
Proceedings of the 2009 Winter Simulation Conference
M. D. Rossetti, R. R. Hill, B. Johansson, A. Dunkin, and R. G. Ingalls, eds.

MIC-CORE: A TOOL FOR MICROSIMULATION

Sabine Zinn
Jutta Gampe

Max Planck Institute for Demographic Research
18057 Rostock, Germany

Jan Himmelspach
Adelinde M. Uhrmacher

University of Rostock
18059 Rostock, Germany

ABSTRACT

Microsimulation is an increasingly popular tool in the social sciences. Individual behavior is described by a (commonly
stochastic) model and subsequently simulated to study outcomes on the aggregate level. Demographic projections are a
prominent area of application. Despite numerous available tools often new software is designed and implemented for specific
applications. In this paper we describe how a modeling and simulation framework, JAMES II, was used to create a specialized
tool for population projections, the MIC-CORE. Reusing validated and well-tested modeling and simulation functionality
significantly reduced development time while keeping performance levels high. We document how the MIC-CORE was built
as plug-ins to JAMES II and illustrate the performance of the resulting tool. We demonstrate how the concept of a modeling
and simulation framework enabled successful software reuse of available functionality and briefly report of future work.

1 INTRODUCTION

Whenever new software is about to be developed it is a good idea to search the market for existing solutions: the development
of a new software is always a time consuming and error prone task. But you’ll have to find a software solution which
can (1) cope with the domain, (2) can be adapted to the needs of the user group, (3) which is trustworthy, and (4) where
you can take care on bug-fixing your own, or where you have sufficient support from the developers. The number of
existing solutions in the market to be checked is pretty high in the field of modeling and simulation (M&S) (http:
//eprints.agentlink.org/view/type/software.html, accessed April 2009, lists 128 multi agent software
items; http://www.sce.carleton.ca/faculty/wainer/standard/tools.htm, accessed April 2009, lists
15 tools for DEVS based M&S), and thus, although you might be able to exclude lots of the potential candidates by some
“simple filtering” mechanisms as, “only open source”, a great number of solutions may remain. These solutions exist in
a variety of application domains (e.g., multi agent simulation, micro simulation, network simulation), or they are designed
to be more general purpose (i.e., for discrete - event, hybrid or continuous simulation), and it is hard to get a complete
overview of all existing solutions. And it is even harder to make a fair comparison of these. So people might end up creating
their own tool although they wanted to reuse. Besides reusing in the large (thus complete tools here), one could try to build
the new application based on a library or a framework (reuse in the small) - this should significantly decrease the overall
amount of work to be done, and should help creating well-tested applications, as long as the libraries or frameworks used
are well-tested. But up to which degree can a framework support the creation of a specialized M&S tool? In the context
of the project ‘MicMac (www.micmac-projections.org, accessed April 2009) - Bridging the micro-macro gap in
population forecasting’ a microsimulation tool, the MIC-CORE, had to be developed. The aim of the MicMac-project was “to
develop a methodology and the associated software that offers a bridge between aggregate projections of cohorts (Mac) and
projections of the life courses of individual cohort members (Mic).” (NIDI 2006). Both Mac and Mic have been implemented
in one software tool. The Mac part has been implemented using a standard methodology for demographic projections called
cohort component model (van Imhoff 1990). The MIC-CORE comprises the Mic part of the project. The main purposes
of its development have been the design of a software that can easily be used without assuming background knowledge
in M&S and the employment of computationally efficient simulation algorithms to handle large-scale problems. The tool
(MIC-CORE) described here has been created based on the M&S framework JAMES II. The most important idea while
developing JAMES II was to create a framework which allows to create more specialized applications by extending it. So
far this had only been done by some of the core developers. However, the question arose how this would work for someone

http://eprints.agentlink.org/view/type/software.html
http://eprints.agentlink.org/view/type/software.html
http://www.sce.carleton.ca/faculty/wainer/standard/tools.htm
www.micmac-projections.org

Zinn, Gampe, Himmelspach, and Uhrmacher

external - which parts of the frameworks are reusable, and what are the benefits of this for a resulting tool? In the following
we’ll first give a short introduction into microsimulation, we motivate the creation of a new tool, and thereafter show how
the tool has been realized, outlining the actual reuse. The tools usability is shown by a simple model and its validation.
Finally we conclude with summing up our experiences, and give an outlook of how the resulting tool, MIC-CORE, can be
extended in the future.

2 BACKGROUND

2.1 Microsimulation for Population Projections

In the social sciences, including demography, microsimulation denotes approaches for which the behavior of the basic micro
level unit (typically an individual or a household) is modeled and simulated rather than the aggregate behavior of a system, i.e.,
a population, society or economy. Microsimulation goes back to the work of Orcutt (Orcutt 1957, Orcutt, Greenberger, Korbel,
and Rivlin 1961) and is an obvious method to produce population projections (Imhoff and Post 1998, Wolf 2001). Individuals
make up the population and their distribution over age-classes, marital status, labour force participation, etc. ultimately
determines the population structure, which is of crucial importance for policy decisions and planning purposes. Hence we
may simulate future changes in individual demographic behavior to learn about prospective changes in population size and
structure.

The central unit of a demographic microsimulation is an individual’s life course, which is characterized by a sequence of
demographic events such as birth, marriage, childbirth, divorce, retirement and finally death. The length of spells between these
events gives, together with the individual’s birth date, the ages at which these events are experienced. Despite considerable
regularity of demographic behavior the order and age-specific incidence of demographic events varies between individuals
and cannot be fully explained by observable characteristics. Therefore individual life courses are appropriately modelled
by stochastic processes (Bartholomew 1973, Mayer and Tuma 1990). The propensity for experiencing certain demographic
events is usually age-dependent but also varies with calendar time (e.g., decreasing mortality or increasing divorce rates),
and the corresponding current age- and time-specific incidence rates can be estimated from vital statistics and social surveys.
Assumptions about future rates then define the projection scenarios.

A microsimulation model for population projection therefore consists of a virtual population and a stochastic model
of individual behavior (Willekens 2007). The virtual population consists of individuals characterized by attributes like
sex, current marital status, educational attainment, children ever born, etc. and their distribution usually resembles current
population structure. The model population evolves over time because based on the stochastic model individuals experience
certain demographic events over their life time. Additionally to the individuals in the starting population, new members may
enter by birth and, if a so called open population model is used, by immigration. Individuals exit the population by death,
and in open models by emigration.

In general one can distinguish between static and dynamic microsimulation models (Gilbert and Troitzsch 2008, Brown
and Harding 2002). In static models changes in the population structure are realized by reweighting individual data records
for the distinct years in the simulation period. In dynamic models aging the micro units individually leads to a time-varying
population structure. Hence, demographic microsimulation as described above employs a dynamic model. In short, a
“microsimulation consists of drawing a sample of realizations of a pre-specified stochastic process” (Wolf 2001). Thereby, the
pre-defined stochastic process is part of the simulation model and the sampling procedure is part of the execution of the model.
Before a model execution can be performed, the stochastic process and related parameter values have to be specified. Several
alternative model variants are available. First, the time scale in such a model can either be discrete or continuous (Galler
1997). Also we have to decide on the dependence structure of events (within one individual) across the life course. Mostly
the processes applied in recent microsimulation models are Markovian or semi-Markovian (O’Donoghue 1999, Wolf 2001).
In this case, together with the initial population, a set of transition rates or transition probabilities, respectively, specifies
the microsimulation model. The required parameters of the stochastic process must be obtained by statistical estimation
(for past and current rates) and other means (for future rates), such as experts’ assessments or extrapolation. To make a
stochastic process a realistic model of individual behavior we usually have to choose a rather detailed model structure, which
leads to considerable requirements concerning good micro data. This is one of the major challenges to the microsimulation
methodology. Furthermore, as demographic applications usually intend to mimic national populations, efficient and powerful
computer technology is necessary to execute large scale and complex population projections by microsimulation.

Zinn, Gampe, Himmelspach, and Uhrmacher

2.2 Stochastic Model for Individual Life Courses

As outlined above both age and calendar time will have to enter a realistic demographic microsimulation model, and both
can be treated as discrete (usually in units of years) or continuous. As many of the vital statistics data are collected
annually and grouped by single years of age a discrete approach seems natural. However, dynamic microsimulation models
where calendar time is treated as discrete variable inherit some problems related to inefficient model execution and logical
reasoning. Such models are executed stepwise. This means time advances in discrete steps, mostly in years. At each time
step an update of each attribute of each individual of the virtual population has to be performed. This makes the simulation
processing computationally expensive and inefficient (Satyabudhi and Onggo 2008). Furthermore, as only discrete time
intervals are considered the model builder has to face the problem of multiple events within these time intervals (Willekens
2007, O’Donoghue 1999).

Dynamic microsimulation models where calendar time is modeled as a continuous variable offer possibilities to overcome
these problems (Willekens 2007). However, the modeler has to face some problems here as well. These are mainly related to
somewhat more complex parameter estimation problems (Galler 1997), and to the alignment of the microsimulation output
to benchmark macro estimates like to external projections of aggregated or group variables (Harding 2007). An extensive
discussion on how these problems can be handled is given in (Willekens, de Beer, and van der Gaag 2007a) and (van der
Gaag, de Beer, and Willekens 2005). In our view, a dynamic microsimulation model with continuous time is the most
appropriate model for population forecasting.

2.2.1 Continuous-Time Multi-State Model

The specific dynamic microsimulation model we consider is a continuous-time multi-state model. This model class is generally
used for describing individual life courses (Andersen and Keiding 2002). A multi-state model is a stochastic process that at
any point in time occupies one out of a set of discrete states (Hougaard 1999). These states summarize the demographically
relevant categories an individual can belong to. Any demographic event changes the individual’s state. For example, an
unmarried women with no children, who holds a university degree and lives with her partner, changes her state by giving
birth to her first child. Likewise other events such as marriage or end of partnership would imply a change of state. In this
terminology states characterize the individual’s relevant demographic attributes. The possible states hence depend on the
specific application, but commonly they will at least comprise the elementary demographic characteristics of sex and marital
status. As an individual’s state usually is a combined characteristic, given by the combination of several attributes, we define
so called state variables. All the unique combinations of values of these state variables define the state space, which is the set
of all possible states of a multi-state model. The state space is denoted by Σ. To give an example, we describe the state space
considered in the MicMac-project (Willekens, de Beer, and van der Gaag 2007b). The state variables and their corresponding
values, which are given in parentheses, are: Sex (male, female), Marital Status (never married, married, divorced, widowed),
Living arrangement (child in parental home, living without partner, living with partner, living with other person(s), living in
institution), Disability status (disabled, non-disabled), Smoking (never, ever, current), and Children ever born (0,1,2, . . .). A
state in the state space is given by a combination of values, one for each state variable. For example, [female, married, living
with partner, non-disabled, current, 0] would be one potential state in this state space. Whenever one of the state variables
changes its values the process changes its state, i.e., the individual experiences an event (also called state transition). An
individual’s life course is defined as the sequence of experienced events, and the length of spells between two events. To
facilitate notation, in the following we simply enumerate the states and hence denote the state space by Σ = {1,2, · · · , I},
where I is the number of all possible states. Whether and when an individual experiences an event is embodied in the
transition rates of the multi-state model. Generally, we only use models for which the transition rates depend on (Gampe
and Zinn 2007) the current state (and not on the previously occupied states), the age at which the individual entered the
current state, and the calendar time. In principle these transition rates could additionally also depend on the time already
spent in the current state but this variant is not considered in the current model. As we consider continuous multi-state
models, individual life histories evolve along two continuous time scales (Wolf 1986), namely age and calendar time. Once
the state space and the age- and time-specific transition rates are given we are able to simulate life courses of individuals
following this multi-state model. In an open population model individuals enter the population in an initial state i0 ∈ Σ at
age x0 and calendar time t0. Three options exist to become part of the virtual population: (1) by birth, (2) by immigration,
(3) by being part of the initial population. For each individual in the initial population the age and the state occupied at the
starting time of the simulation is assigned. (Usually, the initial population mimics the current population structure). Births
are the result of fertility related state transitions of females in the virtual population. Sex of newborns is assigned according
to a defined sex-ratio (commonly 50:50). The remaining state variables are set to the obvious values (never married, child

Zinn, Gampe, Himmelspach, and Uhrmacher

in parental home, . . .). Finally, immigration is executed according to given numbers of immigrants that are categorized
according to immigration year, age at immigration and state occupied at immigration. Immigration patterns are externally given.

Formally, a life course is conceptualized as a trajectory of a semi-Markov process Zt = JN(t), t ≥ 0. The associated
two-dimensional stochastic process (Jn,Tn)n∈N0 describes the evolution in time of an individual life course. Directly linked
to this process is the non-homogeneous Markov Chain (Jn)n∈N0 that maps the states visited by an individual. The subprocess
(Tn)n∈N0 gives the sequence of consecutive transition times of the process (Jn,Tn)n∈N0 . The random number Sn = Tn+1−Tn
is the waiting time in the state Jn. The hazard rate (or transition rate) that describes the transition to state j, given that the
individual occupies state i at calendar time t and age x is defined as

λi j(τ | t,x) = lim
h↓0

1
h

P
[
Jn+1 = j,Sn ∈ (τ,τ +h] | Jn = i,C(Tn) = t,A(Tn) = x,Sn > τ

]
.

Here we include A(Tn) and C(Tn) to express the age- and time-dependence of the process. The function A(Tn) maps the
(biological) age at Tn and the function C(Tn) the calendar time at Tn (Wolf 1986). The hazard rates of a semi-Markov process
are its key quantities. Once they are known one can compute the distribution functions of the sojourn times.

In the subsequent Si j denotes the random waiting time in state i before experiencing a transition to state j. To each
rate λi j(τ | t,x) corresponds a random waiting time Si j. The distribution function of Si j is denoted by F(si j | t,x), which is
dependent on calendar time t and age x. It is

F(si j | x, t) = P(Si j ≤ si j | x, t) = 1− exp{−Λi j(si j | x, t)}, (1)

where
Λi j(si j | x, t) =

∫ si j

0
λi j (u | x, t)du.

Λi j(si j | x, t) is the so called integrated (or cumulated) hazard. As the distribution of the sojourn times Si j depends on the
shape of the transition rate λi j(τ | t,x), which mainly is empirically estimated from data, we usually cannot pick one of the
commonly used parametric waiting time distributions. Rather we have to be able to simulate waiting times from arbitrary
distributions by exploiting relationship (1).

So far an individual life course is defined as a sequence of events. Alternatively, a life course can also be described
as the sequence of waiting times between events. Adopting this approach, we achieve individual life courses by using random
waiting times (Gampe, Zinn, Willekens, and van den Gaag 2007). In order to clarify this procedure, we consider only one
individual of the virtual population. Hereby we make the assumption that the individual just entered state i at age x and time
t. If i is an absorbing state, then the individual will never leave i. In life course analysis examples for absorbent states are
death and emigration. Otherwise, if i is a transient state, then the individual will move to one of the remaining I−1 states
of Σ. The destination state within these I− 1 states depends on “simulated” waiting times. More precisely: We compute
waiting times si j for all possible destination states by using the well-known inversion theorem (Rubinstein and Kroese 2008):
Replacing F(si j | t,x) in formula (1) with a standard uniformly distributed random number u∼U[0,1] leads to a random time
si j from the correct distribution:

si j = Λi j(si j | x, t)−1 [− ln(1−u)] , j 6= i, j ∈ Σ. (2)

Among all simulated waiting times, we pick the shortest waiting time si j? to state j?. Then the individual under consideration
experiences a transition to j? at age x+ si j? and calendar time t + si j? . Such an approach, where destination states compete,
is called ‘competing risk’ setting (Klein and Moeschberger 2003). This computation of ‘shortest’ waiting times is repeated
for each individual of the virtual population along his/ her complete life course until the pre-set simulation end time is reached.

Equation (2) implies that we have to be able to invert the integrated hazard Λi j(si j | x, t). For some basic distribu-
tions the inverse of the integrated hazard can be computed analytically, for others this can only be done numerically. A
suitable approximation to Λi j(si j | x, t)−1 is the application of piecewise linear cumulative hazards (Gampe and Zinn 2007).
For the estimation of hazard rates from data and related hypothesis tests we refer to the extensive literature, see e.g. (Klein
and Moeschberger 2003, Kalbfleisch and Prentice 1980).

Zinn, Gampe, Himmelspach, and Uhrmacher

3 MICROSIMULATION TOOLS AND M&S FRAMEWORKS: A SURVEY

3.1 MicMac Microsimulation (Requirements)

We had to find out whether we can reuse any existing tool or whether we have to implement a new tool for our microsimulation.
When designing the MIC-CORE the following principles concerning the design of the software have been considered (Gampe,
Zinn, Willekens, and van den Gaag 2007, Willekens 2005).

• The MIC-CORE should be freely available. Furthermore, the user should not be forced to use commercial products
for running the software, for preparing required input, and for analyzing software output.

• The software should be easy to use which implies a simple graphical user interface (GUI) and the possibility to run
the MIC-CORE on common desktop computers.

• In order to ensure transparency the software should be open source software.
• A linkage to a specific operating system should be avoided.
• The software should be computationally efficient in handling large-scale models.
• Up-to-date simulation technology should be used and such technology should be reused to a maximum degree

wherever possible.

This list of requirements was used to check whether any microsimulation tool or a tool from other M&S domains available
fits our needs.

3.2 Microsimulation Tools

Before we started to realize a new tool the structure of a number of existing dynamic microsimulation models have been
studied in order to gain insights concerning current developments of microsimulations, the reusability of microsimulation
tools (or parts of them) for the purposes of the MicMac microsimulation, and features and drawbacks of existing tools. As
a first results we found that most dynamic microsimulation models treat calendar time as a discrete variable. We already
mentioned that this approach may imply problems related to inefficient model execution and to the handling of multiple
events within time intervals (cp. section 2.1). Models for year-wise execution are implemented, e.g., in UMDBS (Sauerbier
2002), DESTINIE (Duee 2005), DYNASIM/2/3 (Favreault and Smith 2004), DYNACAN (Morrison and Dussault 2000).

Some dynamic microsimulation tools incorporate a mixture of the discrete-time and the continuous-time approach. For
example in SOCSIM (Hammel, Mason, and Wachter 1990) and in the demographic module of DYNAMOD-2 (King,
Baekgaard, and Robinson 1999) an individual attribute is updated in that month when the related generated waiting time
is expired. Otherwise, the Swedish microsimulation MICROHUS (Klevmarken and Olovsson 1996) uses continuous time
duration models to simulate fertility and the formation and dissolution of consensual unions. Remaining processes are set
up in discrete-time. To the knowledge of the authors, only two microsimulation tools exist where a pure continuous-time
approach has been implemented: (1) PENSIM developed by the Policy Simulation Group and the U.S. Departement of
Labour, and (2) LIFEPATH and variants of LIFEPATH developed by Statistics Canada. PENSIM is a pure cohort model
that simulates life histories for analyzing the average lifetime coverage and adequacy issue connected to employer-sponsored
pension plans in the United States (Holmer, Janney, and Cohen 2009). The stochastic simulator of PENSIM has been
written in a single purpose C++ program. LIFEPATH (Statistics Canada 2004) has been set up within a general-purpose
microsimulation environment “ModGen” which is a shortcut for Model Generator (Statistics Canada 2009). The environment
is equipped with its own generic simulation language that is a subset of the C++ programming language (Spielauer 2006).
ModGen can be used to establish microsimulation models that are variants of LIFEPATH. Therefore, right from the onset
the realization of the MIC-CORE using ModGen was a reasonable option. However, keeping our principles concerning the
design of the software in mind we made a decision against ModGen. The main reasons have been:

• The ModGen development platform requires Visual Studio 2005 which is a commercial and complex software.
• A WINDOWS system is mandatory for working with ModGen.
• The MicMac simulation model would have been predetermined to become a variant of LIFEPATH, with all its pre-set

assumptions and variables.
• At the onset of the MicMac project the ModGen environment was not sufficiently documented from our point of

view.

Relying on the results of our microsimulation survey we have drawn the conclusion that none of the existing tools (that we
know) meets the demands we place on the MIC-CORE software.

Zinn, Gampe, Himmelspach, and Uhrmacher

3.3 “General” M&S Tools

There is a huge number of existing modeling and simulation tools around. Most of these are either bound to a certain
computing infrastructure, modeling formalism, or even to a certain use case. Here those are of interest which are based
on the discrete event modeling paradigm, because the multi-state model with its continuous time base is a discrete event
model. Generally all tools could be used which support the simulation of discrete event based models, here we focus on LPs,
DEVS-based, and agent models. µsik (Perumalla 2005) is a general discrete event simulation tool which has already been
used for population forecasting (Satyabudhi and Onggo 2008). It has been created for supporting parallel and distributed
simulations with “logical process” models - thus it contains more than we need on the modeling and execution level, as the
logical process metaphor is more general than our application requires and from its metaphor it appears not to be entirely
fitting, and a parallel distributed simulation is not what we were aiming at. In addition, it has been implemented in C which
might cause some troubles if we are not aware of the operating systems on the machines of our users. There are several
DEVS based tools around (e.g., DEVSJava, JDEVS, CD++, DEVS variants in JAMES II), supporting variants of the original
DEVS (Zeigler, Praehofer, and Kim 2000) formalism. Not all of these support dynamic structures, as required. However,
in addition the DEVS metaphor of reactive systems introduces modeling and simulation overhead, both of which we would
like to avoid. Population dynamics is essentially about individuals and their population, and thus multi-agent M&S tools
seem to fit here as well. However, multi agent M&S tools have a huge overhead as well: they typically incorporate at least
agent mobility and communication issues, if not means for deliberation (Uhrmacher and Weyns 2009). If there is no tool to
reuse we have to create an own one, something which is done very (if not far too) often. To decrease the amount of work
to be done such a novel tool one should rely on existing, and hopefully well tested implementations and re-use the offered
functionality. Such functionality is provided by some specialized M&S libraries as SSJ (L’Ecuyer, Meliani, and Vaucher
2002): they can be used to create new M&S tools by reusing commonly required algorithms and data structures. But using
a library means that you still have to create a complete application from scratch. An alternative to libraries are frameworks.
Frameworks are “abstract” applications for a certain domain which can be used to (easily) build specialized applications on
top of these. They do not only provide the functionality of a library, they provide in addition a reusable combination of
these, or even pre-defined workflows which only need to be activated.

4 IMPLEMENTATION IN JAMES II

The M&S framework JAMES II (available at www.jamesii.org, accessed April 2008) has been created at the University
of Rostock from 2003 on. It is an open source project, and thus it is available at no costs, it runs on top of the Java platform
(and thus on all machines for which a JVM exists), it is not bound to any modeling or simulation execution paradigm, nor
to any formalism or language. As a framework it can be “transformed” into specialized applications meeting the needs of
certain use cases. Any product created on top of the framework can be easily extended later on, e.g., by adding a new
simulation algorithm to make use of multi-core CPUs – without any need to modify the application created. Consequently
it can be used to create an application which fulfils all of the requirements listed above.

4.1 JAMES II: General Overview

JAMES II is a M&S framework based on the “Plug’n simulate” concept (Himmelspach and Uhrmacher 2007). As a
framework for M&S it shall ease the creation of specialized M&S applications. Thereby these applications can either be
created by extending the framework directly or by building the application on top of the framework (and thus by using the
framework as a “M&S service”). The first option reduces the amount of work, and makes reuse rather easy, the second
approach can imply an overhead, but means that you can create your application without any constraint. Technically the
latter mostly means that you create your own GUI, whereby the first one means that you embed your application into
the GUI of JAMES II. The framework basically consists of a lean core which provides the plug-in management systems,
predefined, commonly used extension points, general basic functionality, support for different types of experiments (e.g.,
optimization, validation, ...), means to support distributed simulations, and an extensible GUI. The core has no integrated
support for any modeling formalism, and there are no simulation algorithms in there as well. For each type of plug-ins to
be installed (e.g., a modeling formalism, simulation algorithm, random number generator, partitioning algorithm) a special
extension point needs to be provided, but then any number of plug-ins can be installed therefore. There are, e.g., event
queue implementations in the core, which make it easier to create a plug-in providing a discrete event simulation algorithm,
and, due to the plug-in concept the number and types of queues can be increased by everyone. JAMES II already provides
a number of alternatives for most commonly used extension points, for random number generators, random distributions,

www.jamesii.org

Zinn, Gampe, Himmelspach, and Uhrmacher

data sinks, modeling formalisms, simulation algorithms, and many more. In fact if you’re going to use JAMES II to create
your specialized modeling and simulation application you have to at least reuse or create a modeling formalism / language
plug-in, and reuse or create at least one simulation algorithm. In general everything available can be reused, but you never
need to do so. The default GUI can be used as a framework for the creation of more specialized GUIs, but a general GUI
can only provide general model editing capabilities, e.g., an editor with syntax highlighting, and a very general experiment
editor, and so on. So it might be useful to add a more specialized model editor, or even to create your own GUI from
scratch. This means that you can integrate JAMES II into any other application, and just reuse the not visible functionality.
Besides using JAMES II as a library of methods you can reuse complete processes as they are defined in JAMES II. Among
these the experimentation process (Himmelspach, Ewald, and Uhrmacher 2008), which computes parameter combinations
to be simulated with a given model, which takes care of model and simulation instantiation and instrumentation, and of the
execution of a simulation on the available infrastructure.

4.2 Incorporation of Mic-Core

The MIC-CORE consists of two plug-ins a modeling plug-in, and a simulator plug-in.

4.2.1 The modeling plug-in for JAMES II

A model based on the MIC-CORE plug-in is being composed of two entity types: the population which comprises a set of
individuals. Both are represented in the plug-in as interface and as class ((I)Population, (I)Individual). This
allows (principally) to use alternative implementations of the interfaces at later stages, e.g., if models cannot be completely
hold in the memory of the computer used or if alternative implementations promises a speed-up. Models are not completely
implemented in Java here (only the two basic classes are coded): models are described by creating rate matrices which can stem
from any source (such a source might be the statistical package R (See for more details http://cran.r-project.org,
accessed February 2009.), and which are then read by an instance of the model reading mechanism of JAMES II. Thus,
the model to be experimented with can be exchanged without the need to modify any line of code.

4.2.2 A simulator for MIC-CORE as a plug-in for JAMES II

The simulator is based on the classical “hold” loop. In an event queue all scheduled events for the individuals are hold
(at most one event per individual). In each step we have to dequeue the event with the minimal time stamp, compute the
state transition according to the model’s state transitions, and enqueue a new event for this individual. The template for
simulation algorithms in JAMES II requires to implement this functionality in the nextStep method. Everything else,
i.e., run control, looping, a.s.o. is automatically handled by corresponding classes in JAMES II.
public void nextStep() {
Event event = eventQueue.dequeue();
List newEvents = computeTransition (event);
for each newEvent in newEvents do

eventQueue.enqueue (newEvent);
}

}

The simple algorithm is given above. Events denote state transitions happening to specific individuals. The
computeTransition method determines the new events to be scheduled, its functionality is explained in Section 2.2.
Please note that individuals might be added or be removed from the population, and thus, if individuals are added more than
one new event might be returned, or none, if an individual is removed. Subsequently, after a completed simulation run, the
simulation output is stored using an adequate data sink plug-in that is provided by JAMES II.

4.3 Workflow of the microsimulation using MIC-CORE

Before performing the actual microsimulation, the model has to be specified and parameters (i.e., transition rates) need to be
estimated. Furthermore, the analysis of a simulation output should be feasible as well. Both the modeling and the analysis
should be done in a sophisticated manner, and it should be possible to employ a widely used statistical tool that is known to
the community of potential users. In addition, such a software tool has to meet the principles regarding the MicMac software
(see section 3.1). In order to cope with all requirements we have chosen R for implementing data preparation functions and
summary functions for the simulation output. R is a free and open-source software environment for statistical computing and

http://cran.r-project.org

Zinn, Gampe, Himmelspach, and Uhrmacher

Modelling &
Estimation

Pre-Processor

Simulation
Procedure

Mic-Core

Summarizing Results
(tables, figures, etc.)

Post-Processor
Input Output

(ASCII files) (ASCII files)

Figure 1: Workflow of MIC-CORE Figure 2: Using the GUI of the MicMac software the user
can enter all instructions that the MIC-CORE needs to run a
microsimulation

graphics that is equipped with up-to-date statistical methodology and high-quality plot options. Using R statistical models
and corresponding estimation procedures that allow to derive the empirical input data for the simulation have been set up
in the so called “Pre-Processor” of the MIC-CORE (van der Gaag, de Beer, and Willekens 2008). After data preparation the
Pre-Processor builds up two ASCII based files in a well-defined format: one for the initial population and another one for
the state space states and the related rates. We have implemented in R a comprehensive palette of instruments in order to
evaluate and illustrate the output of a MIC-CORE run. We call this palette the “Post-Processor” of the MIC-CORE. Among
others, the Post-Processor comprises the following features (Gampe and Zinn 2009): frequency tables of the states occupied
at specific dates, population pyramids at specific dates, frequency distributions of the states occupied on January 1 of each
year during the simulation period, analysis of first transition, analysis of origin and destination states, and identification
of the most frequent (“typical”) lifecourse. In order to meet our demands to provide a user friendly and easy to use tool
both, the Pre-Processor and the Post-Processor, are self-contained sets of functions that can be used even without deeper
knowledge of R. For the actual simulation run the MIC-CORE requests nothing more than the two input files prepared by
the Pre-Processor and a time horizon for the simulation. By using a simple GUI which has been implemented for the
MIC-CORE the user enters all required instructions to run a microsimulation (cp. Figure 2). Subsequently, after a completed
simulation run, all individual attributes and life courses are stored. Everything related to the model execution is hidden from
the user. Consequently, the user (we want to address) can easily employ the MIC-CORE. Detailed information on the usage
of the MIC-CORE can be found in the corresponding manual (Zinn and Gampe 2009). In Figure 1 the workflow of the
microsimulation using MIC-CORE is depicted. Here the data flows between Pre-Processor, MIC-CORE, and Post-Processor
are displayed. Finally, it should be pointed out that the user is not forced to use Pre-Processor, MIC-CORE, and Post-Processor
in combination. Alternative statistical software tools can be applied for preparing the simulation input data and for analyzing
the generated output data as well.

5 AN EXAMPLE

5.1 “Production run” results

To illustrate the performance of the MIC-CORE we use the following example. We perform a simulation run without migration
for a base population comprising 557,666 individuals. The individuals ages are in the interval from 0 to 98. The simulation
will be executed over 20 years, starting on January 1, 2004 up to December 31, 2024. The considered state variables are
(Variable values are written in parentheses after the variable names.): Sex (male, female), Marital status (never married,
married, divorced, widowed), and Children ever born (0,1,2,4). A synthetic base population and transition rates that are
based on simplified demographic information from different European data sources were used. Although the example uses
imaginary data they are typical for contemporary Western European countries. The applied mortality rates are age- and
sex-specific and vary over calendar time. The other transition rates are age- and sex-specific, but were held constant over
calendar time. Figure 3 shows the transition rates for males to become married and the parity specific fertility rates for
married females. We performed the example on an Intel(R) Core(TM) 2 Duo CPU with a 1.60GHz equipped with 2GB

Zinn, Gampe, Himmelspach, and Uhrmacher

memory 100 simulation runs. (We use a ’standard’ machine as the user should be able to run a microsimulation on its
own desktop computer.) The runs last between 119.18 and 121.03 seconds. (Approximatively 2 minutes per simulation
run seems to be too short to advocate for a parallel execution of single runs here (in contrast to (Satyabudhi and Onggo
2008)). However, a coarse-grained execution (i.e., the execution of n simulation runs in parallel) can be of use, and this is
automatically supported by JAMES II as well.) The Mersenne Twister random number generator was used for the generation
of the random waiting times. Using the post-processor we are able to produce descriptive statistics of the output results.
Some results are displayed in the Figures 4, 5, and 6.

0 20 40 60 80 100

0.
00

0.
04

0.
08

0.
12

Transition rates for males to become married

age

tr
an

si
tio

n
ra

te
s

from being never married
from being divorced
from being widowed

0 20 40 60 80 100

0.
00

0.
10

0.
20

Parity specific fertility rates for married females

age

tr
an

si
tio

n
ra

te
s

giving birth to first child
giving birth to second child
giving birth to third child
giving birth to fourth child

Figure 3: Some transition rates applied in the example

Population Pyramid at 2010−01−01

Number of People

A
ge

6000 4000 2000 0 2000 4000 6000

0

11

22

33

44

54

65

76

87

98

Women Men

Figure 4: Population pyramid

●

Transition to/ from Marr
 gender= fem

other

1%
nevMarr, forthChild

2%
Widowed, firstChild

2%Widowed, thirdChild

2%Divorced, firstChild
2%forthChild, Divorced
3%

secondChild, Widowed 3%

Divorced, thirdChild 4%

noChild, Widowed 4%

secondChild, Divorced
4%

noChild, Divorced

5%

nevMarr, thirdChild

6%

nevMarr, secondChild

12%

nevMarr, firstChild

23%

nevMarr, noChild

30%

Marr

forthChild, Divorced

3%
Widowed, forthChild

4% Divorced, thirdChild

6%
Widowed, thirdChild

6%
Widowed, firstChild

7%

noChild, Widowed10%

secondChild, Divorced
10%

secondChild, Widowed
10%

dead

11%

Divorced, firstChild

13%

noChild, Divorced

19%

Marr

Figure 5: Relative frequency distributions of origin and des-
tination states to/ from being married

0 20 40 60 80 100

0
50

0
10

00
15

00

Historgram of Simulated Age of Death, 1.1.2004 − 30.6.2020

Age of Death

F
re

qu
en

cy

Female
Male

Figure 6: Distribution of deaths

5.2 Validation of the results

Validating the simulation output is good and useful practise. Besides basic validation of the simulation output, important
hints for model improvement can be gained from careful analysis of the results, as several simplifying assumptions usually
have to be made during the modeling process. Re-estimation of the empirical transition rates that we have used as input is the
most basic validation step. Such a re-estimation can be performed applying occurrence-exposure rates (Keiding 1990). For
smoothing these rates we employ an associated two-dimensional P-Splines methodology (Currie, Durban, and Eilers 2006)
that has been implemented in an R draft package named MortalitySmooth (Camarda 2009). Concerning our example

Zinn, Gampe, Himmelspach, and Uhrmacher

the re-estimation of rates shows that the simulation causes consistent output. Some results are plotted in the Figures 7 and 8.
Empirical rates along with re-estimated rates are presented. The first figure refers to female mortality over calendar time
and age. The second figure is related to childless females who experience a transition from ’never married’ to ’married’. As
can be seen, the re-estimation confirms the validity of the results obtained from MIC-CORE.

Mortality Rates, Females

years

ag
e

20

40

60

80

2005 2010 2015 2020

EMPIRICAL

2005 2010 2015 2020

RE−ESTIMATED

0.00011

0.00017

0.00022

0.00027

0.00037

0.00058

9e−04

0.00165

0.0025

0.00363

0.00524

0.00804

0.01345

0.02261

0.04171

0.08292

0.15938

Figure 7: Re-estimation of female mortality rates

Transition Rates from 'never married' to 'married', Childless Females

years

ag
e

20

25

30

35

40

45

2005 2010 2015 2020

EMPIRICAL

2005 2010 2015 2020

RE−ESTIMATED

0.0063

0.0094

0.0109

0.0128

0.0169

0.0195

0.02374

0.0258

0.0325

0.0386

0.0481

0.055

0.0741

0.086

0.09626

0.1097

0.1207

Figure 8: Re-estimation of transition rates of childless females
who experience a transition from ’never married’ to ’married’

6 CONCLUSION AND OUTLOOK

We have motivated the creation of a new tool, MIC-CORE, for forecasting population dynamics, and we have shown how
to model for the tool. In addition we have conducted a small validation study to show that the tool seems to be valid, and
we illustrated that the results can be computed in an acceptable time frame. The resulting tool meets the requirements. The
new tool has been created based on JAMES II, and we had been interested in the question: How can (and did) JAMES
II help on creating MIC-CORE? On the one hand JAMES II provides directly reusable functionality as random number
generators, random distributions, event queues, and data sinks. This reduced the overall development complexity, especially
due to the fact that for all these tests exist, and that they are already used for a variety of M&S scenarios, which increases
the confidence in the implementations. In addition we reused the simulation execution process, including model instantiation
and model instrumentation, as defined in JAMES II. This means that on developing MIC-CORE we had been able to focus
on the model description, the simulation algorithm, and the new and standalone GUI of MIC-CORE. Although there had
not been a sufficient documentation of JAMES II, nor an official release, MIC-CORE was created by the MPI group with
only a little technical help. The JAMES II group learned a lot about a user’s perspective on a framework, which will
have an influence on the future documentation of the project. There is a variety of opportunities how to extend the model
or the simulation part which will make MIC-CORE future safe. Some of these are very easy to have and depend on the
above mentioned flexibility of JAMES II, e.g., to use a database instead of the currently used file based data export or to
use coarse-grained simulation on multi-core/multiple CPUs. For each of these changes only a parameter has to be changed
in JAMES II. Other extensions might imply some more work, e.g., to realize a new multi-threaded simulation algorithm.
However, in this case only the simulation algorithm has to be exchanged (partitioning strategies can than be automatically
re-used in addition): everything else of MIC-CORE remains constant, and one can switch between the algorithms later on
easily. It is a well-known fact that the performance of algorithms differ depending on the problem at hand. JAMES II allows
to have any number of alternative algorithms and data structures available and we are currently working on an automatic
selection of efficient algorithms (Ewald, Himmelspach, and Uhrmacher 2008). This mechanism can be exploited as well, and
thus MIC-CORE can adapt to model and hardware characteristics to fulfil the requirement of an efficient execution, e.g., on
“normal” desktop workstations - and the users will even not get aware of this at all, and thus the system remains usable by
non-specialists as well. The model description can and shall be extended with “linked lives” in the future. Which types of
“linked lives” are of interest, and how these can be integrated in a well-defined manner, and how this relates to established
formalisms, is currently under examination.

Zinn, Gampe, Himmelspach, and Uhrmacher

REFERENCES

Andersen, P., and N. Keiding. 2002. Multi-state models for event history analysis. Statistical Methods in Medical Research 11
(2): 91–115.

Bartholomew, D. J. 1973. Stochastic models for social processes. 2nd ed. John Wiley & Sons.
Brown, L., and A. Harding. 2002. Social modelling and public policy: Application of microsimulation modellingin Australia.

Journal of Artificial Societies and Social Simulation 5 (4): <http://jasss.soc.surrey.ac.uk/5/4/6.html>.
Camarda, C. 2009. MortalitySmooth: Smoothing Poisson counts with P-splines. MPI Rostock. Draft R Package Version.
Currie, I., M. Durban, and P. Eilers. 2006. Generalized linear array models with applications to multidimensional smoothing.

Journal of the Royal Statistical Society B 68 (Part 2): 259–280.
Duee, M. 2005. La modélisation des comportements démographiques dans le modèle de microsimulation DESTINIE. Technical

report, INSEE, Institute National de la Statistique et des Etudes Economiques, Paris.
Ewald, R., J. Himmelspach, and A. M. Uhrmacher. 2008. An algorithm selection approach for simulation systems. In

Proceedings of the 22nd ACM/IEEE/SCS Workshop on Principles of Advancedand Distributed Simulation (PADS 2008),
91–98. Rome, Italy: IEEE Computer Society.

Favreault, M., and K. Smith. 2004. A primer on the dynamic simulation income model (dynasim3). The Urban Institute,
Washington, D.C.

Galler, H. 1997. Discrete-time and continuous-time approaches to dynamic microsimulation (reconsidered). Technical report,
NATSEM - National Centre for Social and Economic Modelling, Faculty of Management, University of Canberry.

Gampe, J., and S. Zinn. 2007. Description of the microsimulation model. Technical report, MPIDR, Rostock.
Gampe, J., and S. Zinn. 2009. Manual of the MicMac post-processor. MPIDR, Rostock.
Gampe, J., S. Zinn, F. Willekens, and N. van den Gaag. 2007. Population forecasting via microsimulation: Software design

of the MicMacProject. In Work Sessions on Demographic Projections: European Communities.
Gilbert, N., and K. Troitzsch. 2008. Simulation for the social scientist. 2nd ed. Open University Press.
Hammel, E., C. Mason, and C. Wachter. 1990. SOCSIM II: A sociodemographic microsimulation program rev. 1.0. operat-

ingmanual. Regents of the University of California.
Harding, A. 2007. Challenges and opportunities of dynamic microsimulation modelling. Plenary paper presented to the 1st

General Conference of the International Microsimulation Association, Vienna, 21 August 2007.
Himmelspach, J., R. Ewald, and A. M. Uhrmacher. 2008. A flexible and scalable experimentation layer for JAMES II.

In Proceedings of the Winter simulation conference, ed. S. J. Mason, R. R. Hill, L. Mönch, and O. Rose, 827–835:
Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Himmelspach, J., and A. M. Uhrmacher. 2007. Plug’n simulate. In ANSS ’07: Proceedings of the 40th Annual Simulation
Symposium, 137–143. Washington, DC, USA: IEEE Computer Society.

Holmer, M., A. Janney, and B. Cohen. 2009. PENSIM overview. Policy Simulation Group and the U.S. Department of Labour.
Hougaard, P. 1999. Multi-state models: A review. Lifetime Data Analysis 5 (3): 239–264.
Imhoff, E., and W. Post. 1998. Microsimulation methods for population projection. Population: An English Selection, New

Methodological Approaches in SocialSciences 10 (1): 97–138.
Kalbfleisch, J., and R. Prentice. 1980. The statistical analysis of failure time data. New York: Wiley.
Keiding, N. 1990. Statistical inference in Lexis diagram. Philosophical Transactions of the Royal Society of London: Physical

Sciences and Engineering 332 (1627): 487–509.
King, A., H. Baekgaard, and M. Robinson. 1999. Dynamod-2: An overview. Technical report, NATSEM, National Center

for Social and Economic Modelling, University of Canberra.
Klein, J., and M. Moeschberger. 2003. Survival analysis. Techniques for censored and truncated data. 2nd ed. New York:

Springer.
Klevmarken, N., and P. Olovsson. 1996. Direct behavioral effects of income tax changes - simulation with the Swedish

model MICROHUS. In Microsimulation and Public Policy. Amsterdam: North-Holland-Elevier.
L’Ecuyer, P., L. Meliani, and J. Vaucher. 2002. SSJ: a framework for stochastic simulation in Java. In Proc. of the 2002

Winter Simulation Conference, ed. E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, 234–242: Piscataway,
New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Mayer, K. U., and N. B. Tuma. (Eds.) 1990. Event history analysis in life course research. University of Wisconsin Press.
Morrison, R., and B. Dussault. 2000. Overview over DYNACAN: A fully-fledged Canadian actu-

arial stochastic model designed for the fiscal and policy analysis of social security schemes.
http://www.actuaries.org/CTTEES SOCSEC/Documents/dynacan.pdf. [accessed February 2009].

NIDI 2006, June. MicMac newsletter. http://www.nidi.knaw.nl/en/micmac/newsletter/newsletter 1/micmac-newsletter-01.pdf.

Zinn, Gampe, Himmelspach, and Uhrmacher

O’Donoghue 1999. Dynamic microsimulation: A methodological survey. Brazilian Electronic Journal 4 (2).
Orcutt, G. 1957. A new type of socio-economic system. Review of Economics and Statistics 39 (2): 116–123.
Orcutt, G., M. Greenberger, J. Korbel, and A. Rivlin. 1961. Microanalysis of socioeconomic systems: A simulation study.

New York: Harper & Row.
Perumalla, K. 2005. µsik: A micro-kernel for parallel/distributed simulation systems. In ACM/IEEE/SCS Workshop on Parallel

and Distributed Simulation (PADS). Monterey, CA: IEEE Computer Society Press.
Rubinstein, R., and D. Kroese. 2008. Simulation and the Monte Carlo method. 2nd ed. Series in Probability and Statistics.

Wiley.
Satyabudhi, B., and S. Onggo. 2008. Parallel discrete-event simulation of population dynamics. In Proceedings of the 2008

Winter Simulation Conference, ed. S. J. Mason, R. R. Hill, L. Mönch, O. Rose, T. Jefferson, and J. W. Fowler, 1047–1054:
Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Sauerbier, T. 2002. UMDBS - a tool for dynamic microsimulation. Journal of Artificial Societies and Social Simulation 5
(2): <http://jasss.soc.surrey.ac.uk/5/2/5.html>.

Spielauer, M. 2006. The ”lifecourse” model, a competing risk cohort microsimulation model: source code and basic concepts
of the generic microsimulation programming language ModGen. http://www.demogr.mpg.de/papers/working/wp-2006-
046.pdf.

Statistics Canada 2004. The lifepath microsimulation model: An overview. http://www.statcan.gc.ca/spsd/LifePaths.htm.
[accessed February 2009].

Statistics Canada 2009. Modgen version 9.0.10: Developer’s guide. http://www.statcan.gc.ca/spsd/ModgenDev EN.pdf. [ac-
cessed February 2009].

Uhrmacher, A. M., and D. Weyns. (Eds.) 2009. Multi-agent systems: Simulation and applications. Taylor and Francis.
van der Gaag, N., J. de Beer, and F. Willekens. 2005. Combining micro and macro approaches in demographic forecasting.

In Work Sessions on Demographic Projections: European Communities.
van der Gaag, N., J. de Beer, and F. Willekens. 2008. The MicMac pre-processor. Technical report, NIDI, The Hague.
van Imhoff, E. 1990. The exponential multidimensional demographic projection model. Mathematical Population studies 2

(3): 171–181.
Willekens, F. 2005, May. Bridging the micro-macro gap in population forecasting. MicMac project proposal, NIDI, The

Hague.
Willekens, F. 2007. Continuous-time microsimulation in longitudinal analysis. Technical report, NIDI, The Hague.
Willekens, F., J. de Beer, and N. van der Gaag. 2007a. Report on input data requirements of MIC. Technical report, NIDI,

The Hague.
Willekens, F., J. de Beer, and N. van der Gaag. 2007b. Report on input data requirements of MIC. Technical report, NIDI,

The Hague.
Wolf, D. 1986. Simulation methods for analyzing continuous-time event-history models. Sociological Methoddology 16:283–

308.
Wolf, D. 2001. The role of microsimulation in longitudinal data analysis. Special Issue on Longitudinal Methodology,

Canadian Studies in Population 28 (2): 313–339.
Zeigler, B. P., H. Praehofer, and T. Kim. 2000. Theory of modeling and simulation. 2nd ed. London: Academic Press.
Zinn, S., and J. Gampe. 2009. MicCore user’s guide. MPIDR, Rostock.

AUTHOR BIOGRAPHIES

SABINE ZINN is a Ph.D candidate at the MPIDR and the University of Rostock. She received a diploma in business
mathematics from the University in Jena. She is interested in microsimulation and statistical programming. Her email address
is <zinn@demogr.mpg.de>.

JAN HIMMELSPACH is a post doc in the Computer Science Department at the University of Rostock. He received his
Ph.D. in Computer Science from the University of Rostock. His research interest is on software engineering for modeling
and simulation, credibility of modeling and simulation, and on efficient modeling and simulation solutions. His email address
is <jh194@informatik.uni-rostock.de>.

JUTTA GAMPE is the Head of the Laboratory of Statistical Demography of the MPIDR. She received her Ph.D in
Statistics from the TU Berlin. Her research interest is in statistical demography and related topics. Her email address is

mailto:zinn@demogr.mpg.de
mailto:jh194@informatik.uni-rostock.de

Zinn, Gampe, Himmelspach, and Uhrmacher

<gampe@demogr.mpg.de>.

ADELINDE M. UHRMACHER is an Associate Professor at the Department of Computer Science at the University of
Rostock and head of the Modeling and Simulation Group. Her research interests are in modeling and simulation methodologies
and their applications. Her email address is <lin@informatik.uni-rostock.de>.

mailto:gampe@demogr.mpg.de
mailto:lin@informatik.uni-rostock.de

	INTRODUCTION
	BACKGROUND
	Microsimulation for Population Projections
	Stochastic Model for Individual Life Courses
	 Continuous-Time Multi-State Model

	MICROSIMULATION TOOLS AND M&S FRAMEWORKS: A SURVEY
	MicMac Microsimulation (Requirements)
	Microsimulation Tools
	``General'' M&S Tools

	IMPLEMENTATION IN JAMES II
	JAMES II: General Overview
	Incorporation of Mic-Core
	 The modeling plug-in for JAMES II
	 A simulator for Mic-core as a plug-in for JAMES II

	Workflow of the microsimulation using Mic-core

	AN EXAMPLE
	``Production run'' results
	Validation of the results

	CONCLUSION AND OUTLOOK

