are determined first. The method for determining the location of the work or other “anchor” activity is relative to the home 
location or the last located “anchor” activity (Barrett et al. 2001). 

For a home located at location i, the location of W for the trip HW is chosen from all possible locations j with probability 
proportional to 

{ } ijwDb
jeAijP =  

 
where Aj is an constant representing the “attractiveness” of location j for work, bw is a calibration constant to be determined, 
and Dij is the distance from the home to the work location.  
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A similar relative probability equation holds for the location for non-anchor activities. Here the relative probability of 

choosing the location takes into account the location of the activity immediately preceding the activity and the location of the 
next anchor in the activity list. 

A “gravity” methodology was used to determine the exact activity locations for each activity in individual person’s activ-
ity pattern. In the gravity methodology, locations are chosen using a probability function that depends on the travel time or 
distance between the origin and the destination of the trip. The form of this probability function is 

 
{ } ( )DODistbeODP ,⋅∝ , 

 
where D is a possible destination location, O is the origin location, Dist(O,D) is the distance or travel time between the two 
locations, and b is a calibration constant that depends on the type of activity to be performed at location D. The values of b 
were determined by statistically fitting the travel time and distance data from the NHTS to the gravity model. 

2.2.1 Calibration Constants for Activity Location Process 

Since we only have access to the Euclidian Distances between locations, the emphasis here is on the trip length distributions 
from the NHTS.  Figure 2 shows the distribution of the length of trips for all of the trip types in NHTS excluding 
school/college trips. (Note: All of the trip length distributions given in this paper are derived by truncating the NHTS dis-
tances to consider only those trips less than 100 miles.) From this figure it is obvious that the HW and WH trips are longer 
than other trips involving non-work activities. Therefore, the location of the work activity is treated differently than that of 
the non-work activities. While somewhat different, the other trip length distributions are similar enough to consider them the 
same. Therefore, calibration constants, b, are developed for the location choice for work (see below as there are two such 
constants depending on the home location), and one constant is given for all other location choices. 

 
Figure 2: Trip length distribution by trip type 

 
There is a common belief in the transportation community that the length of trips from home to work depends on the 

home location. If the home is in a suburban or rural area these trips tend to be longer. An analysis of the trip length distribu-
tions for the HW trips in the NHTS shows this to be true. Classification and Regression Trees (CART) were used to fit each 
of these trip distributions to a variety of independent variables that indicate the employment, population and household densi-
ties of the home locations, the region of the country of the survey household, an indicator of urbanization at the home loca-
tion, and some household demographic data such as household income. The “best” CART fit split the HW travel distances 
into two distributions dependent on the value of the NHTS variable URBAN. In NHTS the variable URBAN has the follow-
ing 4 values: 

1. In an urban cluster 
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2. In an urban area 
3. In an area surrounded by urban areas 
4. Not in an urban area 

The two distributions formed using this variable are the travel distances when URBAN=1 or 2 and URBAN=3 or 4. It is easy 
to see that this procedure splits the households into extremely urban and other areas. 

A value for the URBAN variable needs to be assigned to every home location in the synthetic US population. This would 
be time consuming, so some of the other variables were considered for splitting the HW trips. One such is the NHTS variable 
HTHRESDEN, the number of housing units per square mile in the household’s census tract. This variable was shown in the 
CART analysis to be almost as good as URBAN in splitting the trip distances from home to work. 

The results from the CART fits show that there are two possible breakpoints for the variable HTHRESDEN. These are: 
425 housing units/square mile, and 87.5 housing units/square mile. The trip length distributions resulting from these splits are 
shown in Figure 3.  

 
Figure 3: Trip length distribution for Home-to-Work trips based on housing units/sq mi in household census tract 

 
The trip length distribution in black in the figure is the original distribution before splitting by the urbanization around 

the home location. The dotted and dashed lines are the two trip length distributions after the splits, where the blue lines are 
the split on the variable URBAN, the green show the split for HTHRESDN < or > 475 housing units/square mile, and the red 
show the split for HTHRESDN < or > 87.5 housing units/square mile. While any of these splits is adequate, the red splits, 
HTHRESDN < or > 87.5 housing units/square mile, seem to be the closest to the split using the “best” variable URBAN, so 
this split is used here. 

To assign locations, both for work and the other activity types, initial values are determined for the calibration parameter 

b in the equations { } ijwDb
jeAijP =  and { } ( )jkij DDb

jeAijP += 0 . 
The following methodology is used for initialization of the parameter b. The average of the non-zero values of Aj is computed 
and called A. At this time each of the attractor values, Aj, has the value 0 or 1, so the value of A used here is 1. We use the 
Euclidian distance between two points as the value of Dij in the equation. The trip length data in the NHTS survey is the ac-
tual distance between two points, which by necessity is longer that the Euclidian distance. Therefore, the NHTS data is scaled 
to reflect this, and lacking any other information, this scaling is taken to be 2 . 

The median trip length, denoted by

 

, from the NHTS data is determined and the following equation is formed 
2/5.0 bAe=  

 
Which leads to a solution for b: 

A
b 5.0log2


=  

 
The following assumptions are made in the solution for b above: 

1. It is assumed the A is always greater than or equal to 1. 
2. The results given here are in miles. If other units are used (e.g. meters) the value of b needs to be scaled to reflect 

this. 
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The median trip lengths for the home to work for the two cases, HTHRESDN < or > 87.5 housing units/square mile are: 
1. For HTHRESDN < 87.5 housing units/square mile: Median = 5.0 miles, initial guess for b, b = -.20 
2. For HTHRESDN > 87.5 housing units/square mile: Median = 3.0 miles, initial guess for b, b = -.33 
The procedure for determining calibration constants for shop and other is the same as that for work with an additional 

factor of 2 to account for the sum of the two distances in the formula 
 

{ } ( )jkij DDb
ieAijP += 0  

 
and is used for the location of all non-anchor activities. The solution for b for these non-anchor locations is 

 

A
b 5.0log

2
2


=  

  
In the first section it was determined that the trip length distribution of trips to and from non-anchor locations is almost 

independent of the type of trip being made. Therefore, the median used here to estimate the constant is the median trip length 
distribution for the home to shop combined with the home to other trips. The median trip length for these trips is 3.0 miles, so 
the estimate of b is b = -.16. 

We consider 5 age groups for home to school trips and develop calibration constants for each age group.   
As expected, elementary school children make shorter home to school trips than the others. We could fit one b for elementary 
school location choice and one other one for all other school choices, but school is important for some of our models, so a 
separate value of b is given for each of the age groups. As school is an anchor in our model, b is estimated using the same 
procedure as used for work. The results are: 

1. For 0 ≤ age ≤ 4: Median = 4 miles, b = -.25. 
2. For 5 ≤ age ≤ 12: Median = 2 miles, b = -.49 
3. For 13 ≤ age ≤ 15: Median = 3 miles, b = -.33 
4. For 16 ≤ age ≤ 18: Median = 4 miles, b = -.25 
5. For age > 18: Median = 3 miles, b = -.33 

2.2.2  The Interaction Network 

Demographic information for each person and location, and a minute-by-minute schedule of each person’s activities and the 
locations where these activities take place is generated by a combination of simulation and data fusion techniques. This forms 
the basis of the interaction network that can be abstractly represented by a (vertex and edge) labeled bipartite graph G(P, L), 
where P is the set of people and L is the set of locations. If a person p ∈ P visits a location l ∈ L, there is an edge (p, l, label) 
∈ E(G(P, L)) between them, where label is a record of the type of activity of the visit and its start and end times. Each vertex 
(person and location) can also have labels (Figure 4). The person labels correspond to his/her demographic attributes such as 
age, income, etc. The labels attached to locations specify the location’s attributes such as its x and y coordinates, the type of 
activity performed, maximum capacity, etc. Note that there can be multiple edges between a person and a location recording 
different visits. 
 

 
 

Figure 4: Bi-partite graph of people and locations 
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2.3 Results 

We used the methods above to select social networks from our United States synthetic population for urban regions in the 
United States. We discuss preliminary results for 3 networks here: Los Angeles, New York City, and Seattle. The social net-
works for these regions produce large graphs with millions of nodes and edges as shown in Table 1. 

 
Table 1:  Social network sizes for 9 urban regions 

Region Number of Nodes Number of Locations Average Degree 
Los Angeles 16,228,759 3,201,621 56.596 
New York City 17,876,290 4,348,939 53.713 
Seattle 3,207,037 779,685 55.345 

 
We treat the social networks as labeled graphs and measure characteristics of the graphs to discover similarities and differ-
ences in the graph structure of the regions. We discuss the following measures of these different graphs: Degree and Cluster-
ing Coefficient. Our main observations are the following: 

1. There is remarkable similarity in the unlabeled measures over the different contact graphs. However, the disease dy-
namics on these graphs are very different, as discussed in the next section. Also, our work is the first exploration of 
the structure of labeled subgraphs in such contact networks. 

2. These graphs differ significantly from other complex networks and random graph models studied in literature. For 
instance, the degree distributions satisfy a power law, as suggested in (Newman 2003, Barabasi and Albert 1999), in 
many complex networks. In fact, the degree distributions in our graphs do not satisfy power laws, and have multiple 
modes, which are closely related to sub-location sizes in our models. 

3. The unlabeled graph measures do not seem to directly give insights into disease dynamics, and our results suggest 
that a closer study of demographic labels, as well as new structural measures are needed (such as the vulnerability 
measure) in order to understand disease dynamics. In contrast to literature in complex networks, which attempts to 
fully characterize the dynamics in terms of simple structural properties, we find that the vulnerability measure gives 
fundamentally new insights into the network structure. 

Because of the scale of these contact graphs, even simple measures become challenging to compute (and most libraries of 
graph algorithms do not easily scale for such graphs). Also, the labeled structure leads to a rich new set of measures. There-
fore, we need new sampling and streaming based methods for computing the properties of such large contact graphs. 

2.3.1  Graph Measures 

Recall that G=(P, L, E) denotes the labeled bipartite interaction graph that captures visits by people to different loca-
tions. This induces a person-person graph GP=(P, EP) on the set of people, where there is a contact edge (u,v) ∈ EP if the in-
dividuals u and v come into contact at some common location l ∈ L.   While other projections of this graph are also interest-
ing, our main focus is the spread of epidemics, for which the projection GP seems most suitable. Let N(v) denote the set of 
neighbors of node v, and let deg(v)=|N(v)| be the number of neighbors of v. The clustering coefficient of a node v is defined 
as |{(w,w') ∈ EP : w, w' ∈ N(v)}| / (deg(v)·(deg(v) - 1) / 2); thus, the clustering coefficient (CC) of node v is the fraction of its 
neighbors that come into contact out of (deg(v)·(deg(v) - 1) / 2) possible pairs of neighbors. The R0 (reproductive number) of 
a node v is defined as the expected number of infections caused by node v in one unit of time.  

 

   

Figure 5: Degree, clustering coefficient, and Ro distributions 
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Figure 5 plots the frequency distribution of the R0 values of all nodes; note that these are not very different.  For homo-

genous, or complete mixing models, the R0 distribution has significant impact on the disease dynamics. In the Figure 5, we 
plot the frequency distributions of all these quantities. 

We count the occurrences of various non-overlapping subgraphs such as a clique, cycle, chain, or star (also called a tem-
plate graphs) in a social contact graph.  Two occurrences of a subgraph are non-overlapping if they do not share any edge or 
vertex of the graph.  We observe that the counts of cliques and cycles in a social contact graph differ significantly from that 
in a random graph even when the degree distribution of the random graph is exactly as same as that of the social contact 
graph.  A random graph with the same degree distribution is generated by shuffling the edges of the original graph as follows: 
randomly pick two edges of the graph and switch their end-points; repeat this process until all of the edges are shuffled. Fig-
ure 6 shows the counts of various template subgraphs in social contact graph and in a random graph with the same degree dis-
tribution. One significant difference is that the numbers of cliques of any size and smaller cycles in the random graph are al-
most zero.  These graph measures demonstrate structural properties of our social contact networks. Understanding structure 
of a social contact network is important in understanding the disease dynamics in it.    
 

 
 
Figure 6: The number of occurrences of various subgraphs (star, chain, cycle, and clique) with the number nodes varying 
from 3 to 10 in a contact network of one of the cities and in a random network with the same degree distribution.  Original 
contact graph (left), Random graph after shuffling the edges (right). 

2.3.2 Diffusion Process on Social Networks 

We simulate a diffusion process on the social contact networks of the regions; in this case influenza, that is transmitted across 
the graph (Bisset et al. 2009).  Graph labels are the type of contact (work, home, school, shop, other) and the length of the 
contact.  Well-known epidemiology measures of the spread of the disease such as the effective reproduction number (R0) are 
used to compare the social network graphs of each region. Although the social network for all regions was constructed using 
the same methods as described in the sections above, we find regional differences in the epidemiology measures. 

The social contact networks can also be analyzed using any available demographic.  Our analyses using age are pre-
sented in this paper.  We consider 4 age groups: 

• Preschool – age < 5 
• School-age – age 5 – 18 
• Adults – age 19 – 64 
• Seniors – age 65+ 
Figure 7 shows the cumulative proportions of the populations infected with the influenza across the networks constructed 

for New York City, Los Angeles, and Seattle. The figure displays these attack rates for both the entire population and the 
populations broken into the four age groups given above. Two things are apparent from these figures.  First, the proportion of 
the population infected in Los Angeles is greater than that of the other two regions. Second, a higher proportion of school-
aged children, when compared to any other age group, are infected in all three regions.  
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Figure 7: Cumulative proportion infections all ages (left) and daily cumulative proportion infections by age group (right) for 
NYC, LA and Seattle networks 

 
Figure 8 shows, in histogram form, the R0 distributions. The degree distributions are weighted by the edge weights and 

represent the expected number of secondary infections caused by each person (node) in the network.  The R0 distribution for 
Los Angeles in this figure is shifted to the right and hence one would expect a higher proportion of Los Angeles to be in-
fected. We are investigating a similar analysis for the sub-population effects. 

 
Figure 8: R0 distribution for NYC, LA and Seattle networks 

2.4 Conclusions 

We described a “first principles” approach for generating synthetic social contact networks spanning urban and rural regions 
in the US. Our methods are based on integrating various real world summary data sets and using appropriate social and beha-
vioral theories to infer the relational networks. Database technology was used to automate and simplify many of the data fu-
sion steps. New algorithms and their implementations were necessary to compute the structural properties of the ensuing so-
cial networks. These algorithms had to scale to be able to process networks with 5-15 Million nodes and 600 Million edges. 
These networks are labeled, dynamic and exhibit variability that reflects particular features of the city or the rural area. We 
show that the structure of these networks has significant impact on the dynamical processes on these networks; we use epi-
demics in urban regions to illustrate this.  The work motivates a number of new research questions. These include, methods 
for inferring smaller sub-networks, more refined models for long distance travel and faster algorithms for measuring other 
structural attributes of large networks. 
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