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ABSTRACT 

In recent years development of formal approaches for modeling and simulation of manufacturing systems received significant 
attention. Approaches building on alternative Petri Nets formalisms show essential strengths in accurately capturing both a 
system’s static structure and its dynamics, availability of mathematical analysis methods, and graphical representation. How-
ever, models of realistic systems are often perceived as too large and complex to understand by project stakeholders. This 
hinders their participation in modeling, and solution finding, and may influence their perception of model credibility. In this 
article we address this issue by considering a structured approach for embodying high-level manufacturing concepts. The ap-
proach aims at creating more insightful simulation models by building on sound and explicit conceptualization, i.e., the 
choice of manufacturing concepts, and clear rules for their formalization, i.e., their mapping on elementary model compo-
nents. We adopted the Petri Nets based tool ExSpectTM to illustrate and evaluate our approach. 

1 INTRODUCTION 

Formal approaches building on alternative Petri Nets formalisms have proved to be successful tools for modeling and simula-
tion of manufacturing systems (DiCesare et al. 1993, Zeigler 1990, Jensen 1997). Their basic strengths in accurately describ-
ing system’s static structure and its dynamics, availability of mathematical analysis methods, and graphical nature underpin 
this success. However, many authors suggest that there is an even greater potential for their practical use, if they would allow 
for a more active stakeholder understanding and participation. So far, this is often hindered by model size and complexity 
(Kamper 1991, Barretto et al. 1999, Barber et al. 2003, Ryan and Heavey 2006). 

Basically, stakeholders’ understanding of simulation model elements and their workings starts from their recognition of 
high level manufacturing concepts, like, for example, machines, buffers, planners, goods etc. Choice of concepts and their 
coded and visual representation follows from the analyst’s creativity. His creativity is bounded and guided by implicit or ex-
plicit guidelines, that is, good modeling practices and principles (Pidd 1999), domain-related insights (Valentin and Ver-
braeck 2005) and the choice of elementary model components (Kreutzer 1986).  

Typically, formal approaches start from a few low-level components for defining models. Hence, guaranteeing stake-
holder understanding puts high demands on analyst’s skills in sound conceptualization and structured formalization. Concep-
tualization refers to the choice of entities, their activities, and relationships considered characteristic for a domain, whereas   
formalization concerns the mapping of the respective system elements on model components. Here we will address guidance 
for the analyst in both activities, assuming the use of formal approaches for manufacturing simulation. 

Robinson (2008) distinguishes between three basic approaches in guiding the analyst in conceptual modeling: principles 
of modeling, methods of simplification, and modeling frameworks. Principles of modeling advocate an evolutionary devel-
opment of models – start small and simple, and adapt and extend the model incrementally. Methods of simplification work 
the other way around by suggesting ways for model pruning. While both approaches offer relevant assistance for conceptual 
modeling, they do not a-priori address the creation of the conceptual model, i.e., the identification of elementary model com-
ponents appealing to a domain. Modeling frameworks distinguish themselves from the aforementioned approaches by speci-
fying a procedure for detailing a model in terms of its elements, their attributes and their relationships.  

In this article we extend our previous work on a modeling framework for manufacturing simulation by linking it with the  
use of ExSpectTM, a Petri Nets based tool (ExSpectTM 1999). In doing so we aim to illustrate and evaluate how the notion of a 
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well-defined domain related modeling framework, and rules for mapping its outcomes on model components, may make a 
difference for model understanding. 

The remainder of the article is organized as follows. In Section 2 we shortly discuss our modeling framework for manu-
facturing simulation and its underpinnings, i.e., engineering principles. Next, we motivate our choice for ExSpectTM, discuss 
its logic, and specify rules for mapping elements of the modeling framework on ExSpectTM basic components (Section 3). In 
Sections 4 and 5 we illustrate and evaluate the use of the modeling framework, and the mapping rules by a case example. Fi-
nally, in Section 6, we summarize main conclusions. 

2 CONCEPTUALIZATION - A MODELING FRAMEWORK FOR MANUFACTURING SIMULATION 

In this section we discuss a modeling framework for manufacturing simulation. First we categorize engineering principles 
underpinning the framework. Next, we consider its core, i.e., a reference architecture for manufacturing systems. Finally, we 
introduce a method for its use. For more details, see Van der Zee and Van der Vorst (2005), Van der Zee et al. (2007). 

2.1 Engineering Principles 

Decomposition and classification are cognitive approaches suggested as being fundamental in the process of identifying the 
phenomena to be modeled (Burton-Jones and Meso 2006). Basically, decomposition starts from a top-down approach to-
wards modeling, while classification works the other way around. Essentially, classification boils down to an abstraction of 
similarities among individual things for supporting cognitive economy, inference, and communication, see, for example, 
Smith and Medin (1981). 

Let us now consider the engineering principles underlying the modeling framework for manufacturing simulation, see 
Table 1. Principles I-III are rather well-known. They follow from the notion of a system boundary (I), basic system logic (II), 
and queueing systems (III). According to Lefrancois and Montreuil (1994) a distinction between intelligent and non-
intelligent entities (IV) permits a more natural and richer presentation and implementation of systems modeled. In such a 
context, intelligent beings are modeled as agents. Agents are used to implement decision rules inherent to manufacturing sys-
tem planning and control. Examples include routines for scheduling, dispatching and releasing jobs for a machine or depart-
ment. Principles I – IV tend to be valid for a much wider category than just manufacturing systems.  
 

Table 1: Decomposition principles underlying the modeling framework for manufacturing simulation (Van der Zee 2007) 
 

 Decomposition principles 

I External and internal entities 

II Movable and non-movable entities 

III Queues and servers 

IV Intelligent and non-intelligent entities 

V Infrastructure, flows and jobs 

VI Modality: physical, information and control elements 

VII Dynamics: executing jobs 

 
Principles V-VII are somewhat more specific for the manufacturing field. Manufacturing systems are built up of infra-

structural elements like workstations, information systems and managers. Flows refer to the objects being exchanged and 
transformed by this infrastructure as a net effect of jobs being executed (V). The separation of physical, information and con-
trol elements (VI) is assumed to facilitate a higher degree of model reusability and a more “natural” model building environ-
ment (Mize et al. 1992). Van der Zee and Van der Vorst (2005) suggest that all activities in the manufacturing system, in-
cluding decision making, should have a common denominator: the job (VII). The job concept is meant to bring two important 
advantages. Firstly, the use of this common denominator for all activities will provide a clear and natural mechanism for 
event scheduling, where events are related to the start and the completion of jobs. Secondly, an explicit notion and allocation 
of company activities (compare V), increases visibility and traceability of decision variables. 

2.2 Reference Architecture for Manufacturing Systems 

In this section we discuss a reference architecture for manufacturing simulation. We will relate our choice of model compo-
nents to the framing, i.e., combining, of decomposition principles - as identified by their Roman numbering. We adopt an ob-
ject oriented notation, cf. Booch (1994). 
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2.2.1 Classes and Hierarchies 

The reference architecture distinguishes between three main object classes: agents, flow items and jobs (V), see Figure 1. 
Agents represent the infrastructural, non-movable, elements of a manufacturing system such as workstations, information sys-
tems and managers (II). They are assumed to be intelligent to a certain extent (IV). Their decision-making capabilities relate 
to transformations of goods or data. System boundaries are reflected by the notion of internal and external agents (I). For in-
ternal agents such as machines, warehouses, AGV systems, planners etc. it is distinguished between processors and storages, 
by considering the nature of their dominant type of resources (III). For external agents, the framework separates suppliers 
from customers (III). 
 

 
Figure 1: Reference architecture for manufacturing simulation – main object classes 

 
Four types of movable (flow) items (II) are included in the modeling framework: goods (like, for example, materials, 

parts, semi-finished products), resources (like, for example, workers, tools, vehicles), data (like, for example, monitoring da-
ta, demand figures) and job definitions (VI). Job definitions model the flow of control, i.e., messages steering the movement 
of goods, resources, and data. As such they initiate and inform agent activities, by carrying relevant information related to 
these activities, such as, for example, their input, processing conditions and the agents to whom the resulting output should be 
sent. 

In a manufacturing system agents and flows are linked by jobs, i.e., business activities (V). Moreover, we assume that 
each such activity relates to a job. Typically, job execution links flow items and agent’ resources.  

2.2.2 Class Definitions - Agents 

The structure for agents follows from their role as intelligent entities (IV). The definition of a structure for an internal agent 
was inspired by the atomic model as defined by Zeigler (1990), see Figure 2a. 

 
 
 

Figure 2: Agent definitions – internal agent (a); external agent (b) 
 

The state of an agent relates to its attributes and their values. Attributes concern buffers and transformers (III). Buffers 
model the temporary storage of those flow items which are the prime subject of a future job or which have a facilitative role 
in job execution (resources, information). Note how job definitions for an agent are stored in the control queue. The trans-
former reflects a set of jobs in execution and contains the flow items that are related to these jobs. 

  
 
 

Control  
Queue 

Input 

Input 

job definitions 

goods resources primary flow items 

Local 
Intelligence  

Buffers  

Output  
 
 

data 

(a) 
 

(b) 
 

  
  

Local 
Intelligence  

Generator  

Annihilator  
Input 

Output  

goods/resources/data 

F(I|D) 

  Agent   

Internal  
Agent   

External  
Agent 

Storage   Processor 
 

  
 

Customer 
 

Supplier 
 

  
 

  
 

Flow Item 
 

  
 

Good 
 

  
 

Data 
 

  
 

Resource 
 

  
 

Job Definition 

888



van der Zee 
 
Above basic elements of an internal agent are discussed. For agent functions we will distinguish between input and out-

put operations, and the local intelligence (IV). The initiation of a job is enabled by rules comprised in the local intelligence 
(IV). As a first rule in initiating a job, the job definition with the highest priority in the control queue is investigated. The re-
spective job may start if demands on its inputs, capacity, and processing conditions are met. 

The notion of local intelligence applies to all agents, including work stations and planners. Where intelligence for work 
stations may be restricted to elementary rules for timing and release of jobs, decision logic for controllers may be comprehen-
sive. Decision logic for controllers may refer to a wide range of rules that support, for example, capacity planning, material 
planning, scheduling and dispatching. 

Besides the element local intelligence (IV), which is also found for internal agents, generators and annihilators are dis-
tinguished for external agents, see Figure 3b (customer). Generators represent “sources” of flow items, while annihilators 
model “sinks” in which flow items disappear (I). Local intelligence may be used to link generators and annihilators. 

2.2.3 Relationships between Agents 

Agents communicate with other agents by exchanging alternative types of flow items, being the net result of job execution 
(V, VI). In this section we will consider two specializations of the basic type of relationship in somewhat more detail (Figure 
3a,b):  

• The relationship between an internal agent and its controller. 
• Relationships between external and internal agents. 

 
 

 
 
 
 
 
 
 

Figure 3: Agent relationships – control (a), and customers (b) 
 

Control (Figure 3a) is assumed to be effectuated by the sending of job definitions from a controller object to an internal 
agent, denoted as Int (VI). Each agent (subordinate) refers to exactly one controller (manager) from which it receives its job 
definitions, denoted as F(C). Reversely, a subordinate can send information about its status to its controller. Mechanisms like 
hierarchical control and coordinated control are embedded in this class structure, by allowing higher level controllers to steer 
activities of lower level controllers. 

For external agents we distinguish between customers and suppliers (I). Typically, a customer issues an order by sending 
a demand signal (F(I|D)) to an internal agent of the type controller (Figure 3b). The controller in its turn specifies a job defi-
nition (F(C)) for an internal agent (Int) who is responsible for the deliverance of the requested items (F(M)), where M refers 
to the modality. In the case of a supplier roles have changed: the controller sends an order to a supplier, who has to take care 
of delivery of the requested items. 

2.2.4 Dynamics Structure – Agents Executing Jobs 

In line with our job-oriented view we assume the execution of jobs by agents as the driving force of business dynamics (VII). 
Job execution is related to a procedural three-phase description (Pidd 1998). In the A Phase it is determined which job is 
completed next. Once this job has been found, time is advanced to the corresponding moment in time. Subsequently, the job 
is “completed” (in the B-Phase), i.e., the resulting output is sent from the agent that carries out the job to other agents. In the 
C-Phase it is tested if the flow items that are received by these agents enable the initiation of new jobs (conditional activities). 
The three phases are repeatedly run through until the (simulation) time is up. 

2.3 Method for Use 

Elementary steps for application of the modeling framework concern (1) the determination of a system boundary, (2) the de-
finition of entities, i.e., agents, flow items, and jobs following a top-down refinement process, and (3) detailing entities “bot-
tom up”. Details on the respective steps may be found in Van der Zee (2007). 
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3 FORMALIZATION: EXSPECTTM – LOGIC AND MAPPING RULES 

In this section we discuss essential characteristics of ExSpectTM, and indicate their support for embodying high-level manu-
facturing concepts. Next, we specify rules for mapping high-level manufacturing concepts on ExSpectTM logic. 

3.1 EXSPECTTM – An Informal Introduction 

In past decades much research has been done on developing Petri Nets formalisms, and its application for various fields of 
interest (Jensen 2009). For a first introduction on Petri Nets, see, for example, Murata (1989), David and Alla (1994), and 
Jensen (1997). Essential strengths of Petri Nets are in their descriptive power, allowing to capture both static and dynamic 
characteristics for a system, availability of mathematical methods, next to simulation, and their graphical representation. Here 
we address use of Petri Nets models for simulation modeling and analysis.  

Starting point for all research on Petri Nets is the seminal work by Petri (1962), who defined the classic Petri Nets, cf. 
Figure 4. Classic Petri Nets represent systems by means of a net structure, i.e. a bipartite directed graph, for specifying the 
static part of the system, and a marking which reflects the state of the system. The net structure consists of two kinds of 
nodes: places and transitions. Places and transitions are connected by means of directed arcs. Arcs are only allowed to con-
nect a place with a transition, or a transition with a place. The first type of place is regarded as an input place for a transition, 
while the latter is regarded as an output place. The marking or state of a net corresponds to the assignment of one or more to-
kens to each place.  
 

 
Figure 4: Classic Petri Nets – Notation and case example 

 
State changes are modeled by Petri Nets through the firing of a transition. Firing of a transition boils down to the con-

sumption of a specified number of tokens from all its input places and the production of tokens for all of its output places. A 
transition is only allowed to fire (enabled) if there are sufficient tokens available in all of its respective input places. The fir-
ing of a transition is considered indivisible or atomic. An illustration of the firing mechanism and the associated state changes 
are displayed in Figure 4 (I, II, III). Note how firing transition T1, allows transition T2 to fire next. The net structure in Fig-
ure 4 may be used to model simple processes, like secretaries’ duties in putting a letter in an envelope (T1), and putting a 
stamp on the envelope (T2), or a simple assembly operation involving two machines (T1, T2).  

ExSpectTM extends classic Petri Nets through the notions of color, time, and hierarchy (Van der Aalst 1992, 1994). Let 
us shortly consider the respective extensions, and imply their relevance for our modeling framework. Note how our choice 
for ExSpectTM as a research vehicle is motivated by the way it facilitates an easy mapping of high-level manufacturing con-
cepts - next to the presence of an established tool. 

Whereas classic Petri Nets do not allow to further detail tokens, ExSpectTM allows for token attributes, or “colored” to-
kens. An important advantage of colored tokens is the possibility to reduce model size, by adding detail to tokens instead of 
creating more elaborate net structures – as for classic Petri Nets. Furthermore, from a manufacturing perspective token 
attributes assist in more natural modeling, as they allow modeling flow items like goods, data, etc. in realistic way, cf. Sec-
tion 2.2.  

ExSpectTM supports model structuring by allowing for hierarchy, i.e., representing systems as an aggregate of subsys-
tems. Therefore a construct, called “system” is introduced. A system is an aggregate of places, transitions, and (possibly) 
subsystems. The notion of systems helps in creating model overview for both analyst and stakeholders. Within the context of 
manufacturing systems are helpful to identify and represent high-level concepts like machines, planners, buffers, etc. Recall, 
how they are addressed in our modeling framework as agents. 

Logistic performance analysis for manufacturing systems implies the notion of time. Classic Petri Nets are not capable of 
handling quantitative time. ExSpectTM allows for the possibility of stochastic delays, which are associated with time stamps 
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linked to tokens. Time stamps specify the moment the token becomes available. Linking model dynamics with tokens allows 
for a straightforward representations of jobs, as a (composite of multiple) flow items(s) being transformed until a pre-
specified completion moment. 

Figure 5 shows a small example net structure for ExSpectTM. Note how ExSpectTM addresses transitions as processors, 
and places as channels. Token colors are mentioned in brackets. Time stamps are indicated by dashed lines, specifying the 
moment (t) a token becomes available. For example, the token representing a pair of green shoes, will be available at t=1. Fir-
ing of processor T1 is enabled at t=1, given the presence of both shoes and shoelaces. Next firing of processor T2 is possible 
if both a box are available, and the combined shoes and shoelaces. Note how the time stamp of the latter entity follows from 
the execution of processor T1. The system concept (dashed rectangle) may be used to represent the “shoe shop”, instead of 
single operations. In turn this system may be used as a building block in a larger manufacturing system. 

 

 
Figure 5: ExSpectTM– Case example 

3.2 ExSpectTM - Language 

In this section we consider basic language constructs for ExSpectTM, and link them to the basic elements of the underlying 
Petri Nets formalism, see Section 3.1. For more details and backgrounds see Van der Aalst (1992, 1994) and ExSpectTM 
(1999). ExSpectTM distinguishes between four kinds of definitions: type definitions, function definitions, processor defini-
tions, and system definitions. Type definitions are used to specify token values. Each place has a type, which determines the 
values for the tokens it may contain. The type system of ExSpectTM considers primitive types, like, booleans, numerals, reals, 
and strings, and type constructors, allowing to specify lists, sets, records etc. For example, a car may be specified as: 
 

car: [id: str, color: str, year: num] 
 
This type definition may be used to specify the car’s license plates, its color, and the year it was built. It builds on a type con-
structor, i.e., record, denoted as “[]”, and two primitive types, i.e., num and str, referring to numerical and string values. 

Functions answer to the need to specify values for tokens that are produced as a net effect of firing processors. Many 
well-known functions are available for ExSpectTM as a standard feature, concerning set-theoretical, logical, and numerical 
constants and functions. For example, the following function may be used to compute the surface of a rectangle: 
 

surface [x: real, y: real] 
:= 
x*y 
: real; 

 
Processor definitions are used to describe transitions. Definitions consist of a header and a contents part. The header part 

specifies the processor’s name, interaction structure, and parameters. The interaction list details input channels, output chan-
nels and stores. Note how stores refer to a special kind of place, which always contains exactly one token. The contents part 
consists of concurrent assignments of expressions to output channels and stores. Expressions may include the use of func-
tions. For example, a machine operation may be modeled as: 
 

proc machine [in start: part, 
     out finish: part, 
     val t : real] 
:= 
finish <- operation(start) delay t; 
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Note how the duration of the operation (a function) is represented by adapting the time stamp for the respective part (token) 
by including a delay of duration t. 

Similar to the processor definition a system definition consists of a header and a contents part. The header details value, 
function, processor, and system parameters, and interaction structure, see processor definition. The contents part refers to a 
listing of all its elements, i.e., channels, stores, processors, and channels. For example, consider a system which consists of a 
gas station and car wash: 
 

sys car_service [in x:car, out y:car, t:real] 
:= 
channel cleaned_cars: init [id: 1, color: purple, year: 1990], 
carwash (in x, out cleaned_cars), 
gas station (in cleaned_cars, out y, val t); 

 
Gas station and car wash are represented by two processors. Processors are linked through a common channel cleaned cars. 
The respective channel is initialized by defining one token of type car.  

3.3 Guidelines for Mapping High-level Manufacturing Concepts on Basic Model Components of ExSpectTM. 

3.3.1 Object Classes - Flow Items, Agents and Jobs 

Our reference architecture for manufacturing systems distinguishes between three main object classes, i.e., agents, flow 
items, and jobs, see Section 2.2. In Section 3.1 we linked the respective classes to ExSpectTM in an informal way. We found 
how flow items can be represented naturally by tokens. Type definitions allow to specify differences among flow items in a 
straightforward way, by associating them with token attributes. 

We propose to specify internal agents as systems, according to the following generic format: 
 

(* INTERFACE *) 
sys internal_agent [in X, out Y, con Z, val id: A ... ] 
:= 
(* BUFFERS *) 
store Input_Buffer  : B init ...  
store Control_Queue : C init ... 
... 
(* TRANSFORMERS *) 
channel Transformer : D init ... 
... 
(* INPUT OPERATIONS *) 
input (in x, out Input Buffer| pre x.receiver = id) 
inputc (in x, out Control_Queue | pre x.receiver = id) 
... 
(* LOCAL INTELLIGENCE FOR EXECUTION *) 
local_intelligence (in Input_Buffer, Control_Queue, <BUFFERS>, out <TRANSFORMERS> 
              | pre check(Control_Queue, Input_Buffer, <BUFFERS>)) 
 (* OUTPUT OPERATIONS *) 
output (in <TRANSFORMER>, out y) 
...; 

 
To support our discussion on the internal agent’s definition we graphically depict a typical agent structure as a Petri Nets 

model, see Figure 6. The header of the system definition specifies input and output channels. They reflect the inflow and out-
flow of alternative types of flow items. We set no a-priori restrictions to their specification, except for the presence of an in-
put channel linking the agent with its controller (cf. “con Z” in the header), also see Section 3.3.2. The body of the system de-
finition models the agents’ internal structure in a generic way. This format is meant to characterize a skeleton architecture, 
which specifies default elements of agent´s structure and their relationships. The architecture may be enriched and extended 
for practical use. 

The skeleton architecture includes an input buffer (Input_Buffer), control queue (Control_Queue), transformer (Trans-
former), and operations, i.e., input, output, and local intelligence. The respective operations link input channels (“X” in sys-
tem header) with Input_Buffer and Control_Queue (input, inputc), Transformer and output channels (output, cf. “Y” in sys-
tem header), and Control Queue, Input_Buffer and Transformer (local_intelligence). Following ExSpectTM logic operations 
are modeled by processors, whereas buffers, and transformers are represented by stores and channels.  
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Practical use of the agent’s system definition assumes the detailing of type definitions, processors and functions. Fur-

thermore the above skeleton architecture allows for the inclusion of additional (facilitative) buffers (<BUFFERS>), and trans-
formers (<TRANSFORMERS>) being dedicated to specific flow items. This may enhance model transparency. Note how the 
system definition of an external agent follows from pruning the system definition of the internal agent. 

Jobs are associated with the activities described by the processor local_intelligence. Their dynamics is reflected by 
(sub)sets of flow items (tokens) contained in transformers. Respective sets refer to inputs required for a specific job, for ex-
ample, goods, tools etc., as reflected by alternative types of tokens. Jobs are initiated as net result of executing (firing) of the 
local intelligence, see 3.3.3.  

 

 
Figure 6: Petri Net models of agents – internal agent (a), and external agent (b) 

3.3.2 Relationships between Agents 

Agent relationships are modeled by linking them through a common channel, which connects their respective output and in-
put channels. Control relationships are modeled by connecting each agent to a single controller, i.e., supervising agent, cf. 
Section 2.2.  

3.3.3 Dynamics Structure – Agents Executing Jobs 

In our modeling framework we relate dynamics to job execution. Job initiation is associated with the execution of the local 
intelligence. This boils down to the firing of the respective processor. Preconditions for firing are the availability of job 
definitions and its associated job inputs, see 3.3.1. Firing implies the setting of time stamps for tokens modeling flow items - 
being subject to a job. In turn, time stamps set the bound events of job completion.  

4 CASE EXAMPLE – SUPPLY OF REFINED OILS 

In this section we present a case example to illustrate guidance of the modeling framework, and mapping rules in creating 
more insightful Petri Net simulation models. The case example concerns the supply of refined oils for producing margarine. 
It is motivated by a project in industry (Schippers 1995), concerning a large manufacturer of margarine. The manufacturer 
decided to concentrate its refinery facilities for producing oils and fats at a single location. This decision forced a redesign of 
the supply system, involving the transportation of truckloads of oils and fats from the new refinery to the storage tanks at the 
margarine production facilities. Here we will consider the supply system for a single production facility. 

4.1 System Description 

The supply system is made up of transportation facilities, i.e., trucks, unloading stations, and a number of storage tanks. The 
refinery is located at about an half hour driving distance from the production facility. System complexity follows from re-
strictions on the use of resources, and the need to tightly tune supply operations, in order to (1) guarantee a high service level 
at the production lines, (2) avoid overstocks, i.e., truck loads which cannot be unloaded because storage tanks are not availa-
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ble, (3) reduce waiting costs at the unloading stations. Redesign of the supply system involves both its infrastructure, and its 
control. 

4.2 Conceptualization 

As a first step in modeling we considered the conceptual model of the supply system. Scope and level of detail are captured 
in our choice of agents and their attributes. An example of an agent definition is given in Figure 7. It represents the queue of 
trucks at the unloading stations. Jobs concern the moving of trucks towards unloading stations, as they follow from a decision 
of the queue manager. Operator data support local decision making by capturing agent status, and data on related agents. 
Note how the information on truck arrivals (cf. the Output operation) triggers decision making for the queue manager. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Class definition for agent Queue 

4.3 Formalization 

Figure 8 shows the Petri Nets simulation model we built starting from the conceptual model, and mapping rules as we pro-
posed them in Section 3.3. The figure represents agents responsible for the physical flows of goods and resources (oil, 
trucks), i.e., OilRefinery, Queue, UnloadingStation1, UnloadingStation1.2, Tanks, and MargarineProduction, and their plan-
ning and control, i.e., SalesDepartment, PlanningOilDeliveries, QueueManager, LoadManager, and TankController. Here the 
sales department and MargarineProduction may be considered external agents. Note how adequate planning and control of 
the supply system assumes a detailed tuning of activities, as represented by the flows of data. For example, new deliveries of 
oil from the storage tanks to the production lines are only allowed at the moment production lines complete a job. The man-
ager of the storage tanks (TankController) is informed on the respective job completions by messages (TankData). 
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Figure 8: Petri Nets simulation model of the supply system 

 
Each agent is defined according to the mapping rules proposed in Section 3.3. An example of a Petri Nets model of an 

agent (UnloadingStation1) is given in Figure 9. In line with Sections 2 and 3 the model distinguishes between input and out-
put operations (Input_U, Inputc_U, Output_U), local intelligence (LocalIntelligence_U), buffers (InputBuffer, OperatorData), 
and transformers (Transformer). They are modeled following ExSpectTM logic by processors, stores, and channels respective-
ly. Note how Signalout_meas facilitates performance measurements. 

 

 
 

Figure 9: Petri Nets model for an agent (UnloadingStation1) 

5 DISCUSSION – EVALUATION OF THE APPROACH 

5.1 Scope 

The modeling approach as discussed in this article starts from two assumptions: the use of a specific modeling framework for 
manufacturing simulation, and the choice for a specific, Petri Nets based tool. Direct implications are: no full coverage of the 
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manufacturing field, and mapping rules which are dependent on the choice of tool and its fit with the modeling framework. 
For example, a view on manufacturing which starts from flow items, which display autonomous behavior in acquiring pas-
sive resources, may be captured less easy by the modeling framework. In this respect one may think of large scale transporta-
tion systems, or team-operated manufacturing cells. In principle, such ‘misfits’ may be repaired by extending or adapting the 
modeling framework. 

ExSpectTM supports implementation of concepts from the modeling framework by its extensions relative to classic Petri 
Nets, i.e., colors, hierarchy and time. Their relevance follows from requirements on model size and realistic modeling, model 
overview, and field of application (manufacturing logistics) respectively. More specific support is related to the timing me-
chanism for ExSpectTM, which relates time to tokens by means of time stamps. This facilitates an easy mapping of the job 
concept on ExSpectTM logic in terms of a composition of flow items, represented as tokens, being subject to time related 
transformations. Our choice for ExSpectTM does not imply, however, that other formal approaches could not be related to our 
modeling framework. Next to alternative Petri Nets based approaches one may think of DEVS (Zeigler 1990). Among others, 
it links very well with our agent concept, which was inspired by DEVS conception of an atomic model. 

Next to simulation, ExSpectTM also supports mathematical methods for model analysis. See Van der Aalst (1992) for ex-
amples of methods and their applications. Their integration in our approach for more insightful simulation modeling is consi-
dered both a relevant and interesting issue for future research. 

5.2 Guidance 

Essential guidance from our modeling framework follows from its explicit view on manufacturing systems. Instead of having 
to create – an implicit – view on a manufacturing system of his own the analyst could start from a clear point of reference. 
Relevance of this explicit notion of elementary manufacturing concepts seems greater if formal approaches are used for mod-
el specification and coding – as they typically start modeling from low-level concepts. Further support of our approach is in a 
set of mapping rules, linking manufacturing concepts to ExSpectTM logic. 

It is interesting to consider linking our modeling framework with the use of commercial software packages, such as, for 
example ARENATM, Em-PlantTM, Enterprise DynamicsTM, as an alternative for the approach proposed in this article. Whereas 
the use of commercial software packages may imply a “misfit” between the high-level concepts underlying their library, and 
the concepts in the modeling framework, low-level concepts as in Petri Nets may allow for a more tailored and founded (cf. 
engineering principles, see Section 2.1) representation of manufacturing concepts. Hence guidance of our approach may be 
more straightforward in the latter case. 

5.3 Understanding 

Corner stones for building understanding among stakeholders are model transparency and model completeness. Model trans-
parency should result from the notion of a limited set of elementary manufacturing concepts offered by the modeling frame-
work. This set should assist in building model structures that appeal to the imagination of all parties involved in the study. On 
the other hand, model completeness is related to the explicitation of relevant manufacturing objects and their workings. Es-
sential support of our modeling framework in this respect may be related to the notion of engineering principles underlying 
the modeling framework, especially IV-VII, see Table 1. Adherence to these principles seems to be more relevant in case of 
formal modeling approaches. Interestingly, the opportunity and potential in doing so seems greater as in commercial simula-
tion packages, which may be caught in their own logic, cf. Section 5.2. 

5.4 Further Support 

We consider the set of mapping rules for guiding the specification of manufacturing concepts as a first step in supporting the 
analyst. This leaves the possibility to further detail rules by, for example, distinguishing between alternative agent classes, or 
– beyond that – creating more permanent support by designing comprehensive libraries of building blocks. As clarified 
above, see Section 5.2, 5.3, we see great relevance and opportunity in doing so. Essential contributions from the modeling 
framework build on its underlying logic, i.e., engineering principles, whereas formal approaches offer the descriptive power. 
In our view such manufacturing logic may avoid some of the pragmatics often ruling model construction, and create more in-
sight. 

6 CONCLUDING REMARKS 

In this article we addressed the practical use of formal approaches for simulation modeling. More in particular, we consider 
the use of Petri Nets. Petri Nets are known for their qualities in accurately modeling and representing real systems. However, 
Petri Net models for realistic cases are often found too large and complex to understand by non-experts. In this paper we pro-
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pose a structured approach for improving model insight among stakeholders. More in particular, we consider the use of the 
Petri Nets based language called ExSpectTM for manufacturing simulation. 

Key elements of the proposed approach are a modeling framework for manufacturing simulation, and a set of rules for 
linking it to the use of ExSpectTM. The modeling framework supplies an explicit reference architecture for manufacturing sys-
tems and a method for its application. The architecture adopts a set of engineering principles, in defining manufacturing ele-
ments in terms of agent classes, and their interactions. This allows the analyst to start from a clear and appealing point of ref-
erence, instead of having to create a view of his own. In this way the perceived “gap” between the high-level manufacturing 
concepts and the low-levelness of Petri Nets components may be bridged. Mapping rules support linking manufacturing con-
cepts to ExSpectTM logic in a transparent way. 

Relating the use of the modeling framework to ExSpectTM was found rather easy and straightforward. Petri Nets’ exten-
sions, i.e., colors, hierarchy and time, as embedded in ExSpectTM, allow for an easy mapping of high-level manufacturing 
concepts captured in the modeling framework to ExSpectTM logic. Especially, the job concept, i.e., a manufacturing opera-
tion, is well supported by the ExSpectTM time mechanism, which links progress of time to movable objects – being part of a 
job – in terms of time stamps for tokens. Adapting the approach for other frameworks, like DEVS, may be a fruitful avenue 
for further research. For example, the agent concept in our modeling framework builds on the atomic model in DEVS. 

Low-levelness of formal approaches may cause both a greater need and opportunity for the analyst in realizing model 
transparency and model completeness. The opportunity follows from the descriptive power of formal approaches, which al-
lows embedding modeling frameworks to a greater extent, whereas many commercial simulation tools may be caught in their 
own (pragmatic) logic. This suggests a great potential for improving stakeholder understanding. 
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