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ABSTRACT

The application of the DEVS formalism to spatial simulations of biological systems is motivated by a need to keep software
manageable, even when faced with complex models that may combine algorithms for potential fields, fluid dynamics, the
interaction of proteins, or the reaction and diffusion of chemicals. We demonstrate DEVS-based design by applying the
formalism to a “tethered particle system” (TPS), a model we designed to capture the motion of deformable biological
structures. The paper focuses on the design of DEVS models using hierarchies and layers, and describes a recently-developed
simulator that supports our approach. The DEVS-based TPS model, which has been used to simulate certain interactions in
nerve cells, demonstrates the formalism’s potential as a means of addressing the complexity of spatial biological models.

1 INTRODUCTION

Simulation, in particular simulation involving spatial aspects, is attracting an increasing amount of interest among biologists
and medical researchers seeking better understanding of biological systems and the ability to predict their behavior. The
pursuit of ever more realistic models will inevitably require the integration of various algorithms; algorithms that simulate
interrelated phenomena such as protein interaction, potential fields, fluid dynamics, and the reaction and diffusion of chemicals.
If one lacks a strategy to address the complexity of such models, the result may well be large quantities of unmanageable
simulation code. We contend, however, that if one can construct complex models from simpler submodels defined in layers,
the code need not become unwieldy.

The Discrete Event System Specification (DEVS) is a general modeling framework in which models are defined as
hierarchies of modular submodels that interact in a discrete-event fashion. Hierarchical model design, and other properties of
DEVS such as the separation of model and simulator, have compelled us to investigate its application to spatial simulations
of biological systems.

Motivated in part by an ongoing project to simulate vesicle-synapsin interactions in nerve cells (Goldstein, Wainer,
Cheetham, and Bain (2008)), we defined a “tethered particle system” model (TPS) that captures the motion of deformable
biological structures. In this paper we offer a brief description of the TPS algorithm, and focus on its DEVS-based design
in an effort to address the following questions. How does one design hierarchical models of biological systems with spatial
aspects? How does one parameterize those models? How does one implement them for simulation? Among other things,
we suggest that distinct aspects of algorithms be separated at an upper level in a DEVS model hierarchy, and that the
partitioning of space be handled at lower levels. We also recommend that DEVS models of biological systems be defined
and parameterized in layers, and describe a recently-implemented DEVS simulator that supports this approach.

DEVS, and examples of its application to spatial simulation and biology, are described in Section 2. Sections 3, 4, and
5 address, respectively, hierarchical model design, layered model design, and implementation. The discussion in Section
6 outlines how the DEVS-based tethered particle system model might be combined with another model that captures the
reaction and diffusion of chemicals. Whereas this last discussion explores just one example in which two algorithms are
combined with DEVS, we hope to encourage experts in the field to consider DEVS for the integration of biological simulation
algorithms in general.
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2 BACKGROUND

DEVS was developed in the 1970s to provide a framework for the design of models for discrete-event simulation. One may
refer to Zeigler, Kim, and Praehofer (2000) and Wainer (2009) for a detailed explanation of the theory and examples of
its application. When applying the formalism, a distinction is generally made between indivisible DEVS models, described
as atomic, and composite DEVS models, described as coupled. In the original formalism, atomic and coupled models are
defined as tuples.

〈X ,Y,S,δext ,δint ,λ , ta〉 {atomic model}

〈X ,Y,D,{Mi} ,{Ii} ,
{

Zi, j
}

,select〉 {coupled model}

A key principle of DEVS is the separation of model and simulator. When designing a DEVS atomic model, for example,
one defines functions such as δext , δint , λ , and ta, but does not worry about invoking them. The evaluation of these functions
is carried out by the simulator. After an event, the simulator evaluates the time advance function ta to determine the time
until the next internal transition. Should this time elapse, the output function λ is invoked to obtain an output value y (y ∈Y ),
and the internal transition function δint yields the new state s of the model (s ∈ S). If, however, an input value x is received
before the calculated time elapses (x ∈ X), then the simulator applies the external transition function δext instead. A DEVS
simulator is model-independent in the sense that it should carry out a simulation for any valid DEVS model, regardless of
what the model represents.

Atomic models can be linked to form coupled models. These coupled models can in turn be linked with other atomic
models and/or other coupled models, and in this manner a model may take on a hierarchical structure. Suppose, hypothetically,
that one has defined four atomic models identified by the labels soma, axon, terminal 1, and terminal 2. Each of these
represents a part of a neuron, or nerve cell, and an entire neuron is represented by the coupled model neuron illustrated in Figure
1. The coupled model variable D, the set of components, would be defined as {soma,axon, terminal 1, terminal 2}. The set
of components {Mi}, would be a set of four tuples, one for each atomic model. The arrows in the figure depict links through
which the outputs of one model become inputs for others. These links would be formally defined by the set of influencees
{Ii}. It is worth noting that any coupled model has an equivalent atomic model, a property referred to as “closure under coupling”.

Figure 1: An illustration of a DEVS coupled model, called neuron, that links together four submodels. A typical nerve cell
does not have exactly two terminals, but this model is only intended to serve as a hypothetical example.

We now turn our attention to models with spatial aspects. We do not consider the model in Figure 1 to be a spatial
model, because although a neuron’s soma, axon, and terminals can be associated with different regions, the shape of these
structures is neglected. Consider, by contrast, the spatial cellular model illustrated in Figure 2, in which the shape of the
neuron is represented by a set of shaded cells in a lattice.

Figure 2: A hypothetical cellular model in which the shape of a neuron is captured by a set of shaded lattice cells
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The application of the original DEVS formalism to cellular models is discussed in Zeigler and Vahie (1993) and elsewhere.
Another approach is offered by the Cell-DEVS formalism, described in Wainer (2009), which is an extension of DEVS for
cellular automata. As presented in Wainer, Jafer, Al-Aubidy, Dias, Bain, Dumontier, and Cheetham (2007) and Goldstein,
Wainer, Cheetham, and Bain (2008), Cell-DEVS has been used to simulate a number of biological systems, including the
vesicle-synapsin clusters mentioned in the introduction.

In one way or another, cellular models tend to introduce uniformity within each cell of the lattice. When using
the Next Subvolume Method to model the reaction and diffusion of chemicals, for example, one introduces a cell space
in which the concentration of each chemical changes from one lattice cell to the next, but is uniform within each cell
(Elf and Ehrenberg (2004)). In this case the assumption of uniformity is advantageous in that it allows one to apply
the Gillespie Algorithm, which predicts concentration changes in a homogeneous chemical system (Gillespie (1977)). In
the case of the Figure 2 model, however, the uniform nature of each cell may be disadvantageous in that it complicates
changes to the neuron’s shape and position. Although it would be easy to translate the entire neuron up or down or left
or right, moving it in an arbitrary direction and deforming it would be difficult. We are therefore interested not only in
cellular models, but also continuous-space models such as the one illustrated in Figure 3. In this case the shape of a
neuron is captured by a set of connected points that are not restricted to a lattice. The neuron may be translated by mov-
ing all points in the same direction, or deformed by moving each point in a slightly different direction than that of its neighbors.

Figure 3: An example of a continuous-space model, in which the shape of a neuron is captured by a set of connected points

We now mention three challenges associated with the application of DEVS to spatial simulations of biological systems.
First, we note that in Figure 1, we have a simple two-level hierarchy based on nerve cell anatomy: our neuron, at the upper
level, is composed of a soma and an axon and two terminals, all at the lower level. In the spatial models of 2 and 3, however,
we have abandoned this anatomical hierarchy and modeled the entire neuron as a whole. Our first challenge is this: if we
are to neglect anatomical hierarchies in spatial models, how do we exploit the hierarchical nature of DEVS?

Assuming that we can find suitable hierarchies for DEVS models of biological systems, the second challenge is how
to parameterize those models. A strategy is needed to define DEVS models as dramatically different from one another as
those in Figures 1, 2, and 3, while at the same time encouraging the reuse of formulas between models.

Even if one has arrived at a sound mathematical definition of a DEVS model, the constraints of computer technology
will motivate numerous changes and compromises. Implementation is therefore our third challenge.

3 HIERARCHICAL MODEL DESIGN

Here we begin with a brief description of a TPS (tethered particle system), then focus on its DEVS-based design to demonstrate
how suitable hierarchies can be chosen for spatial biological models. The TPS models deformable biological structures
such as the vesicle-synapsin clusters found in the terminals of nerve cells. This is accomplished by tracking the position
of each particle in a set. If two approaching particles reach an inner limiting distance, they collide, rebound outwards,
and may become “tethered”. When two separating tethered particles reach an outer limiting distance, then provided they
remain tethered, they retract inwards. By constraining the distances between pairs of particles in this manner, proteins and
membranes and other biological structures may be modeled.

A more detailed description of the TPS can be found in Goldstein and Wainer (2009). We now consider the hierarchical
structure of a DEVS model of a TPS. To simplify its presentation, we will focus on the handling of collisions between
moving particles, as opposed to the tethering. As each particle can be at any location and move in any direction, the TPS
is an example of a continuous-space model of the type illustrated in Figure 3 of Section 2.

When designing a particle system model, one must address two fairly distinct sub-problems: collision detection and
collision response. Recognizing this, one can simplify matters by focusing on detection and response separately. We make
this separation explicit in our hierarchical model design by defining the DEVS model T PS as a coupled model consisting of
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a detector submodel and a responder submodel. The detector outputs a collision message when two particles collide with
one another, but it is the responder that alters the trajectories of those particles after receiving the message. The two new
trajectories are sent back to the detector as a pair of response messages. As shown in Figure 4a, the response messages are
also used as outputs for the T PS.

(a) (b)

Figure 4: The hierarchical structures of the T PS and detector coupled DEVS models

Whereas the responder is simply an atomic model, we are motivated in part by computational efficiency to adopt a
coupled model for the detector, and thereby add another level to our hierarchy. Note that a very simple detection algorithm
would compare each particle with every other particle, and calculate the future time at which each pair collides. It is
considerably more efficient, however, to compare only pairs of particles that are close to one another. This is achieved by
introducing a lattice of subvolumes, represented by the lattice submodel. The lattice is responsible for sending the collision
messages that ultimately go to the responder. However, when the responder sends a response message to the detector
to update a particle’s trajectory, the message must be re-directed to each subvolume of the lattice that is “aware” of that
particle. This re-direction is accomplished by the tracker submodel. The tracker-lattice relationship, depicted in Figure 4b,
also involves arrival and departure messages, which will be clarified by a scenario described further below.

For the tracker we use an atomic model. But as the lattice model represents a set of subvolumes, we take the obvious
approach and represent each subvolume with its own DEVS atomic model. The lattice is thus a coupled model. As illustrated
in Figure 5, each subvolume model subV may receive response messages and output collision, arrival, and departure
messages. Additionally, each subV may send ad j messages to the subV models that neighbor it according to their lattice
configuration. The ad j, arrival, and departure messages will be explained in the scenario.

Figure 5: The lattice coupled model of the detector. Although only a 2-by-2 configuration is shown on the left, one can
have any number of subvolume models in 1, 2, or 3 dimensions.

Arguably the most intuitive way to design a hierarchical DEVS model is to create spatial divisions of some sort, though
we have only introduced space-based partitioning at the third and lowest level of our hierarchy. At upper levels in the
hierarchy, we separate distinct aspects of the algorithm such as collision detection and collision response.

Now we consider a simple scenario involving a large particle A and a small particle B on a 2-by-3 lattice. The subvolume
models of the lattice are identified by their coordinates. The subvolumes themselves are square regions, but as shown
in Figure 6, for each subvolume there are two concentric circles that surround it. Each subvolume model is aware of
certain nearby particles, but not other more distant particles. Model [0,1], for example, is aware of particle A but not parti-
cle B. If a DEVS model is aware of a particle, the current state of that model includes the position and velocity of that particle.
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(a) (b)

Figure 6: A scenario in which two particles first approach one another (a), then at a later time collide (b). The dot in both
cases indicates the location at which the particles meet.

Looking at Figure 6a, we are going to assume that the subvolume model [0,2] in the top-right corner is currently aware
of particle A. Because the particle is moving away from that subvolume, and because its backside is just touching the outer
circle, the associated subV undergoes an internal transition in order to lose awareness of the particle. The particle’s position
and velocity are removed from the subvolume model’s state, and a departure message is output. The departure message
leaves the lattice and is sent to the tracker. The tracker, which maintains a record of which subvolume models are aware
of each particle, updates itself accordingly.

Looking again at Figure 6a, let us say that particle B is just touching the inner circle around the subvolume in the
top-left corner. Subvolume model [0,0] must therefore become aware of particle B. This process begins when subV [1,0]
detects the circle-particle intersection, and sends subV [0,0] an ad j message. The ad j message triggers a transition in which
subV [0,0] adds particle B’s position and velocity to its state, then sends an arrival message to update the tracker.

Taking one last look at Figure 6a, and assuming the departure and arrival events described above have already taken
place, we note that the two subvolumes on the left are both aware of both particles. Thus the imminent collision between
the two particles is detected twice. It is only scheduled once, by subV [1,0], for the location at which the particles will meet
is in the subvolume of that model.

The DEVS simulator now advances time to the point at which particles A and B meet. This new situation is shown
in Figure 6b. It is at this time that, having scheduled the collision, subV [1,0] undergoes an internal transition. It sends
a collision message, which is directed out of the lattice model, then out of the detector model, then to the input of the
responder model. If left alone, the subvolume model will then allow the colliding particles to continue their current motion
and pass through one another. This will not happen, however, as after a simulated delay time of 0, the responder will
calculate new velocities for the particles and send two response messages to the detector. In the detector, the messages
go first to the tracker submodel. When the tracker receives the response message for particle A, it sends copies of the
message to the four subvolume models that are aware of it: [0,0], [0,1], [1,0], and [1,1]. These four subV models then
update their own recorded velocities of particle A. When the tracker receives the response message for particle B, only
subvolume models [0,0], [1,0] need to be notified.

Note that one could dispense with the concentric circles and use instead the square subvolume boundaries to determine
which subvolume models are aware of each particle. It is somewhat cumbersome, however, to determine when a circular
particle enters or exits a square region, and worse to determine when a spherical particle enters or exits a cubic region.

We now reflect on what has been gained and lost by adopting this DEVS-based hierarchical model. Starting with a
loss, we note that a more traditional programming approach would require us to store only a single position vector and
velocity vector for each particle. With our hierarchy of models, identical copies of the position and velocity vectors of a
single particle are stored several times over: once in the responder model, and again in each subvolume model aware of that
particle. In order to change a particle’s velocity, we must first replace it in the responder, then pass messages to change it
in the subvolume models.
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So what have we gained? Our complex T PS model has been divided into simpler submodels, each of which addresses
a small part of the overall problem. As our three coupled models can be specified easily by defining the links illustrated in
Figures 4 and 5, the bulk of our efforts must go into the design of the external and internal transitions of the responder,
tracker, and subV atomic models. These six transition functions are all independent of one another, and each performs
a relatively specific task. And so by adopting the DEVS-based hierarchy, we introduce seemingly-redundant values and
messages, but benefit in that a complex routine has been reduced to a set of simpler functions.

4 LAYERED MODEL DESIGN

We now address the second challenge from Section 2, which seeks a strategy for defining dramatically different DEVS models
while at the same time encouraging the reuse of formulas. In the previous section we addressed the issue of complexity
by dividing complex DEVS models into linked submodels. Here we further reduce complexity by defining DEVS models,
hierarchical or otherwise, in layers. Each layer has an associated set of parameters, and the parameters of one layer are used
to define those of the underlying layer.

In the original DEVS formalism, every model is either an atomic model or a coupled model. Adopting a different
perspective, we will state that every DEVS model is simply an atomic model. Instead of defining an “atomic model” with the
tuple 〈X ,Y,S,δext ,δint ,λ , ta〉, we define a “DEVS model” with the vector [δext ,δint , ta]. We consider these three parameters
to be associated with the bottom layer of any model. Almost every model should have at least a second layer with a different
set of parameters, however, and the simplest way to add that layer is with a function. To illustrate, the function a modelDEV S
below introduces a second layer with the parameters a, b, and c, taking these variables as arguments and resulting in a
vector [δext ,δint , ta]. For the time being, the reader may assume that any function with the subscript DEV S results in a DEVS
model of this form. Note that indentation is used to control the scope of certain variables. Because δext , δint , and ta are
all indented relative to a modelDEV S, they may use a, b, and c. Because the two definitions of s′ are indented, they do not
conflict with one another. Certain expressions are replaced with comments in braces (eg. {a comment}).

a modelDEV S ([a,b,c]) := [δext ,δint , ta]

δext ([s,∆tel ,x]) := s′

s′ := {some expression that may depend on s, ∆tel , x, a, b, c}

δint (s) := [s′,Y ]
[s′,Y ] := {some expression that may depend on s, a, b, c}

ta(s) := ∆tint
∆tint := {some expression that may depend on s, a, b, c}

Our external transition function δext is the same as in the original DEVS formalism, calculating the final state s′ from
the initial state s, the time ∆tel elapsed since the previous transition, and the input value x. The time advance function ta
has not been altered either. It results in the time ∆tint remaining until the next internal transition, assuming that no input
messages are received in the meantime. We have changed things, however, by absorbing the output function λ into δint . The
internal transition function now takes the initial state s as before, but results in a vector Y of output values in addition to
the final state s′. This change is possible because the original λ and δint function were to be invoked back-to-back anyhow.
The advantage in combing them is that, in certain cases, we alleviate the need to repeat the same calculations twice over.
We omit the sets X , Y , and S for the sake of brevity, but note that they could be incorporated into the layering scheme.

Below is an outline of the definition of the responder model of the T PS. Its parameters include Ωψ , which provides
the mass of each particle; Ωψψ , which includes the inner and outer limiting distances referred to in Section 3; attach, which
determines when particles become tethered; and detach, which determines when tethered particles separate.

responderDEV S
([

Ωψ ,Ωψψ ,attach,detach
])

:= [δext ,δint , ta]
δext ([s,∆tel ,x]) := {an expression that depends on s, ∆tel , x, Ωψ , Ωψψ , attach, detach}
δint (s) := {an expression that depends on s, Ωψ}
ta(s) := {an expression that depends on s}
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Because we do not wish to abandon coupled models altogether, we introduce them as atomic models but add a second
layer using the function coupledDEV S. Its parameters include M, which defines the submodels, and C, which defines the links
between submodels. In the event that two internal transitions take place at the same simulated time, the priority function pr
selects the model with priority. The “closure under coupling” property assures us that coupledDEV S can be defined.

coupledDEV S ([M,C, pr]) := [δext ,δint , ta]
δext ([s,∆tel ,x]) := {an expression that depends on s, ∆tel , x, M, C, pr}
δint (s) := {an expression that depends on s, M, C, pr}
ta(s) := {an expression that depends on s}

Because the T PS model is coupled, we define it using coupledDEV S but add a third layer. As shown below, the function M
yields the detector and responder submodels when given their corresponding IDs, “detector” and “responder”. We assume
that one has a means of obtaining the domain of a function, and can therefore obtain these IDs from M. Consistent with the
links in Figure 4a of Section 3, the function C maps collision messages from the detector to the responder, and response
messages from the responder to both the detector and the output of the T PS. If both the detector and the responder are
to undergo internal transitions at the same simulated time, then the responder is to go first. This ordering is expressed by
the order vector, which is passed as an argument to prorder, which in turn is used to define the priority function pr. The
parameter N gives the dimensions of the collision detection lattice, and a is the length of each subvolume.

T PSDEV S
([

N,a,Ωψ ,Ωψψ ,attach,detach
])

:= coupledDEV S ([M,C, pr])

M (idm) :=
(

idm = “detector” → detectorDEV S
([

N,a,Ωψ ,Ωψψ

])
idm = “responder” → responderDEV S

([
Ωψ ,Ωψψ ,attach,detach

]) )

C (src) :=


src =

[
“detector”
“collision”

]
→
[[

“responder”
“collision”

]]

src =
[

“responder”
“response”

]
→
[[

“detector”
“response”

]
,

[
∅

“response”

]]


pr ([idA, idB]) := prorder ([idA, idB,order])
order := [“responder”,“detector”]

Now we turn our attention to the layered design of spatial models. The lattice model of Figure 5, which detects collisions
between particles, appears to be one of the more complex submodels in our T PS hierarchy. One way to simplify it is to
define the spatial relationships between subvolumes in a separate layer that has nothing to do with biology or physics. In two
dimensions, the relationship between subvolumes can be described as a “rectangular lattice” in which each subvolume can
interact with up to four adjacent subvolumes: one to the left, one to the right, one above, and one below. In 3D we would
call this type of geometric configuration a “cubic lattice”, and add two more adjacent subvolumes: one in front and one
behind. Generalizing this type of configuration to an arbitrary number of dimensions ndim, each subvolume of a “hypercubic
lattice” interacts with its, at most, 2·ndim adjacent neighbors.

Figure 7: Two hypercubic lattices: one 3-by-3 and one 2-by-3-by-3
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Recall that in a DEVS coupled model, the submodels are defined by M and the links by C. If the submodels of a coupled
model have a hypercubic lattice configuration, then we can define C given only the lattice dimensions N. Note that for Figure
7 we have N = [3,3] on the left and N = [2,3,3] on the right. Given N, we also know the identities of each submodel; if
N = [2,3] for example, then the IDs of the submodels are the sets of coordinates [0,0], [0,1], [0,2], [1,0], [1,1], and [1,2].
What we are missing is the DEVS model associated with each ID. We therefore require the function HLmDEV S, which maps
coordinates to models. In summary, we define a hypercubic lattice model with N and HLmDEV S, which take the place of M
and C. The new layer of parameters is introduced by the function HLDEV S, the definition of which is outlined below.

HLDEV S ([N,HLmDEV S, pr]) := coupledDEV S ([M,C, pr])
M (idm) := {an expression that depends on idm, N, HLmDEV S}
C (src) := {an expression that depends on src, N}

When it comes time to define the lattice model, our task is simplified in that the invocation of HLDEV S takes care of the
links between subvolume models. We may therefore focus our efforts on the scheduling of events within each subvolume.
The scheduling is defined within subVDEV S, which is passed to HLDEV S as the second argument. Note that our lattice model
has four layers: latticeDEV S at the top uses HLDEV S, which uses coupledDEV S, which defines [δext ,δint , ta] at the bottom.

latticeDEV S
([

N,a,Ωψ ,Ωψψ

])
:= HLDEV S ([N,subVDEV S, pr])

subVDEV S (coords) := [δext ,δint , ta]
δext ([s,∆tel ,x]) := {an expression that depends on s, ∆tel , x, coords, N, a, Ωψ , Ωψψ}
δint (s) := {an expression that depends on s, coords, N, a}
ta(s) := {an expression that depends on s}

pr ([idA, idB]) := ∅

Recall that the use of hierarchies in the previous section possibly increased the amount of code, yet aided the design of
the model by facilitating its division into simpler parts. The use of layers brings analogous costs and benefits. Each extra
layer may introduce overhead in the form of function calls and parameter transformations, but modelers will likely have an
easier time working with several simple layers than one complex layer.

We now mention two design complications we have thus far neglected. The first complication relates to the priority of
simultaneous events. If two events occur at the same simulated time in two different submodels of a coupled model, which
submodel goes first? In the case of the non-spatial model T PS, we defined pr such that the responder would undergo a
transition before the “detector”. In this case the ordering was essential, as otherwise two collisions could be detected in a
situation where one collision prevents the other. In the case of the lattice model, however, we refrained from ordering the
subvolumes. Unlike the detector and the responder, the subvolume models all have the same role. Ordering them is at best
unnecessary, and may even contribute to a bias in simulation results. Therefore, instead of resulting in a submodel ID, the
priority function of the lattice model yields ∅. Our coupledDEV S layer interprets pr ([idA, idB]) = ∅ as an instruction to order
the internal transitions randomly. This convention may prove useful in various spatial simulations of biological systems.

The other complication is initialization. We must parameterize not only DEVS models, but their initial states as well.
And the parameters of the initial states should also be grouped in layers. Although we neglected this complication in the
formulas above, we addressed the issue in the actual model by including an initialization function in the result of each
function with the subscript DEV S. This is demonstrated by the following example, a definition of the DEVS tracker model
accompanied by the initialization function inittracker. The parameter Ψ provides the initial locations of all particles.

trackerDEV S
([

N,a,Ωψ

])
:= [inittracker, tracker]

inittracker (Ψ) := s
s := {an expression that depends on Ψ, N, a, Ωψ}

tracker := [δext ,δint , ta]
δext ([s,∆tel ,x]) := {an expression that depends on s, ∆tel , x}
δint (s) := {an expression that depends on s}
ta(s) := {an expression that depends on s}
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5 IMPLEMENTATION

The usefulness of a DEVS-based model design depends largely on the extent to which an implementation adheres to it. We
chose the interpreted Python programming language because the ease with which functions can be passed as values, and
the representation of infinity provided by the numpy extension, promised to simplify the task of adapting our mathematical
formulas to code. With the Python code serving as proof-of-concept, a similar high performance simulator could be developed
in a compiled language.

The code below is an implementation of the tracker atomic model. Note the similarity between this example and
the mathematical formulas outlined at the end of the previous section. In general, a model’s parameters may be used in
its transition functions and its time advance function. In this case, N, a, and Omega_psi happen to appear in only the
initialization function. The definition of init_CL, used on line 4 to initialize the state variable CL, is omitted.

1 def t racker DEVS (N, a , Omega psi ) :
2
3 def i n i t t r a c k e r ( P s i ) :
4 CL = i n i t C L ( Ps i , N, a , Omega psi )
5 RL = [ ]
6 s = [CL , RL]
7 re turn s
8
9 def d e l t a e x t ( s , D e l t a t e l , x ) :

10 [CL , RL] = s
11 [ p o r t , msg ] = x
12 i f p o r t == ” r e s p o n s e ” :
13 RL = RL
14 RL . append ( msg )
15 s = [CL , RL ]
16 e l i f p o r t == ” a r r i v a l ” :
17 [ id A , c o o r d s ] = msg
18 CL = CL
19 i f c o o r d s not in CL[ id A ] :
20 CL [ id A ] . append ( c o o r d s )
21 s = [ CL , RL]
22 e l i f p o r t == ” d e p a r t u r e ” :
23 CL = CL
24 [ id A , c o o r d s ] = msg
25 i f c o o r d s in CL[ id A ] :
26 CL [ id A ] . remove ( c o o r d s )
27 s = [ CL , RL]
28 re turn s
29
30 def d e l t a i n t ( s ) :
31 [CL , RL] = s
32 s = [CL , [ ] ]
33 Y = [ ]
34 f o r r e s p o n s e in RL :
35 [ id A , spc A , t A , u A , v A ] = r e s p o n s e
36 f o r c o o r d s in CL[ id A ] :
37 p o r t = [ ” r e s p o n s e ” , c o o r d s ]
38 Y. append ( [ p o r t , r e s p o n s e ] )
39 re turn [ s , Y]
40
41 def t a ( s ) :
42 [CL , RL] = s
43 i f l e n (RL) > 0 :
44 D e l t a t i n t = 0 . 0
45 e l s e :
46 D e l t a t i n t = i n f t y
47 re turn D e l t a t i n t
48
49 t r a c k e r = [ d e l t a e x t , d e l t a i n t , t a ]
50
51 re turn [ i n i t t r a c k e r , t r a c k e r ]
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Recall that a response message describes the new trajectory of a particle, and that the role of the tracker is to send these
messages to various subvolumes. Accordingly, the external transition function delta_ext receives response messages
and stores them in the state variable RL. Upon receipt of arrival and departure messages, it also updates the state variable
CL that tracks the subvolume coordinates associated with each particle. The internal transition function delta_int takes
response messages from RL, and duplicates them for each set of coordinates in CL. Also shown, the time advance function
ta yields 0 if there are any response messages to output, and infinity otherwise.

The greatest problem we encountered during implementation was possibility of multiple variables referring to the same
block of memory. The code above is written as if the operator = copies all data on the right to the variable on the left. In
fact the assignments on lines 13, 18, and 23 copy references, and the new state s_ returned on line 28 shares memory with
the old state s passed in on line 9. We addressed old/new state conflicts in the simulator. In the simplified simulator below,
the assignments on lines 65 and 69 abandon old states by replacing them. Note that TX and TY represent input and output
values with associated times.

52 def s i m u l a t e ( model , s , TX ) :
53 [ d e l t a e x t , d e l t a i n t , t a ] = model
54 [ t , i , TY] = [ 0 . 0 , 0 , [ ] ]
55 whi le t < i n f t y :
56 i f i < l e n (TX ) :
57 [ t e x t , x ] = TX[ i ]
58 e l s e :
59 [ t e x t , x ] = [ i n f t y , None ]
60 t i n t = t + t a ( s )
61 i f ( t e x t == t i n t == i n f t y ) :
62 t = i n f t y
63 e l s e :
64 i f t e x t <= t i n t :
65 s = d e l t a e x t ( s , t e x t − t , x )
66 t = t e x t
67 i = i + 1
68 e l s e :
69 [ s , Y] = d e l t a i n t ( s )
70 f o r y in Y:
71 TY . append ( [ t i n t , y ] )
72 t = t i n t
73 re turn [ s , TY]

The new Python simulation code allowed us to implement the T PS DEVS model with the same hierarchical structure
and layered design as outlined in Sections 3 and 4. The simulation results obtained to date demonstrate the application of this
software to the interaction of vesicles and synapsins in neurons. As shown in Figure 8, particles representing vesicles and
synapsins are tethered together in a cluster. Obeying conservation of momentum, the cluster reacts realistically to impacts
from surrounding particles. The example demonstrates that DEVS can be used for spatial simulations of biological systems
not only with cellular models, as previously shown, but with continuous-space models as well.

Figure 8: Three sequential snapshots of a simulation using the DEVS T PS model. The large spheres represent vesicles,
neurotransmitter-containing structures found in nerve cells. Shown in black, synapsins are proteins that bind with vesicles.
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6 EXAMPLE OF ALGORITHM INTEGRATION

We have described the DEVS-based design and implementation of a fairly complex model of a biological system. But
arguably the TPS consists of a single algorithm, whereas at the outset we stated that one of the motivations for DEVS was
the need to combine multiple algorithms.

Though accomplished without DEVS, a good example of algorithm integration is described in Jeschke and Uhrmacher
(2008). This recent work combines the Next Subvolume Method, which tracks the concentrations of chemicals in various
subvolumes, with an algorithm that, like the TPS, tracks the positions of relatively large individual particles. Looking at the
diagram in Figure 9, the concentration of a chemical in subvolume [0,0] may change due to a reaction within the subvolume,
or a diffusion of the chemical to or from subvolume [1,0] or subvolume [0,1]. The Next Subvolume Method handles this
type of scenario. In the case of subvolume [1,2], however, reaction and diffusion are complicated by the presence of the
large particle. This requires an algorithm we will refer to as the Modified Next Subvolume Method.

Figure 9: A model in which chemicals react within each subvolume, diffuse between subvolumes as shown by the arrows,
and avoid the large particle

Now suppose we designed a DEVS model, named MNSM, that uses the Modified Next Subvolume Method to output
the concentration of each chemical in each subvolume. We could then combine it with the T PS. Assuming that MNSM
requires as an input the positions of all particles at regular time intervals, we would need a third DEVS model. The TPS
sequencing DEVS model named T PSS, which was in fact implemented for visualization purposes, inputs response messages
at the irregular times when collisions occur. Particle information is updated accordingly, and at regular time intervals the
positions of all particles are output in f rame messages. To integrate the TPS with the Modified Next Subvolume Method,
we would link all three DEVS models as shown in Figure 10.

Figure 10: A hypothetical DEVS coupled model that combines two algorithms

The example outlined here is hypothetical. A DEVS-based approach to the work of Jeschke and Uhrmacher (2008) may
or may not simplify matters. Furthermore, we do not rule out the possibility that in this case, the pi-calculus or another
formalism may be more appropriate than DEVS. Our point is that, in all probability, it would be feasible to integrate these
algorithms and others using DEVS and the techniques demonstrated in this paper, and that in general this approach may
help one design realistic yet manageable biological models.
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7 CONCLUSION

A hierarchy of DEVS models can be used to take what would be a complex routine, and reduce it to a set of simpler
functions. Additionally, DEVS models can be defined in layers, and simulation code has been developed to support this
approach. The presented DEVS-based TPS model has been successfully applied to vesicle-synapsin clusters, supporting the
idea that DEVS is among the formalisms useful for the design of both cellular and continuous-space spatial simulations of
biological systems. Future work may include the modeling of membranes and other biological structures with the TPS; the
pursuit of more accurate physical parameters in order to improve the validity of TPS models; the DEVS-assisted integration
of the TPS with other modeling algorithms; the implementation of a high performance version of our DEVS simulator; and
a comparison of DEVS with the pi-calculus and other formalisms for the design of spatial biological models.
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