Proceedings of the 2009 Winter Simulation Conference
M. D. Rossetti, R. R. Hill, B. Johansson, A. Dunkin, and R. G. Ingalls, eds.

RECOVERING MODEL INVARIANTS FROM SIMULATION TRACES WITH PETRI NET ANALYSIS
TECHNIQUES

Peter Kemper

Department of Computer Science
College of William and Mary
Williamsburg, VA 23187, USA

ABSTRACT

Modern modeling frameworks allow us to generate and simulate discrete event system models of great complexity. The
use of existing environments, and the use, calibration, and configuration of existing submodels to build large models in a
productive manner can rise the question what really happens in a simulation run for a particular experiment. In this paper,
we describe ways to make use of invariant analysis techniques that originate from the theory of Petri nets, to be applied in
the broader setting of invariant identification from simulation traces. The key idea is to provide feedback to a modeler on
constraints that hold for the observed behavior of a model in a simulation run.

1 INTRODUCTION

Stochastic discrete event systems (DES) models have been in use for many years to conduct a dependability or performance
assessment of a system under study. Sophisticated and powerful modeling and analysis frameworks have been developed to
make a model-based evaluation possible and productive. A discrete event simulation is frequently applied to derive values
for dependability and performance measures based on a statistical evaluation of the observed dynamic behavior. This is a
very low level technique compared to how models are specified in modeling formalisms supported in modeling tools. Most
tools hide such details from a user and come up with results at a level that corresponds to the abstraction level used in
modeling. This is appropriate if a given model is valid and its implementation is correct. However, often a more or less
laborious learning process is needed to understand how the real system under study works and how the modeling framework
is supposed to be used to describe and evaluate a simulation model. Necessary steps for the verification and validation of
simulation models are frequently presented at the Winter Simulation Conference, see for instance (Sargent 2008) and (Balci
2004).

We propose an approach to obtain feedback for a modeler on the detailed dynamic behavior of a model as it is exercised
by a discrete event simulator. The approach contributes to the verification, testing and debugging of a simulation model,
where verification means to check that an executable simulation model correctly implements the conceptual model that a
modeler has in mind. A simulator internally generates a sequence of states and events that most simulators are able to
export into a trace file. This detailed documentation of a simulation run requires a modeler to analyze a large volume of
data to verify correctness of an implementation or to debug a simulation model. Without appropriate tool support, this can
be tedious, unproductive, or even infeasible for a modeler with insufficient expertise on how a discrete event simulation
internally operates. However, a trace is a rich source of data and one can extract information from it about properties of the
simulation model that has been executed. We use a simulation trace to conduct an analysis of invariants for a simulation
model. We assume that a simulation model consists of state variables, whose values constitute the state of a model, and of
actions, which occur as events when the model is simulated. Invariants deduced from a finite observation like an execution
trace cannot be guaranteed to hold in general, so they are commonly referred to as likely invariants in the literature. We
will omit the likely attribute for readability.

In this paper, we describe how invariants of two kinds can be checked or deduced from a simulation trace. The one kind,
which we call state variable invariants, denotes that a weighted sum of state variable values remains constant throughout a
given trace. Such invariants are useful to describe model properties such as each resource is in one out of several states at
any given point of time, e.g., the sum of values for state variables up and down matches with the number of resources of a

978-1-4244-5771-7/09/$26.00 ©2009 IEEE 827

Kemper

particular kind and the invariant confirms that those resources are neither created nor destroyed throughout a simulation. The
second kind of invariants describes how often certain combinations of actions need to occur to have the simulation return to
the same state again. We name these invariants action invariants and they characterize possible cyclic or repetitive behavior
of a simulation model.

The invariant analysis we propose is derived from invariant analysis traditionally known for Petri nets, more precisely
place/transition nets, a modeling formalism rooted in concurrency theory and with a rich theory on structural properties of
Petri nets, analysis techniques and applications. The key issue in this paper is to apply invariant analysis as it is known for
place/transition nets to a much broader class of DES models and based on trace data obtained from DES models.

In software engineering, we find related work for the detection of likely invariants, which are detected at runtime by
observing a program in execution. For instance, in Daikon (Ernst, Perkins, Guo, McCamant, Pacheco, Tschantz, and Xiao
2007), an inference engine is used to detect invariants. The key idea is to use a generate-and-check algorithm to test a set of
potential invariants against execution traces of instrumented programs. Daikon reports those invariants that are tested to a
sufficient degree without falsification. Those invariants can be used to obtain preconditions and postconditions over observed
variables that are fulfilled by calls to observed methods. Similar concepts are found in the Agitator product by Agitar for
test generation, in the DIDUCE tool for Java programs to monitor weakenings of invariants, and the IODINE tool to extract
design properties from hardware designs. (Sahoo, Li, Ramachandran, Adve, Adve, and Zhou 2008) use likely invariants to
recognize hardware errors. In software engineering, potential usages of likely invariants include program documentation,
debugging, testing, generating input for program verifier and program repair. However, the invariants observed usually infer
relations among variables like x <y, bounds 0 < i and references p! = null which are of general use in programming. The
invariant analysis we propose in this paper aims at a different characteristic: simulation models create traces that frequently
repeat a relatively small set of actions and return to previously visited states (at least for steady state simulations).

The rest of the paper is structured as follows. In Section 2, we introduce notation to describe a simulation trace. In
Section 3, we recall definitions and properties of place/transition nets and its invariant analysis. In Section 4, we describe
how to apply invariant analysis to simulation traces. In Section 5, two example models show how to apply and take advantage
of invariant analysis for the verification and debugging of simulation models. Our approach is fully implemented in a tool
for the analysis and visualization of simulation trace. We briefly describe this tool in Section 6. We summarize in Section
7 and discuss benefits and limitations of the proposed approach.

2 TRACING SIMULATION RUNS

We consider a discrete event system that has a finite set ¥ of m state variables and a finite set of actions 7. A state s is
an m-dimensional vector with a value for each of the state variables vy,...,v,, in 7. State variables are numerical variables
with a domain in R, Z, or N. The dynamic behavior is due to actions that occur and that cause a change in value for state
variables. The occurrence of an action is denoted as an event. An event e is labeled with a corresponding action a € &
denoted as a(e) and optionally also with a time stamp #(e) € R; it changes the state of a model from a predecessor or starting
state usually denoted by s to a successor state s'. We are mainly interested in observing the behavior of DES from a sequence
of state transformations, which we define as a trace. A trace is a sequence G = spe1S] ...e,s, of states sg,...,s, € S and
events eq,...,e, € E over some (finite or infinite) sets S and E for an arbitrary but fixed n € N. The length of 6 = sge;s;...s,
is defined as |G| = n = #events. Let O;j = Si€j11Si41...5; denote a subsequence or substring of length j—i of a trace 0. A
cycle is a substring oy, with / < u and s; = s,,. For those actions that are present in ¢, we can observe circumstances (states)
where they can occur (enabling conditions) and what changes an action performs to which state variable (firing effect). Note
that the trace neither reveals any reasons why certain events occur nor why certain others do not. At any event, it is unclear
if choices exist and why the one observed has been chosen. On the contrary, events that are present are obviously possible
in the given situation. For instance, the overall dynamic behavior may be purely time-driven and the state information may
just report on measurement data taken over time. However, our underlying assumption is that the current state information
is at least partially responsible for enabling or disabling events and is of relevance for the future behavior of the simulated
model.

In the following, we assume that sets ¥ and ./ are known, and we consider a particular finite trace o, generated by
the simulator, to identify characteristic properties of the model. We do not assume any particular modeling formalism, or
that the given information contains details why a particular event is or is not present at any position in the trace, or that
it contains information on reasons or constraints on the value settings of variables. For notational simplicity, we adopt the
common assumption that a simulation run starts at time 0, i.e. all time stamps in ¢ form a monotonously non-decreasing
sequence of non-negative real values and that all variables are given an initial value in so. We assume that variables have

828

Kemper

values with a numerical domain as floating point or integer such that basic algebraic operations as addition, subtraction,
multiplication and division are defined.

3 PETRI NET INVARIANT ANALYSIS

In this section, we recall invariant analysis for place/transition nets (Silva, Teruel, and Colom 1998), a special class of Petri
nets. Petri nets are directed bipartite graphs with two types of nodes called places and transitions which are connected by arcs.
A place represents a state variable with range Ny. Its graphical notation is a circle. Its current value is considered as the number
of tokens that reside at that place. A transition represents a rule for changing those state variables to which it is connected.
Its graphical notation is a rectangle. State changes are based on addition and subtraction of constant values. Formally, a
place/transition net (PN) is defined as a 5 tuple PN = (P,T,I",I",My), where P={p1,...,py} is a finite and non-empty set of
places, T = {11,...,%} is a finite and non-empty set of transitions (PNT =), I~, I'" : P x T — Ny are backward and forward
incidence functions, and My : P — Ny is the initial marking. The initial marking M, is a special case of a marking M : P — Ny.
A marking M denotes that state of a Petri net, it can be interpreted as an integer (column) vector which includes per place p
one integer value describing the number of tokens on place p. Let of := {p € P|I”(p,t) >0} and te := {p € P|/I"(p,t) > 0}
denote the input and output places of a transition t; analogously, ep := {t € T|I"(p,t) > 0} and pe:={r € T|I" (p,t) > 0}
for place p. A Petri net describes a dynamic behavior, i.e., changes to the current marking that are performed by the firing of
transitions. A transition 7 € T is enabled at marking M, denoted by M|t >, iff M(p) > 1~ (p,t), Vp € P. A transition 7 € T that

is enabled at marking M may fire and yield a new marking M’ where M’ (p) = M(p) — I~ (p,t)+1"(p,t), ¥p € P, denoted

by M[t > M'. The incidence matrix [is defined as a Zg"Xk) matrix with | P |=m, | T |=k and I(p,t) =11 (p,t) — I (p,1).

The notion of invariants is well known in Petri net theory, so we only briefly recall definitions and properties. A vector
vEZ™v+#0 is called P-invariant if v/ -1 =0 with m =| P | and I denotes the incidence matrix. A vector w € Z*,w # 0
is called T-invariant if /-w =0 with k =| T |. We are mostly interested in semi-positive invariants, i.e., v € Ng,w € Ny,
and those places (transitions) that have a positive value in v (w) give the support of an invariant. Invariants are additive -
the sum of invariants is an invariant again - so if a net has at least one semi-positive invariant, then the set of invariants is
infinite, which motivates consideration of a generating set of minimal invariants. Algorithms for the computation of that set
are known, in particular a variant of the Fourier-Motzkin method described by Martinez and Silva in (Martinez and Silva
1982), see also Algorithm 8 in (Silva, Teruel, and Colom 1998). The algorithm has an exponential worst case time and
space complexity, but in practice, it works extremely well and is efficient in most cases.

A semi-positive P-invariant v means that the weighted number of tokens on the support of v is constant for all reachable
markings M of the net, formally, v/ - M = v - My = const. If all places of a net are covered by a semi-positive P-invariant
then the net is structurally bounded, i.e., the set of reachable states for any initial marking M is finite and the marking of
any place p € P has a finite upper bound (whose specific value depends on the choice of My). A semi-positive T-invariant w
means that if a sequence of transitions is fired that contains each transition ¢ as often as wy, then the change of markings in
total is zero, which means that the firing sequence is a loop that leads back to the marking where it started. A T-invariant
considers only the effect but neither checks for the enabling of transitions nor gives information of a possible order of
transitions in that sequence. Nevertheless, the good news is that invariants can be computed independently from an initial
marking and independently from the size of the state space, even for unbounded nets with an infinite number of markings.

4 INVARIANT ANALYSIS FOR SIMULATION TRACES

If a place/transition net is simulated to generate a trace o, then it is obvious how to recover all relevant information of
PN = (P, T,I",I",My) from o if each transition occurs at least once in 0. However, place/transition nets are not a main
stream formalism applied in modeling and simulation. In fact, Petri nets come with numerous extension and variations in
an attempt to obtain a formalism that can be broadly applied in practice. The real question in our context is to investigate
how Petri net invariant analysis can be applied to a broad class of DES simulation models and what insights can be gained
from the results obtained.

In Petri net theory, one strong limitation of invariants is that invariants do not consider the enabling rule. From a
different point of view, we can think of this as a degree of freedom: invariant analysis applies to any vector addition system
with a state descriptor of numerical variables where there is a finite set of possible state changes due to an event e that
change a state s to s’ by s’ =s+ &(e). If a given simulation trace ¢ contains states s; € R for a set of m real-valued
state variables ¥, then the state transformation by event e; can be described as s; = s;—1 + 6 (i) with 6(i) =s; —s;—1. We
can extend this to a matrix notation with As being a (m x n)-dimensioned real-valued matrix with columns 6(1),...,6(n).
With this formation, s; = 5o+ Ag - x, where x € N2 and x(1) =...=x(i) =1 and x(i+1) =... = x(n) = 0. We can expect

829

Kemper

A to contain many identical columns, so we can define a more concise (m x k)-dimensioned real-valued matrix A with k
being the number of different columns in Ay and all elements of the set of different columns in Ay constitute the columns
of A. Hence s; = 5o+ Ax where x € N§ and x(i) accounts for the number of times §(j) = A(.,i) in ¢ for j=1,...,i. This
formation looses information on the order of events and also on the possibility of execution (enabling). For a given vector
X, it is not clear if there exists a corresponding trace ¢ that can be produced for the model under consideration. An ordinary
Petri net as the original simulation model (in case all transitions differ in their firing effect and ¢ is long enough so that
each transition occurs at least once) will result in the special case of A =1 given that A is appropriately permuted to match
with the order of transitions for /.

There is an obvious similarity to M’ = My + Ix for Petri nets and we purposely chose the cardinalities of sets |#'| = |P| =m
and |T| = k being the number of columns in A to stress this similarity. The main argument for P-invariants and T-invariants
carry over. Namely, a vector vI' € Z{ with v! - A =0 has the property that v -5; =vT -5 +vT -A-x =vT -5 is constant for
any given sp, so we name such a vector v a state variable invariant. Analogously for a vector w € Nj with A-w =0, we see
that s; = s; +A-w =s; and the corresponding combination of events in w describe a cyclic behavior of the model. Again,
for any given w it is not clear if a corresponding trace o;; can be produced. However, for any given ¢ with a corresponding
vector w, Aw = 0 implies that o describes a cycle. Hence, we denote such a vector an action invariant.

We consider a part of an example model of a communication network with failures and repair to illustrate the concept.
The model is discussed in more detail in Section 5.2., we focus on a model fragment the describes failures and repair of
a single network node. Figure 4 shows this fragment as a stochastic activity network in the Mobius framework. A single
node can be in each of the states up, down, or inrepair. Additional state variables like requestrepairman are used to deal
with the allocation and release of a repair worker, a shared resource. The intended sequence of actions that this part of the
model shall produce is (failure, repairbegin, (interruptrepair,repairbegin)*,repairends)* where * denotes an arbitrary number
of occurrences including zero and for an initial state where the node is up. The graphical notation in Figure 4 matches with
that of a Petri net extended with so-called input and output gates that describe a complex enabling condition (input gate) or
firing effect (output gate) with C++ code fragments for a particular action. The graphical representation of those gates is a
triangle. Action repairends is an example with an inputgate /G1, which specifies that a repair activity can only end if there
is no request for a release (a nonzero value for variable requestrelease), and an outputgate OGI. An expected state variable
invariant is 1-up+1-down+1-inrepair = 1. The state transformations of all actions are of the kind such that whenever an
action like failure occurs as event e;, the corresponding vector §(i) contains the same three nonzero entries, namely —1 for
up, 1 for down and 1 for requestrepairman. The effect is that while As contains n columns, matrix A contains only |</| =k
columns and in particular one column for action failure. Both matrices contain one row for each variable in the model, so
the fragment in Figure 4 contributes eight rows for variables and four columns for actions.

requestrépairman grantrepairman releasergpairman

repairbegin Gl repairends OG1
requestrelease
interruptrepair

grantrelease

Figure 1: Faulty Failure-Repair Model, atomic model of a single node

4.1 State Variable Invariants

A matrix A which we obtain from a simulation trace can be used for at least two purposes. One is to verify if any given
vector v establishes a state variable invariant. This is possible by checking v’ - A = 0 which requires a simple vector matrix
multiplication. This can be useful to verify a set of safety properties, e.g., the number of resources in an operational or
failed state is a particular constant value or the total number of tasks in a closed system model is a particular constant value.

The second purpose of A is in the calculation of invariants. If we restrict ourselves to integer-valued matrices A and we
are interested in semi-positive invariants, then we can compute a generating set V of such invariants with the Fourier-Motzkin
method in the same way as for an ordinary Petri net. As before, a modeler can investigate elements of V to see if it matches

830

Kemper

with his or her expectations. In addition to that, one can recognize that the set of states the simulation model can reach is a
subset of potential states PS = {s[v] -s =T .5 forall v € V} if A contains a column for each possible event §(e) the model
is able to produce. PS is an overapproximation that can include many states that are not reachable for a model. Nevertheless,
we can use PS to make the case that any state s € PS is not possible to reach, which may help argue towards the correctness
of a model. In Petri net theory, the usefulness of this line of argumentation is often demonstrated with models of mutually
exclusive access to a shared resource or a critical section. Finally, we can use an invariant v to argue towards boundedness
of variables. However, this works only under certain restrictions. For simplicity assume that v covers all variables in 7.
If v is semi-positive, i.e., v € Njj,v # 0 and variables in " have a domain Ny, then there are only finitely many ways to
distribute a total of v -so over variables v € ¥, which implies existence of an upper bound, since {s[v’ -s=vT 50} is
finite. The last aspect may appear overly restrictive, however note that v need not cover all variables. If there is a subset of
variables ¥’ C ¥ that fulfills the above constraints and the support of v is a subset of ¥, then we can raise the argument
on upper bounds for reachable values of all variables in the support of v. Hence we can pursue this type of analysis also in
the presence of mixed models, where some variables are discrete while others are truly continuous.

So far, we focused on variables that are covered by some invariant v. If invariant analysis reveals that a variable is
not covered by any invariant, but a modeler expects it to be covered, then this can be valuable information to verify state
transformation functions in the model that modify that variable. Furthermore, if a non-trivial subset ¥’ C ¥ is not covered,
we can compute connected subgraphs G with a set of nodes ¥’ U.«/' where &’ C &/ denotes all actions that modify at least
one variable v € #. Edges in G connect state variables and actions according to non-zero entries in A. Using a graphical
format like that for Petri nets, and Petri net notation, the net has places P = %", transitions T = (e¥”’ U ¥"e) and edges
according to incidence funtions obtained from A. This visualization may help a modeler to focus on actions that may be
worth considering.

The absence of a state variable invariant does not necessarily indicate an error. Some models contain state variables that
are used as counters to measure activities and that are only increasing in value over time. Other models encode different
states of an automaton by a single state variable and state dependent actions, such that a variable invariant covering that
state variable is unlikely to exist.

4.2 Action Invariants

As for state variable invariants, we can use the concept of invariants for three purposes. A modeler can check the existence
of a particular invariant, compute a generating set of invariants, and identify a set of actions that are not covered by any
action invariant. In the following, we elaborate these three cases a bit further.

We check if a given vector w is an action invariant by checking Aw = 0 with a simple matrix-vector multiplication. This
is straightforward if there is a 1-1 mapping for columns of A with actions in 6. However, if there are several different vectors
0(i1),...,06(i,) for events ¢;,,...,e; that all result from the same action a, i.e., a(e;,) = ... = a(e;,), then it is more difficult
for a modeler to carefully choose the appropriate number of occurrences for each of those cases of a that are expected to
generate a cycle.

The action invariants contain values that describe how often an action needs to occur to see a sequence of events return
to its starting state. Therefore it is natural to consider action invariants as vectors in N’6 for a given matrix A. To compute a
generating set of invariants, we can make use of the Fourier-Motzkin method used in Petri net invariant analysis. A modeler
can then check those invariants if they match with expected behavior. In certain cases, it is necessary to exclude certain state
variables from consideration in the invariant analysis. For example, this is the case if a state variable is incorporated in a
model to count how often a certain action a occurs. This implies that a cannot be present in any action invariant, which
usually effects other actions that modify state variables that a changes. This effect may ripple through the overall model
and reduce the effectiveness of invariant analysis to reveal structural information. If we exclude variables like those counter
variables from consideration, we set each row in A to null that corresponds to such a variable. As an effect, invariant analysis
can then compute action invariants for a model where certain state variables have been removed and reveal characteristics
that would normally not be revealed due to artifacts like those counters. This is useful to focus on parts of model that
describe the control of the model’s dynamic behavior.

Finally, if certain actions are not covered by an action invariant and if this is contrary to the modeler’s expectations,
then a modeler can check the state transformation functions associated with each of those actions. It is often helpful to draw
submodels as a directed graph with nodes that result from all uncovered actions and the state variables that are modified by
their state transformation functions. Edges can be added between state variables and actions that modify them with directions
determined by the sign of the modification, e.g., a state variable that correspond to row i in A and an action that corresponds
to column j in A has an edge directed towards the action if A(i, j) < 0 and vice versa if A(i, j) > 0. The resulting graph can

831

Kemper

be joined with a similar one we obtain from uncovered state variables in the invariant analysis for state variables discussed
before. These graphs illustrate which model elements may be jointly affected by a single mistake in a model.

5 EXAMPLE RESULTS

We illustrate the usage of invariant analysis for simulation traces with the help of two example models. The first model
is a stochastic model for the dependability assessment of a satellite network developed by (Athanasopoulou, Thakker, and
Sanders 2005). We provide some evidence with invariants that some intrinsic mechanism that is described by a complex case
distinction specified with embedded C++ code works as expected. The second model is an availability model of a system
with two classes of resources that fail and get repaired and a shared finite set of repairmen. The model is a toy example but
resembles common aspects of dependability models that include failure and repair. It contains an error that is identified with
insight obtained by invariant analysis and, for the improved model, we can show that invariants indicate that the simulation
run is performed as expected.

Both models have been developed and simulated with Mobius (Deavours, Clark, Courtney, Daly, Derisavi, Doyle,
Sanders, and Webster 2002) and the generated traces have been analyzed with Traviando. Traviando implements the proposed
invariant analysis and also generates a set of webpages to document analysis results. The results for both models can be
explored in full detail in the example sections of Traviando’s webpage, see (Traviando 2009).

5.1 LEO Satellite Model

In this section, we discuss how to use invariants to argue towards the correct functioning of a dependability model of a
LEO satellite system as described in (Athanasopoulou, Thakker, and Sanders 2005). The model describes communication
among a network of satellites and a ground station where different components of satellites may be subject to failure. In
addition to its concrete purpose for the design of a real satellite that has been built and launched (but was destroyed with
its carrier rocket in an unsuccessful transport operation), the model itself is interesting to consider for verification purposes.
Since satellites move on different orbits, communication between satellites and between a satellite and the ground station is
possible only in certain positions. The continuous movement on each orbit is modeled with a discrete, finite set of positions
which are held for a certain amount of time and which either enable a communication between two satellites or not. This
mechanism implies an underlying deterministic sequence of events in a simulation run which solely represents the changes
in positions of different satellites on their corresponding orbits. The mechanism is not trivial. It is implemented in a single
action Sat_counter and with a lengthy sequence of nested if-then-else C++ statements that encode changes in positions. We
consider a minimal network of 2 satellites whose atomic models consider failures of various components and a network
model for communication.

For a verification of the model, one needs to check that the cyclic movements return to the same position after a
particular number of steps. We can do this with the help of action invariants as discussed in Section 4. We need to run the
simulation model for a configuration of interest to obtain a simulation trace ¢. This trace must be long enough such that we
can expect that all aspects of Sat_counter have been exercised, i.e., that all satellites have gone through their orbit positions.
The particular trace we consider contains about 117,000 events, which is about 2.5 time units of the model, and Sat_counter
accounts for more than 99% of all events. With this length, we are confident that ¢ is long enough. It is straightforward
to check how often individual actions occur in . From o, we obtain a set of state transformation vectors 8 for all the
different ways (cases) Sat_counter occurs, which yields 10 cases for this model.

We compute action invariants including all cases for state transformation vectors of all actions and with respect to all
state variables. This results in several invariant vectors of which some exclusively consider cases of Sat_counter. We list
those invariants in the columns of Table 1. From the totals line, we see that there are cycles of length 64 and 1472, where
the latter seems a combination of the cycle of length 64 with one of length 23. A cycle length of 64 relates to the 64
different positions of a satellite with respect to the ground station represented by values of state variables Sat!/_Loc2GS
and Sar2_Loc2GS. By checking the & vectors of individual cases, we can see that certain combinations are equivalent,
e.g., 0(casel) + 8(cased) =28 (case3), which explains the relationship between inv; and inv,. We do not present the state
transformation functions of the 10 cases in further detail, since our main point is to illustrate that invariants can be helpful
to check if the overall combination of state transformations can result in cycles of expected length.

In addition to the computation of action invariants, we can derive vectors of action invariants directly from ¢ by counting
the number of occurrences of actions for cycles that are present in o (Kemper and Tepper 2009). For this example, we
observe action invariants that show cycles of length 128 for action Sat_counter which is 2 times the 64 step cycle for the
positions of each of the 2 satellites with respect to the ground station. This is consistent with the expected behavior.

832

Kemper

The computation of state variable invariants yields invariants that only cover state variables that describe the operational
state of the satellites and the network. We do not obtain invariants that cover the state variables that capture the position of
the satellites. This is consistent with the modeling approach of using explicit state-dependent transformation rules, such that
a state variable like Satl_Loc2GS goes through as sequence of values but those transformations do not necessarily establish
a balanced flow such that there is a constant weighted sum of values of state variables including Satl _Loc2GS.

Submodel Submaodel Submodel

Satellitel Satellite2 Network

Figure 2: Satellite model, composed model view

Table 1: Action Invariants of the Satellite Model

case | invy invo inv3 invy invs invg invy invg
1 0 15 0 345 0 345 0 15
2 1 1 23 23 23 23 1 1
3 30 0 690 0 690 0 30 0
4 0 15 0 345 0 0 0 15
5 8 8 184 184 184 184 8 8
6 16 16 368 368 368 368 16 16
7 8 8 64 64 120 120 0 0
8 0 0 105 105 56 56 7 7
9 1 1 23 23 23 23 1 1
10 0 0 15 15 8 8 1 1
total | 64 64 1472 1472 1472 1472 64 64

5.2 Faulty Failure-Repair Model

We now consider a communication network with two categories of nodes, basic nodes and priority nodes. Priority nodes are
essential to keep the communication network working while basic nodes are not. All nodes are subject to failure and share
a crew of repair workers who repair failed units to keep the system operational. For obvious reasons, priority nodes have a
higher priority for repairs than basic nodes. We develop a model to compute the utilization of the repair workers and the
availability of the overall network for different numbers of staff. We consider a model where the priority policy to schedule
repair workers is preemptive, i.e., if a priority node fails while all workers are busy and there is a worker who is repairing a
failed basic node, then that repair job gets interrupted and the worker starts working on the failed priority node. The Mobius
model uses two atomic models. A single atomic node model used for both types of nodes and repairscheduler model for
the repair workers. The atomic models are both described in the stochastic activity network (SAN) formalism, much like a
stochastic Petri net and without elaborated state transformation functions as in the previous case of the satellite model. The
overall model is a composed rep/join model, where the node model is instantiated b times to describe b individual basic nodes
that all behave in the same manner. Likewise, the node model (named Vipnode in the composed model) is also instantiated
p times to obtain p priority nodes. All these instances are composed with a single instance of the repairscheduler model
by the Joinl node in the composed model shown in Figure 2.

When running a test run of the simulator with parameter settings b =5, p =2, and r = 1 repair worker, the measurements
for utilization show a modest utilization of the worker and low availability of basic nodes. From the simulation trace ¢ of

833

Submodel
RepairScheduler

Submodel Submodel
Node Vipnode

Figure 3: Faulty Failure-Repair Model, composed model view

116,815 events, we see that repair activity for priority nodes takes place throughout the trace but for basic nodes it seems
to die out after a while. The model may have a partial deadlock.

There are different ways to recognize that there is a problem and to investigate into it. From the number of values
assignments to state variables, we see that there are about 45,000 assignments to state variables that indicate that the repair
worker is idle or serving a priority node. There are only a marginal amount of assignments to show that the repair worker
serves a basic node. From a more detailed breakdown, we see that state variables of basic nodes are manipulated only up to
event 1007 and basic nodes remain in the failed state till the end of the trace. From a plot of the different states visited by
the simulator with ¢, we see that after some initial short exploration of about 350 states, the simulator visits only a small
set of about 20 states. From a breakdown of occurrences of various actions, we see that actions related to basic nodes occur
only up to event 1007, and the last of those actions is action reschedulefinish, which models the treatment of a preemption
of service for a failed basic node due to a failure of a priority node.

From the state variable invariant analysis, we see that all state variables of a basic node are covered by an invariant that
shows that any instance of a node, basic or priority, is at any point of time in one of three states up, down, or in repair,
which is correct. There is also a state variable invariant that shows that the worker circulates through three states idle,
busywithnode, or busywithprioritynode, which is correct. There are a few more invariants that show that the communication
between models seems to operate fine. The only variable that is not covered by any invariant is requestrepairman, which is
a variable that is shared among all replicated instances of basic nodes and the repair scheduler. This is not as expected; a
request is issued when a node fails, then it is supposed to be granted by the scheduler and removed when the repair is done,
so there should be an invariant covering this state variable. Priority nodes are instances of the same atomic node model as
the basic nodes, with the same corresponding state variable to request a repair worker, but for priority nodes this variable
is actually covered by several state variable invariants. This indicates that the atomic node model is not used properly for
basic nodes.

From action invariant analysis, we see that actions that 1) describe the failure of a priority node, 2) request a reschedule
from the scheduler, 3) model the finishing of rescheduling, and 4) model that the repairing of a basic node is interrupted,
are not covered by any action invariant. This is also consistent with what is seen from the invariants that are deduced from
cycles in o. If we consider the uncovered actions together with state variables that are modified by the state transformation
function of those actions plus the uncovered state variables and actions that modify them, we can recognize a connected
submodel as shown in Figure 3. This submodel shows us a certain aspect of the model that is distributed over different
atomic models and their composition. The Petri net is used only as a visualization aid with the understanding that edges
directed towards a transition describe a reduction of values, edges directed away from a transition describe an increase in
values.

With this information, we check the state transformations performed by actions that are not covered with action invariants
and realize that action inferruptrepair does correctly set the state of the basic node back to the failed state, but does not
request a repair worker from the scheduler again. The implications of this error are that failed basic nodes whose service
get interrupted will remain unserved until some other basic node fails and requests repair. Since replicated nodes share their
shared variables and requestrepairman is a shared variable, this request may result in a repair service for any of the then
two failed basic nodes. In this manner, repairing of basic nodes remains possible for the price of a prolonged downtime till
interruptrepair occurred b times in total. After that, all basic nodes are in the failed state with no one left to generate a
request for repair.

834

Kemper

inrepair

;' »
r' >

requestrepairmanvip reschedulerequest feduestrelease jntarryptre

sywithvipnode

»
-

edulefinish 9rantrepairmanvip

ir grantrelease res

busywithnode

failure requestrepairman alloc

Figure 4: Uncovered Actions and State Variables

To fix this problem, we need to change the definition of interruptrepair to also generate a request for a repairman. In
terms of the illustration in Figure 3, we need to add an edge from interruptrepair to requestrepairman. By doing so, we see
in Figure 3 that we can expect that the existence of a state variable invariant that covers grantrelease will imply existence of
a similar one that covers requestrepairman. From running the improved model, we see that all state variables and actions
are covered by invariants as expected and the partial deadlock disappears.

6 TOOL IMPLEMENTATION

The approach presented in this paper has been implemented in Traviando (Traviando 2009), a trace visualizer and analyzer
for simulation traces of DES models. Traviando is not dedicated to a particular modeling formalism. Its input is an
XML-formatted trace with a prefix that defines finite sets of state variables and actions and a suffix that contains data as we
formally defined it for a trace ©.

Traviando has been extended over several years, its most recent version (Kemper 2009) provides a command-line interface
to generate a report, an HTML formatted document, of various properties seen in a given trace o. A selection of example
reports can be accessed at (Traviando 2009). The idea is to provide a modeler with human readable feedback with graphics,
data and explanations for a simulation trace in a format that requires no further expertise to explore what a simulator really
does with a given model. In addition to the generated web report, Traviando comes with an interactive graphical user
interface that visualizes any location in a trace ¢ in full detail with a variant of a message sequence chart and that provides
various features intended to help a modeler locate areas of interest in a lengthy simulation trace. For example, Traviando
provides an event browser that allows a modeler to investigate sequences of events (Schmidt and Kemper 2008) and a model
checker for LTL formulas where areas in a trace that fulfill given formulas are highlighted with particular colors (Kemper
and Tepper 2008). Traviando also provides a reduction mechanism to remove cycles in a trace which helps to generate plots
for a measure of progress that show particular patterns to reveal certain errors in simulation models (Kemper and Tepper
2009).

Traviando has been used to analyze traces generated from various sources, most notably from Mobius, a modeling
framework for the dependability and performance assessment of systems developed by W. H. Sanders at the University of
Illinois at Urbana-Champaign.

7 DISCUSSION

The trace-based analysis of a simulation model faces a number of conceptual limitations. Any trace ¢ we consider is one
single and finite example of a potentially infinite set of traces of potentially infinite length. The principal insight gained
from an example is limited to demonstrate that a certain behavior - be it good or bad - is possible, e.g., states reached in ¢
are truly reachable. This puts the quality of results that can be achieved with trace-based analysis in the range of what can
be achieved with testing. It can help us gain confidence in a model, verify certain properties, and debug and find causes

835

Kemper

of errors, but it cannot help to prove the absence of errors. In comparison to other verification techniques like a structured
walk through of the code, trace-based analysis has the advantage of evaluating what the simulator does with a model and
not what a modeler understands as the semantics of a model description.

For the invariant analysis we presented, the quality of invariants that are computed highly depends on the assumption
that all possible state transformations are represented in A, which requires the presence of corresponding events in 6. What
seems severe from a conceptual point of view need not be cumbersome in practice. A modeler should be familiar enough
with a model to know which actions perform state transformation functions in a state-dependent manner (and in how many
variations) and which actions do not in order to be able to judge if A is a complete representation or not. Furthermore, a
simulation trace can be made sufficiently long by over-provisioning (traces in the example section had all more than 100k
events for models with less than 100 actions) and the number of occurrences for individual actions is a straightforward
statistical measure to check. If the tool implementation is able to digest lengthy simulation traces, simply using very long
traces as an approximation of long enough traces is a viable solution. For the problematic case of rare event simulation,
one can adjust the initial state and/or increase probabilities of events for the sole purpose of generating a complete matrix
A. Furthermore, an automated analysis that exercises a long simulation trace is more thorough than a manual stepwise trace
analysis that would consider state transformation functions of actions only at very few state settings.

The effort to obtain A is linear in the length of ¢ by a simple on-the-fly filtering process that inserts vectors &(i) into a
hash table and does not store any duplicates. There is no need to store the overall trace. The overall space required for A
depends on |¥|, |<7| and on the extent a single action may produce different vectors, e.g., a worst case example is a model
with actions that have a state- or time-dependent state transformation function that create different vectors each time they
occur such that A = As. For a given matrix A, the effort for the Fourier-Motzkin method is exponential in m and k in the
worst case but this method has been successfully applied in practice with Petri nets for broad classes of models. Alternatively
to seeking an integer solution to v/ A =0, one can compute a real-valued solution with cubic effort. However, at least for
action invariants an integer solution is easier to interpret.

The successful derivation of state variable invariants is subject to different modeling styles. To illustrate the point, we
consider a small automaton that starts at a state 1 and sequentially visits states 2, 3, ..., n and terminates at state n. We
consider two extreme ways to model it. We can think of an implementation with a single state variable s and domain {1,...,n}
and a single action that performs all necessary state transformations with a code statement that contains n— 1 cases, one
for each state transformation from state i to i+ 1. For this encoding, no state variable invariant will be computed. As an
alternative implementation, we can use n binary state variables and n — 1 actions, which switch the value settings for s; to 0
and that for s;4; to 1. For the latter implementation, we can expect to find a state variable invariant v = (1,...,1) that states
that in every state there will be exactly one state variable having a value of 1 while all others are set to 0. With appropriate
tool support for model specification as well as model analysis, the latter style of modeling may become more advantageous
and more frequently used than the former. In practice, we see a combination of both styles.

A strong point of invariant analysis is that both action and state variable invariants reveal structural information that
connects multiple model elements. While we can check any single detail of a model description, more global, structural
constraints are usually harder to verify. A model description itself usually reveals only very specific structural information.
For example, the rep/join formalism for model composition in Mobius tells us which atomic models get instantiated with
how many identical instances and which state variables are shared among submodels. However, state variable invariants may
cover variables from various different submodels and reveal an overall global constraint. Similarly, an action invariant can
reveal that a lengthy sequence of actions throughout a set of submodels would return to its starting state. For our second
example, such a sequence may involve a failure of a basic node, the start of a repair operation, the failure of a priority node,
the rescheduling of the repair worker, the repair of the priority node, or the start and finish of the repair operation at the
basic node. Obviously those sequences are naturally present and a modeler may want to confirm the way they operate by
checking a corresponding action invariant.

In practice, the ability to exclude certain state variables or certain actions for an invariant analysis is a useful one to
extend the applicability of the approach. For instance, certain state variables that are used as counters to memorize how
often an action occurs only increase in value. Those variables are easily identified by have a corresponding row A(i,.) > 0 of
non-negative values. To exclude such a variable from consideration, one only needs to set A(i,.) =0. A similar pattern with
negative entries is present in dependability models with failures but no repair. As for counters, excluding those variables
from analysis allows a modeler to check more properties with invariant analysis.

The invariant analysis we presented applies broadly to DES model with a static state description (a fixed size vector of
numerical state variables). It is not limited to a specific Petri net formalism.

836

Kemper

The presence as well as the absence of invariants can be used in debugging a simulation model. Model elements that
are not covered by invariants can be graphically displayed and connected subgraphs can guide a modeler in his or her search
for reasons for that behavior.

8 CONCLUSION

We present an approach that performs an invariant analysis of discrete event simulation models based on a simulation trace.
The class of simulation models that can be analyzed needs to have a finite set of numerical state variables that constitute
the state of a model. Its dynamic behavior is documented in a trace of a simulation run that contains states and events. We
conduct an invariant analysis that has its roots in classical invariant analysis known for place/transition nets (a particular
class of Petri nets). We demonstrate the usefulness of the approach with two example models, one is a dependability model
of a satellite network and taken from the literature, the other is a small model of a network with failures and repairs that
contains a non-trivial error, which we identify with the help of invariant analysis. Both models have been developed in
Mobius. The corresponding trace analysis is performed with Traviando, a trace analysis tool that implements the approach
presented in this paper.

ACKNOWLEDGMENTS

We thank the four reviewers and Ruth Lamprecht for their help to improve this paper, Sam Klock for evaluating Daikon and
the Mobius group at UTUC for their support with models and trace generation.

REFERENCES

Athanasopoulou, E., P. Thakker, and W. H. Sanders. 2005. Evaluating the dependability of a LEO satellite network for
scientific applications. In Proceedings of the 2nd Int. Conf. on Quantitative Evaluation of Systems, 95-104: IEEE
Computer Society.

Balci, O. 2004. Quality assessment, verification, and validation of modeling and simulation applications. In Proceedings of
the 2004 Winter Simulation Conference, eds. R. G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, 122—-129.
Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Deavours, D. D., G. Clark, T. Courtney, D. Daly, S. Derisavi, J. M. Doyle, W. H. Sanders, and P. G. Webster. 2002. The
Mobius framework and its implementation. IEEE Transactions on Software Engineering 28 (10): 956-969.

Ernst, M. D., J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S. Tschantz, and C. Xiao. 2007. The Daikon system
for dynamic detection of likely invariants. Sci. Comput. Program. 69 (1-3): 35-45.

Kemper, P. 2009. Report generation for simulation traces with Traviando. In Proceedings of the 2009 IEEE/IFIP Int. Conf.
on Dependable Systems and Networks, 347-352: IEEE Computer Society.

Kemper, P., and C. Tepper. 2008. Traviando - a trace analyzer to debug simulation models. Simulation News Europe 18/3-4.

Kemper, P., and C. Tepper. 2009. Automated trace analysis of discrete event system models. IEEE Transactions on Software
Engineering 35,2:195-208.

Martinez, J., and M. Silva. 1982. A simple and fast algorithm to obtain all invariants of a generalized Petri net. In Application
and Theory of Petri nets, Number 52 in Informatik Fachberichte. Berlin: Springer.

Sahoo, S., M.-L. Li, P. Ramachandran, S. Adve, V. Adve, and Y. Zhou. 2008. Using likely program invariants to detect
hardware errors. In Proceedings of the 2008 IEEE/IFIP Int. Conf. on Dependable Systems and Networks: IEEE CS.

Sargent, R. G. 2008. Verification and validation of simulation models. In Proceedings of the 2008 Winter Simulation
Conference, eds. S. J. Mason, R. R. Hill, L. Moénch, O. Rose, T. Jefferson, J. W. Fowler, 157-169. Piscataway, New
Jersey: Institute of Electrical and Electronics Engineers, Inc.

Schmidt, N. J., and P. Kemper. 2008. Phrase based browsing for simulation traces of network protocols. In Proceedings of
the 2008 Winter Simulation Conference, eds. S. J. Mason, R. R. Hill, L. Monch, O. Rose, T. Jefferson, J. W. Fowler,
2811-2819. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Silva, M., E. Teruel, and J. Colom. 1998. Linear algebraic and linear programming techniques for the analysis of place/transition
net systems. In Lectures on Petri Nets I: Basic Models, Advances in Petri Nets, Number 1491 in LNCS. Berlin: Springer.

Traviando. 2009. <http://www.cs.wm.edu/~kemper/traviando.html>,
<www.cs.wm.edu/~kemper/traviando/examples.html>, accessed June 1, 2009.

837

Kemper
AUTHOR BIOGRAPHY

PETER KEMPER is an Associate Professor in the Department of Computer Science at the College of William and Mary
(previously TU Dortmund and TU Dresden, Germany). His research interests include modeling techniques and tools for
performance, performability and dependability analysis of systems. He contributed to analysis techniques for the numerical
analysis of Markov chains, model checking stochastic models, techniques for simulation optimization. His web page can be
found via <www.cs.wm.edu/~kemper> and his email address is <kemper@cs.wm.edu>.

838

