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ABSTRACT

We present a case study of reusing parameters and reactions of a deterministic model of a biochemical system in order to
implement a stochastic one. Our investigations base on a model of the Wnt signaling pathway and aim to study the influence
of the cell cycle on the pathway’s dynamics. We report on our approaches to solve two major challenges: one is to gather and
convert kinetic model parameters, e.g. constants for diffusion and enzymatic reactions. The second challenge is to provide
the first implementation of reactions that exhibit Michaelis-Menten kinetics into a π-Calculus based approach by deploying
the Imperative π-Calculus.

1 INTRODUCTION

Models in systems biology are hardly built from scratch, but typically deploy other models or model parts, e.g. Lecca et al.
(2004) and Ciocchetta et al. (2008). This is facilitated by the rapidly increasing number of models published and partially
stored in publicly accessible databases. However, this type of generating models also bears specific problems as fragments of
models have to be combined with other sources of knowledge. Parameters and biochemical reactions are the prime subjects
of this “white-box” reuse. Thereby, the modeler faces diverse problems, in particular when switching from the deterministic
to the stochastic world and/or from one modeling formalism to another. In the following, a model of the Wnt/β -catenin
signaling pathway, which is being developed in our group, shall serve as a case study to illuminate some of these problems.

Investigating the mechanisms that influence the growth and development of human neural progenitor cells is of particular
relevance for the study of e.g. Parkinson’s or Alzheimer’s diseases. A main focus of research in this field is on the
Wnt/β -catenin signaling pathway, an intracellular reaction network with decisive impact on the development of cells, e.g.
neural stem cells (Lange et al. 2006). It has been subject of modeling efforts in other biological systems before, e.g. Lee
et al. (2003), Tymchyshyn and Kwiatkowska (2008), and Cho et al. (2006). The goal of our simulation study is to analyze
the characteristics of noise induced by the cell cycle, which is a sequence of states proliferating cells traverse, and their
impact on the Wnt signaling pathway activity. Therefore, our model integrates information about the cell cycle into a Wnt
signaling pathway model. The model is primarily based on Lee et al. (2003), which is a deterministic, continuous model, and
adopts parameters from Tymchyshyn and Kwiatkowska (2008). We simplify the model by omitting reactions that we assume
to be of less interest for our investigations. As recent studies reveal the importance to distinguish between activities in the
nucleus and the cytosol of the cell (Willert and Jones 2006), we extend the original model by introducing compartments.

Furthermore, as the number of one of the key players, i.e. the degradation complex, is rather low, it appears suitable
to move from a deterministic to a stochastic approach (Wolkenhauer et al. 2004). The resulting model comprises different
reaction types like diffusion, Mass Action, and Michaelis-Menten, that need to be taken into account.

In the following, the developed model shall serve as a case study to address two challenges of building cell biological
models by partial reuse. The first challenge is to gather model parameters and convert kinetic parameters into stochastic
ones. We will discuss the various sources for biological data coming from both literature and wet-lab experiments and their
use in the model. Therefore, we extend the work presented in Kuttler and Niehren (2006), where the integration of initial
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concentrations and association constants into stochastic modeling is presented and show how to obtain stochastic constants
for diffusion reactions and Michaelis-Menten kinetics. The second challenge is on the side of the modeling language. We
chose to implement our model in the Imperative π-Calculus (John et al. 2008, John et al. 2009), since we aim to explore its
modeling power regarding the inclusion of different sorts of reactions and also reaction kinetics. The particular challenge
here is to include reactions following Michaelis-Menten dynamics. Our result is, to the best of our knowledge, the first
implementation of reactions with Michaelis-Menten kinetics in a π-Calculus based approach.

The paper is structured as follows. First we describe the Wnt signaling pathway and its key players and present the
overall structure of our model in Section 2. We then present our solutions for gathering model parameters, including the
conversion of kinetic parameters into stochastic ones in Section 3. Section 4 provides an introduction to the Imperative
π-Calculus and in Section 5 an extract of the model, i.e. the implementation of reactions with Michaelis-Menten kinetics in
the Imperative π-Calculus, is shown.

2 THE WNT SIGNALING PATHWAY

The main outcome of the Wnt/β -catenin signaling pathway is an increase of the amount of β -catenin in response to Wnt
molecules binding to receptors at the outside of the plasma membrane. In the absence of Wnt, a degradation complex is
operating efficiently that reduces the amount of β -catenin. At the arrival of Wnt molecules, the degradation complex gets
deactivated and consequently, due to its constant production, the amount of β -catenin increases. This affects the regulation
and transcription of genes and accompanies the cells in their specialization (differentiation) process. We work in vitro with
human neural progenitor cells (hNPCs) (Pollock et al. 2006). HNPCs start their differentiation asynchronously into neural
cell types like e.g. astrocytes and neurons. This is due to their commitment to the cell cycle.

The cell cycle is a central biological process for cell and cell population growths. It is divided in four phases called G1,
S, G2 and M. During the first one, G1, a cell has two possibilities: either to enter the cycle and to proceed with the three
other phases or to start differentiation. Only cells in G1 are sensitive to the Wnt signal. In this way, the cell cycle interferes
experimental studies on the activity of the Wnt/β -catenin pathway. Thus, the question arises, whether observed patterns in
wet-lab data can be explained under consideration of the cell cycle. Our model shall help to address this question.

We model the Wnt/β -catenin signaling pathway during the differentiation of a single human neural progenitor cell. As
shown in Figure 1, the cell contains two compartments: the cytosol and the nucleus, represented by two concentric spheres.
The main actors of our model are β -catenin, Axin and the T-cell factor (TCF). In the cytosol, de-/phosphorylated Axin
(Axin/AxinP) and β -catenin (BcatCyt) are located. The nucleus contains TCF and β -catenin (BcatNuc). Two reactions are
defined for Axin: aDec, describing the decay of Axin, i.e. its number is simply reduced by one, and aPho representing its
phosphorylation, i.e. Axin turns into AxinP. Symmetrically, the two reactions aDep and apDec represent the dephosphorylation
and the decay of AxinP. Notice, that aDep occurs only in the presence of the Wnt signal. The activation of aDep is the only
effect the Wnt signal has in our model. Reactions bProd and bDec are defined for BcatCyt, describing its production, i.e.
its amount is increased by one, and its decay, respectively. The key reaction of the pathway is bDeg, which describes the
AxinP-mediated degradation of BcatCyt. We assume bDeg to be an enzymatic reaction with AxinP being the enzyme and
BcatCyt the substrate. Similarly, the production of Axin, aProd, involves BcatNuc as a substrate and TCF as an enzyme.
Reactions bIn and bOut represent the translocation of β -catenin from the cytosol to the nucleus and back. The cell cycle
is abstracted by two reactions, phS and phG2, that introduce the activation delay of the signaling pathway. Once reaction
phG2 is performed, aDep, i.e. the dephosphorylation of AxinP, is enabled immediately. Except bDeg and aProd, which
follow Michaelis-Menten kinetics, we assume Mass Action kinetics for all reactions in the model.

Our model is an adaptation of the work by Lee et al. (2003) from which we made the following simplifications: We
reduced the pathway components to the three major proteins mentioned above. The binding of Wnt molecules to receptors
and the signal transduction at the cell membrane are abstracted as these processes still remain poorly defined and understood.
The pathway activation was originally described by a time-dependent function. In our model activation is a discrete step,
immediately performed after achievement of the cell cycle. We simplified the composition of the degradation complex by
only referring to Axin as its unique component. This is possible due to the low amount of Axin available in the cell compared
to the other components of the degradation complex. This last assumption reinforced the suitability of a stochastic model.

3 STOCHASTIC PARAMETERIZATION

In this section, we show how we calculated the different sorts of parameters needed for our model. In Table 1, we present
the parameters as they are used in our model, report source of the data, and refer to the approach used to calculate them.
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Figure 1: Schematic overview of the model. Double-headed arrows indicate that reactants influence a process but are not
consumed. Reaction rate constants begin with a lower case k and dissociation constants with a capital K and correspond
with the parameter names given in Table 1. The two compartments, i.e. cytosol and nucleus, are indicated by dashed circles.

(I) Compartment volumes.
The volume is a prerequisite for calculating stochastic parameters as the reaction speed is dependent on the probability of
molecules to collide. Unfortunately, in many ordinary differential equation (ODE) models data on the volume is not reported.
Thus, as no information in the literature could be found, we measured the volume of hNPCs and their cytosol and nucleus
using microscopy and impedance as a control.

(II) Molecules’ number and stochastic rate constants.
Essential parameters of stochastic models are the initial number of molecules and stochastic rate constants. As described
in Kuttler and Niehren (2006), they are obtained from initial concentrations and kinetic rate constants. Concentrations are
usually given in mol/l (sometimes also denoted by M), i.e. amount of molecules per volume. Thus, in order to obtain
number of molecules N, concentrations are multiplied by the Avogadro constant (NA ≈ 6.023 ·1023mol−1), i.e. number of
molecules per mole, and by the volume of the compartment the species resides in:

N = C ·NA ·V (1)

where C is the concentration and V is the volume of the cell or compartment.
The stochastic rate constant k0

sto of zero order reactions, i.e. reactions without reactants, is calculated based on the volume,
the Avogadro constant, and the kinetic rate constant k:

k0
sto = k ·NA ·V (2)

For first order reactions, the kinetic and the stochastic rate constant coincide. For second order reactions, i.e. reactions with
two reactants, the stochastic rate constant k2

sto is calculated by:

k2
sto =

k
NA ·V

(3)

(III) Diffusion rate constants.
We follow the approach in Elf and Ehrenberg (2004), i.e. we consider compartments to be separated containers, called
sub-volumes, between which molecules diffuse in a discrete event manner. A diffusion event describes the motion of one
particle from the center of one compartment to the center of the other. Thereby, the cytosol and the nucleus form a structure
of two concentric spheres, the first surrounding the latter, see Figure 1. To determine the rate constants of diffusion events
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Table 1: Stochastic model parameters. Description gives information about the reaction, values contains the calculated value
as used in the model, calculation refers to the way the value is calculated, and source provides the source of the data the
calculation is based on: [1] Lee et al. (2003), [2] Krieghoff (2006), [3] Alam et al. (2004), or [4] Schaeffer (2008).

Description Values Calculation Source
Initial amount of Axin molecules NAxin = 0 I, II [1]
Initial amount of phosphorylated Axin molecules NAxinP = 11 I, II [1]
Initial cytosolic amount of β -catenin molecules NBcatCyt = 18390 I, II [1]
Initial nuclear amount of β -catenin molecules NBcatNuc = 7483 I, II [1]
Initial amount of TCF molecules NTCF = 3207 I, II [1]
β -catenin production rate constant kbProd = 222.3 min−1 I, II [1]
β -catenin decay rate constant kbDec = 2.57 ·10−4 min−1 I, II [1]
β -catenin diffusion rate constant into the cytosol kbOut = 1.65 ·10−5 min−1 I, III [2]
β -catenin diffusion rate constant into the nucleus kbIn = 6.72 ·10−6 min−1 I, III [2]
S phase delay kphS = 3.06 ·10−3 min−1 IV [3]
G2/M phase delay kphG2 = 6.12 ·10−3 min−1 IV [3]
β -cat. degradation (Michaelis-Menten parameter) KbDeg = 63052, kbDeg = 206 min−1 I, II, V [1]
Axin production (Michaelis-Menten parameter) KaProd = 6414, kaProd = 0.043 min−1 I, II, V [1]
Axin decay kaDec = 0.005 min−1 I, II [4]
Phosphorylated Axin decay kapDec = 0.002 min−1 I, II [4]
Axin phosphorylation kaPho = 0.2 min−1 I, II [4]
Axin dephosphorylation kaDep = 0.1 min−1 I, II [4]

(diffusion constants), we start off with Fick’s first law

J =−D
dφ

dx
, (4)

that describes the diffusive flux J in
[
mol·m−2·min−1

]
through the unit area. It depends on the diffusivity D of the diffusing

species in
[
m2·s

]
and the concentration gradient dφ/dx in

[
mol·m−4

]
, with the direction of the latter being against the

motion. We are interested in the rate constant of a single particle moving, such that we consider a difference of one particle
between the two compartment centers. Therefore, we set the gradient to dφ/dx = −1/x, where x is the absolute distance
between the compartment centers. Notice, that by this step, we convert the gradient from a concentration difference over
some distance with unit

[
mol·m−4

]
into a difference of particle numbers over some distance with unit

[
m−1

]
. Since J is

given for the unit area, we need to multiply by the area A connecting the cytosol and the nucleus. Under consideration of
the volume V of the compartment where the molecule starts, we obtain the stochastic diffusion constant

Dsto =
D·A
x·V

, (5)

giving us the intended unit s−1 in its final result. Notice, however, that in our model we do not use the time unit s but min,
such that further conversions are required. We obtain the values for this formula in the following way. D can be calculated
based on a half-recovery time (HRT), which is experimentally determined by a technique called Fluorescence Recovery
After Photobleaching (FRAP), from D = (w2)/(4·HRT ), where w is the width of the laser beam used for bleaching. As
presented in Krieghoff (2006), the half-recovery time of β -catenin is HRTβ = 2 : 12 min with a width of the laser beam
w = 514·10−9m. The diffusion surface A is given by the average amount and the radius of pores covering the nucleus, as
presented in Panté and Kann (2002) A = 3.58.10−12 m2. The diffusion distance x results from our compartment model with
two concentric spheres, x = rNuc +(rCyt − rNuc)/2, where rX is the radius of the sphere bordering compartment X .

(IV) Cell cycle delay.
In our model, the cell cycle induces a delay on the activation of the Wnt signaling pathway. Based on Smith and Martin
(1973), we assume that the progression of a cell from one cell cycle phase to the next one follows exponential distribution.
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Thus, we need to obtain (1) the probability of a cell to start in a specific phase and (2) the rate constant for it to proceed.
We determined (1) by performing Fluorescence-activated cell sorting analysis (FACS). (2) yields the inverse of the phase’s
duration, which is according to Alam et al. (2004), for G1 50%, for S 33.3%, and for G2/M 16.7% of the entire duration
of the cell cycle. The cell cycle duration of hNPCs was obtained experimentally.

(V) Michaelis-Menten kinetics.
A typical enzymatic reaction can be divided into a reversible binding of the substrate, which leads to an intermediate
enzyme-substrate complex, and the actual enzymatic reaction step:

E +S
k1

GGGGGBFGGGGG

k−1

ES
k2

GGGAE +P (6)

with k1 as the rate constant of the association (forward) and k−1 of the dissociation (backward) reaction of the substrate
binding, and k2 as the reaction rate constant of the irreversible enzymatic step. Enzymes E are molecules acting as catalysts,
i.e. they facilitate the reaction of a substrate S to a product P without their own consumption. Many enzymatic reactions take
place with relatively low amounts of enzyme molecules compared to the substrate amounts and follow Michaelis-Menten
kinetics. This allows for omitting the detailed Mass Action kinetics (6) and apply a more abstract equation for describing the
reversible binding and enzymatic reaction in a single step. The Michaelis-Menten theory describes the kinetics of enzyme
reactions as a hyperbolic saturation curve where even at very high substrate concentrations the maximum reaction speed is
limited by substrate saturation of the enzyme. The maximum speed of the reaction vmax therefore depends strongly on the
total enzyme amount: vmax = k2 · [E]. The substrate concentration, at which the reaction rate reaches half of its maximum
speed is called the Michaelis constant KM and is defined as follows: KM = (k−1 + k2)/k1. In the most simple case, when
the final enzymatic step is the rate-limiting step, i.e. k2 is much lower than k−1, the Michaelis constant is almost equal to
the dissociation constant of the enzyme-substrate complex:

KM ≈
k−1

k1
= Kd , if k2� k−1 . (7)

The dissociation constant Kd specifies the propensity of the complex to separate into its smaller parts, i.e. the ratio between
the association (forward) and dissociation (backward) reaction. Applying the approximation of KM ≈ Kd can be very helpful
as both rate constants for the binding (k1) and unbinding (k−1) reactions are, unlike to the dissociation constant, typically
hard to derive from wet-lab experiments. All together, i.e. the substrate amount [S], the maximum reaction rate vmax, and
KM , determine the reaction rate v of the whole enzymatic reaction described by the Michaelis-Menten equation:

v =
vmax · [S]
KM +[S]

≈ k2 · [E] · [S]
Kd +[S]

. (8)

For example, for Axin-mediated β -catenin degradation the rate equation yields

v≈
kbDeg · [AxinP] · [BcatCyt]

KbDeg +[BcatCyt]
. (9)

For stochastic simulation, the parameters for the Michaelis-Menten equation have to be parameterized according to the
methods described above. The differences between detailed Mass Action and more abstract Michaelis-Menten kinetics for
modeling enzymatic reactions are also nicely described in Breitling et al. (2008).

4 THE IMPERATIVE π-CALCULUS

Conceptually, the Imperative π-Calculus pursuits two main ideas: First, it allows to associate reactants with attributes,
describing e.g. their internal state or their location in space. Reaction constraints are assigned to reaction rules, possibly
taking the attribute values of reactants into account. E.g., the de-/phosphorylation of Axin in our model of the Wnt signaling
pathway can be implemented by introducing a reactant Axin(s) with one attribute, representing the two possible states
Axin(’free’) and Axin(’phos’). The fact that Axin(s) can only be dephosphorylated in its phosphorylated state
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and vice versa can be expressed by the two reaction rules

Axin(’free’)
kpho−→ Axin(’phos’) Axin(’phos’)

kdep−→ Axin(’free’),

where kdep and kpho are the rate constants of Axin de-/phosphorylation, respectively. Notice, that throughout the paper, we
freely use names in our implementations that directly refer to the parameters given in Table 1. The reactions rules above
implicitly include simple constraints on attribute values, since they can only be applied to either state Axin(’free’) or
Axin(’phos’). More explicitly this idea is illustrated by the rules

Axin(s)
if s=’free’ then kpho else 0
−−−−−−−−−−−−−−−−−−→ Axin(’phos’) Axin(s)

if s=’phos’ then kdep else 0
−−−−−−−−−−−−−−−−−−→ Axin(’free’),

where the rate constants upon the arrows are replaced by explicit reaction constraints. Here the reaction constraints directly
define rate constants, possible in dependence of the reactants’ attributes. In this sense they can also be seen as functional
rate constants. Notice, that a rate constant of 0 ensures that a reaction never occurs even if the reactants are available. A
more compact form of the rules above is obtained by writing

Axin(s)
if s=’free’ then kpho else kdep−−−−−−−−−−−−−−−−−−−→ Axin(if s=’free’ then ’phos’ else ’free’),

provided that the attribute values of reactants can be described by expressions like if-then-else. In the following, we stick
to this form as it is closest to the actual description in the Imperative π-Calculus.

The second idea is to introduce a global store which maps names to values. Constraints can contain assignments that
change the mapping, thus, introducing side effects. Notice, that value changes are not committed to the global store until a
reaction is actually performed. Thus, constraints do not influence each other during evaluation. The effects of assignments
are taken into account by constraint (re-)evaluation before every reaction. E.g., in our model, the dephosphorylation of Axin
can only be performed if the Wnt pathway is activated. As described in Section 2, the Wnt signal is on immediately when
the cell cycle enters state G1. This can be implemented by

Axin(s)
if s=’free’ then kpho else if wnt then kdep else 0
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Axin(if s=’free’ then ’phos’ else ’free’)

Cycle(s)
if s=’G2’ then wnt:=true; kphG2 else 0
−−−−−−−−−−−−−−−−−−−−−−−−→ Cycle(’G1’),

where kphG2 is the rate constant for the cell cycle switching from state G2/M to state G1 and true is a boolean constant.
The presence of the Wnt signal is captured by the global name wnt. We introduce a rather abstract reactant Cycle(s),
with possible states Cycle(’G1’) and Cycle(’G2’). For simplicity, state Cycle(’S’) is omitted in this example.
When Cycle(’G2’) turns into Cycle(’G1’) the value true is assigned to the global name wnt. By extending the
constraint of the Axin dephosphorylation rule it is ensured, that the reaction can only occur when the Wnt signal is on, i.e.
when wnt = true. Figure 2 shows a possible evolution of a system with one Cycle(’G2’), one Axin(’free’), two
Axin(’phos’), and wnt being set to the boolean constant false. Initially, our reaction rules define four reactions, one
for each reactant in the system. However, reactions turning Axin(’phos’) into Axin(’free’) can never occur, since
their reaction constraint evaluates to 0 for wnt = false. When Cycle(’G2’) turns into Cycle(’G1’), the mapping
of wnt in the global store is changed to true. Because of constraint reevaluation the rate constant of all reactions from
Axin(’phos’) to Axin(’free’) changes to kdep. Since we did not define any reaction rule involving Cycle(’G1’)
as a reactant, the number of potential reactions reduces to 3.

In the remainder of this section, we first introduce the π-Calculus and then describe the attribute language, which is
used to express both attribute values and reaction constraints. Thereupon, we show in which way the Imperative π-Calculus
extends the π-Calculus. Due to spatial restrictions and since we do not wish to prove the correctness of our encodings
in Section 5, we omit formal definitions of semantics. We prefer to provide informal descriptions and examples in order
to support the understanding of the basic ideas and mechanisms of the language. For a complete formal definition of the
Imperative π-Calculus see (John et al. 2009) and (John et al. 2008).

The π-Calculus. The π-Calculus (Milner 1999) defines infinite sets of process names Proc and channel names Chans. The
syntax of the π-Calculus is shown in Figure 3. Processes can communicate on channels, i.e. they can send x!ỹ and receive
x?ỹ. Thereby, x defines the subject of the communication, i.e. the channel the communication is performed on, and ỹ the
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Figure 2: A possible evolution of a system with one Cycle(’G2’), one Axin(’free’), two Axin(’phos’), and
wnt = false. Reactions that can occur are highlighted with a gray background. By changing the value of wnt from false
to true, the rate constants of all reactions from Axin(’phos’) to Axin(’free’) change from 0 to kdep.

Processes P,Q ::= A(ỹ) defined process
| P1 | P2 parallel composition
| (νx)P channel creation
| Σ sums
| 0 empty solution

Sums Σ ::= π.P prefixed process
| Σ+Σ′ summation

Prefixes π ::= x?ỹ receiver
| x!ỹ sender

Definitions D ::= A(x̃) , P parametric process definition

Figure 3: Syntax of the π-Calculus: x, x̃, ỹ ∈ Chans

objects of the communication, i.e. those channels which are send or received. With (νx)P a new channel is introduced with
scope on P. P1 | P2 denotes concurrently running processes and + the exclusive choice between different communications
a process can perform. The 0 process does nothing and is usually omitted. Process definitions A(x̃) , P, with A ∈ Proc,
allow to define processes with parameters. They are instantiated by defined processes A(ỹ) that call definition A(x̃) with a
specific tuple of channels. Whenever we write A(y1 . . .yn), we assume that a process definition A(x1 . . .xn) , P is declared.
No two processes shall be defined with the same name. Notice, that process definitions already support the basic concept
of attributes. E.g., we could introduce channel names phos and free and instantiate Axin(s) by Axin(phos) and
Axin(free). However, without reaction constraints, the use of this concept is limited, such that we prefer distinct process
definitions for different states, e.g. Axin() and AxinP().

Following the ideas in Regev and Shapiro (2004), π-Calculus programs that describe reaction networks consist of a
set of process definitions and one initial process. The process definitions introduce the reacting species, e.g. Axin() and
AxinP(). The initial process (or initial solution) is a parallel composition of defined processes that describes the molecules,
i.e. the species instances, which are initially in the system. For example, a model of Axin de-/phosphorylation not considering
the cell cycle and an initial solution of 5 Axin() and 5 AxinP() is shown in Figure 4, where ∏

n
i=1 P abbreviates a parallel

composition of n processes. In the π-Calculus, each communication needs to have exactly one sender and one receiver.
On one hand this means that no reactions can be written with more than two reactants. Although, this reflects the basic
assumption for the stochastic modeling of biochemistry (Gillespie 1976), it also shows a basic limitation of the π-Calculus
compared to other formalism like BioPEPA (Ciocchetta and Hillston 2008), Petri-Nets (Heiner et al. 2008), or the BioNetGen
(Danos et al. 2007). However, with the help of the imperative extension it might be possible to overcome this restriction (see
Section 5). On the other hand, for reactions with only one reactant as our model of Axin de-/phosphorylation, it is necessary
to introduce a dummy communication partner, which we call Timer() throughout the paper. Axin() communicates with
Timer() on channel pho and then turns into AxinP(). AxinP() proceeds analogously on channel dep.

A π-Calculus with stochastic semantics, see (Priami 1995), allows to perform stochastic simulations in the lines of
Gillespie (1976). A stochastic semantics requires reactions with rate constants. Since in the π-Calculus, reactions involve
exactly one sender and one receiver, we introduce rate constants by assigning a real number to the receiver. Thus, in our
previous example phosphorylated Axin is represented by AxinP() , dep[kdep]?().Axin(), where the rate constant
of the reaction is given within [].
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Process d e f i n i t i o n s
Axin ( ) , pho ? ( ) . AxinP ( ) / / f r e e a x i n p h o s p h o r y l a t e s
AxinP ( ) , dep ? ( ) . Axin ( ) / / p h o s p h o r y l a t e d a x i n d e p h o s p h o r y l a t e s
Timer ( ) , pho ! ( ) . Timer ( ) + dep ! ( ) . Timer ( ) / / dummy communica t ion p a r t n e r
I n i t i a l s o l u t i o n / / s t a r t i n g wi th 5 Axin ( ) , 5 AxinP ( ) , 1 Timer ( )
∏

5
i=1 Axin ( ) | ∏

5
i=1 AxinP ( ) | Timer ( )

Figure 4: A simple model of Axin de-/phosphorylation in the π-Calculus

Figure 5: A part of the Continues Time Markov Chain with reactions and initial solution as described in the example

The stochastic semantics of the π-Calculus defines rules for building a Continues Time Markov Chain (CTMC). Based
on the structural congruence of the π-Calculus, the states of the chain are given by the equivalence classes of all solutions
reachable from the initial solution. For example, (∏

6
i=1 Axin() | ∏

4
i=1 AxinP() | Timer()) and (Timer() | ∏

4
i=1

AxinP() | ∏
6
i=1 Axin()) represent one successor state of the initial solution. Transitions between the states are labeled

with transition rates. Transition rates are derived by first grouping all reactions that lead to the same state and summing up
their rate constants. The initial solution in Figure 4, for example, yields two successor states with transition rates as illustrated
in Figure 5, with kpho = 0.2 and kdep = 0.1. Notice, that by defining the transition rates in this way, we obtain Mass Action
as the underlying reaction kinetics. For example, consider the reaction of Axin() to AxinP() with 5 Axin() as in the
initial state. According to the law of Mass Action, we need to determine the product of the amounts of the two reactants,
i.e. the sender and the receiver, and the rate constant, and thus obtain 1 ·5 ·0.2 = 1.0. Notice, that the stochastic semantics
of the π-Calculus provides facilities for assigning infinite rate constants to reactions. Reactions with infinite rate constants
happen immediately without time consumption.

The Attribute Language of the Imperative π-Calculus. We define an attribute language L that allows to express both
attributes and reaction constraints. We keep L rather abstract, i.e. we define its basic properties but leave it to the user to
introduce a concrete instance. This allows for an adaption of the language to the respective application area. We require
L to define a call-by-value λ -Calculus. This is essential because, as shown above, reaction rules are split into two parts,
the sender and the receiver. Therefore, we must be able to split reaction constraints. This is done by defining functions,
i.e. λ -Calculus abstractions, on the receiver side and an argument on the sender side. To determine the rate constant of a
communication (reaction) the function on the receiver side is applied to the argument on the sender side.

L defines a tuple (Consts,Succ,⇓), where Consts refers to a set of basic constants of the language, like R, Booleans,
Strings, or functional constants like +,-,*,/, or =. We freely use infix notation. As already mentioned above, the Imperative
π-Calculus introduces a global store that maps (channel) names to values. Thus, Consts must contain the function constant
val that returns the value of channel names. Succ represents the set of successful values in Consts, i.e. those values that
enable reactions as the result of reaction constraint evaluation. For example, in our introducing examples and also throughout
the paper, values in R>0 are successful values. Rate constants different to that, e.g. 0, do not allow for reactions to occur.

In order to evaluate expressions, we introduce with ⇓ a big step evaluator, that maps expressions to values. More
precisely, ⇓ is a partial function Exprs×Env→ Vals×Env, where Exprs is a set of expressions, Env a set of environments,
and Vals a set of values. With Env, we account for the global store of the Imperative π-Calculus. In L values cover the set
of constants Consts, the set of channel names Chans, and the λ -Calculus abstraction λx.e, with e ∈ Exprs. Depending on
the application the set of values in L can be extended by other constructs, e.g. pairs. The set of expressions Exprs contains
besides the usual λ -Calculus application e1 e2, with e1,e2 ∈ Exprs, also the assignment e1 := e2 to modify the mapping in
the global store. In the modeling, we also use conditions of the form if e then e1 else e2 and sequences e1;e2, which are
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Processes P,Q ::= A(ẽ) defined process
| P1 | P2 parallel composition
| (νx:e) P channel creation
| Σ sums
| 0 empty solution

Sums Σ ::= π.P prefixed process
| Σ+Σ′ summation

Prefixes π ::= e1[e2]?ỹ receiver
| e1[e2]!ẽ sender

Definitions D ::= A(x̃) , P parametric process definition

Figure 6: Syntax of the Imperative π-Calculus: e,e1,e2, ẽ are expressions and v, ṽ values of L , and x, x̃, ỹ ∈ Chans

I n i t i a l mapping
wnt : f a l s e / / i n i t i a l l y Wnt i s a b s e n t
Process d e f i n i t i o n s
/ / Axin
Axin ( s ) , d e l a y [ λ .

i f s = ’ f r e e ’ then kpho
e l s e

i f v a l wnt then kdep
e l s e 0

] ? ( ) . Axin ( i f s = ’ f r e e ’ then ’ phos ’ e l s e ’ f r e e ’ )
/ / C e l l c y c l e
Cycle ( s ) , d e l a y [ λ .

i f s = ’G2’ then wnt := t rue ; kG2
e l s e 0

] ? ( ) . Cycle ( ’ G1 ’ )
/ / dummy p r o c e s s a s communica t ion p a r t n e r
Timer ( ) , d e l a y [ u n i t ] ! ( ) . Timer ( )
I n i t i a l s o l u t i o n / / s t a r t i n g wi th 1 Axin ( ’ f r e e ’ ) , 2 Axin ( ’ phos ’ ) , 1 Cycle ( ’ G2 ’ )
Axin ( ’ f r e e ’ ) | ∏

2
i=1 Axin ( ’ phos ’ ) | Cycle ( ’ G2 ’ ) | Timer ( )

Figure 7: A model of Axin de-/phosphorylation depending on the cell cycle in the Imperative π-Calculus

basic syntactic sugar. As usual, the value of sequences is given by the evaluation of the second expression.

Obtaining the Imperative π-Calculus by extending the π-Calculus. The syntax of the Imperative π-Calculus can be
seen in Figure 6. It extends the π-Calculus in three ways:

1. Values are assigned to channels.
2. Constraints are associated to communications, which are defined in [] on the sender and receiver side (replacing

rate constants).
3. Expressions define the arguments of defined processes, subjects of senders and receivers, and objects of senders.

Since we introduce a global store, programs in the Imperative π-Calculus contain, besides process definitions and an initial
solution, also an initial mapping from names to values. For example, a model describing the reactions in Figure 2 is shown
in Figure 7. The constant unit defines a dummy value. The values of names which are not mentioned in the initial mapping
are assumed to be unit. Since all reactions have only one reactant, their constraints can be fully declared on the receiver
side. Thus, the abstractions are defined without any parameter (λ ) and the senders provide unit as arguments.

The stochastic semantics of the Imperative π-Calculus comes with two major differences: First, the states of the CTMC
are not only defined by the processes in the solutions but also by the mapping in the global store. Thus in our example
above, (Axin(’free’) | ∏2

i=1Axin(’phos’) | Cycle() | Timer(), wnt:false) represents a different state than
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I n i t i a l mapping
wnt : t rue / / wnt s i g n a l i s on
nBcatCyt : NBcatCyt / / amount o f s u b s t r a t e
nAxinP : NAxinP / / amount o f enzyme
c a l c R a t e : λ s . λe . ( kbDeg ∗ e ∗ s ) / ( KbDeg + s ) / / c a l c r a t e f o r M−M. ( s , e amounts s u b s t r a t e , enzyme )
Process d e f i n i t i o n s
/ / D e g r a d a t i o n o f be t a−c a t e n i n
BDeg ( ) , d e l a y [ λ .

nBca tCyt := v a l nBcatCyt −1;
c a l c R a t e ( v a l nBcatCyt +1) nAxinP

] ? ( ) . BDeg ( )
/ / Axin de−/ p h o s p h o r y l a t i o n
Axin ( s ) , d e l a y [ λ .

i f s = ’ f r e e ’ then nAxinP := v a l nAxinP +1; kpho
e l s e

i f v a l wnt then nAxinP := v a l nAxinP −1; kdep
e l s e 0

] ? ( ) . Axin ( i f s = ’ f r e e ’ then ’ phos ’ e l s e ’ f r e e ’ )
/ / dummy p r o c e s s a s communica t ion p a r t n e r
Timer ( ) , d e l a y [ u n i t ] ! ( ) . Timer ( )
I n i t i a l s o l u t i o n
BDeg ( ) | ∏

NAxin
i=1 Axin ( ’ f r e e ’ ) | ∏

NAxinP
i=1 Axin ( ’ phos ’ ) | Timer ( )

Figure 8: Implementation of Axin mediated β -catenin degradation with with Michaelis-Menten kinetics in combination with
Axin de-/phosphorylation in the Imperative π-Calculus

(Axin(’free’) | ∏
2
i=1Axin(’phos’) | Cycle() | Timer(), wnt:true). Second, before calculating transition

rates, the rate constants of all reactions are determined by first evaluating the constraint expressions of all senders and receivers
separately and then, for each reaction, applying the abstraction of the receiver to the argument of the sender. Consecutively,
only those reactions are taken into account whose constraints evaluate to successful values.

5 IMPLEMENTING MICHAELIS-MENTEN KINETICS IN THE IMPERATIVE π-CALCULUS

As described in Section 3, the rate equation for Axin mediated β -catenin degradation yields (kbDeg · [AxinP] · [BcatCyt])/(KbDeg +
[BcatCyt]). The law of Mass Action is hard wired to the stochastic semantics of the π-Calculus. Thus, although only
dependent on the amounts of two reactants, reactions with Michaelis-Menten kinetics cannot be implemented in a sender-
receiver manner. However, it is possible to bypass Mass Action kinetics by setting the amounts of the sender and the receiver
to one. By this means, reaction rates entirely depend on their rate constants, which are then defined to represent the intended
Michaelis-Menten kinetics. Thus, for an appropriate encoding it must be possible for the modeler to trace the amounts of
substrate and enzyme and calculate rate constants depending on them. Notice, that with every change of the substrate or
enzyme amounts, which can be caused by more than one reaction, corresponding rate constants need to be updated.

As an example for an encoding of Michaelis-Menten kinetics in the Imperative π-Calculus, we provide an implementation
of Axin mediated β -catenin degradation in combination with Axin de-/phosphorylation in Figure 8. Our approach bases
on the idea of rate constants that depend on values in the global store. Thus, we introduce two channels, nBcatCyt and
nAxinP, that refer to the amounts of the substrate and the enzyme. They are initialized with the initial amounts of β -catenin
in the cytosol (NBcatCyt) and phosphorylated Axin (NAxinP). β -catenin degradation is represented by BDeg(). As a side
effect BDeg() decreases the amount of β -catenin in the cytosol when communicating with Timer(). By applying function
calcRate the rate constant is obtained according to Michaelis-Menten kinetics. Notice, that due to sequence evaluation,
the side effect needs to be performed before determining the rate constant. This requires to apply calcRate to the amount
of β -catenin in the cytosol nBcatCyt increased by one. The implementation of Axin de-/phosphorylation extends on the
one in Figure 7 only slightly by updating the amount of phosphorylated Axin (nAxinP) accordingly. Because of constraint
evaluation, this has immediate effect on the rate constant of β -catenin degradation. For the sake of simplicity, we omit the
cell cycle process.

We see this kind of implementation rather as a workaround. Ultimately, solutions have to be found for a stochastic
semantics that allows to take different kinetics into account. However, the encoding is interesting beyond Michaelis-Menten
kinetics, as it is neither limited in the number of reactants nor fixed to some specific kinetics.
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Our implementation of Michaelis-Menten kinetics does not translate to the π-Calculus, because there rate constants are
statically assigned to reactions. Thus, it would be necessary to enumerate the reactions for all possible, possibly infinitely
many, combinations of the amounts of phosphorylated Axin and β -catenin in the cytosol. Even in the bounded case, an
implementation is hard to obtain, as those reactions that share reactants affect each other, which requires communication
protocols based on infinite rate constants for immediate updates. Modeling tools that base on the π-Calculus (Priami et al.
2001, Kuttler et al. 2007) provide mechanisms to trace the amount of reactants and define reaction rates depending on them,
which already points to the need of an imperative extension. However, as they are clearly not part of the formal language,
we do not regard these approaches here.

6 CONCLUSION AND OUTLOOK

Based on a model of the Wnt/β -catenin signaling pathway, we provided a case study on integrating heterogeneous data
stemming from an existing model, the literature, and wet-lab experiments. In particular, we showed how to obtain model
parameters, e.g. diffusion and reaction rate constants, and also Michaelis-Menten rate equations for stochastic models. In order
to explore its expressiveness, we used the Imperative π-Calculus as our modeling language. In this context, we provided, to the
best of our knowledge, the first implementation of a reaction with Michaelis-Menten kinetics in a π-Calculus based approach.
Our future work is following two major directions. In order to investigate the influence of the cell cycle on the activity of the
Wnt signaling pathway, we want to fit the behavior of our model to the one presented in Lee et al. (2003) and thoroughly
analyze its behavior. Then, our goal is to not just consider single cells but entire populations producing and propagating
Wnt molecules. In this refined multi-cell model our next steps will be to consider processes of division and differentiation
explicitly. On the computer science side, we will continue to explore the generality of our implementation of Michaelis-Menten
kinetics in the Imperative π-Calculus according to the encoding of reactions with more than two reactions and different kinetics.
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