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ABSTRACT

We consider two-stage procedures for selection and multiple comparisons, where the variance parameter is estimated
consistently. We examine conditions under which the procedures are asymptotically valid in a general framework. Our
proofs of asymptotic validity require that the estimators at the end of the second stage are asymptotically normal, so we
require a random-time-change central limit theorem. We explain how the assumptions hold for comparing means in transient
simulations, steady-state simulations and quantile estimation, but the assumptions are also valid for many other problems
arising in simulation studies.

1 INTRODUCTION

Simulation is often used to compare alternatives relative to a given parameter. The alternatives’ parameter values are unknown,
and we estimate them using simulation. For example, we may have ten alternative designs for a fault-tolerant system, and
we want to compare the designs in terms of their 0.9 quantile of their failure times.

In the setting when the number k of alternatives is fairly small, say no more than 20, simulation approaches for
comparing alternatives include selection procedures (Bechhofer, Santner, and Goldsman 1995) and multiple-comparison
procedures (Hochberg and Tamhane 1987). The goal of a selection procedure is to identify with prespecified high probability
the alternative with the largest parameter. For multiple comparisons, the aim is to construct simultaneous confidence intervals
for certain functions (such as pairwise differences) of the parameters, where the intervals have a prespecified joint confidence
level.

In this paper we study two-stage procedures for selection and multiple comparisons. For the multiple-comparison problem,
the user prespecifies a constant  > 0, and the two-stage procedure determines a simulation run length for each alternative
so that all of the constructed simultaneous confidence intervals have half width at most  . For the selection problem we
use Bechhofer’s (1954) indifference-zone formulation, where we assume the user is indifferent between alternatives whose
parameter values are within  of each other. The two-stage selection procedure determines a simulation run length for each
alternative so that the probability of correctly selecting the true best alternative at the end is at least a prespecified value.

We discuss the asymptotic validity of multiple-comparison and selection procedures as  → 0 when the alternatives
are mutually independent. We adopt a general framework, assuming only that we have parameter estimators that satisfy
random-time-change central limit theorems (CLT), and that we have consistent estimators of the variance parameters appearing
in the CLTs. Our framework encompasses many simulation settings arising in practice, such as comparing stochastic systems
relative to their transient or steady-state means, and comparing populations relative to a quantile or some moment.

There has been some previous work developing asymptotically valid two-stage or sequential procedures for se-
lection or multiple comparisons. Damerdji and Nakayama (1999) study two-stage multiple-comparison procedures for
steady-state means based on Schruben’s (1983) standardized time series (STS) methods. STS methods do not pro-
duce consistent variance estimators (for a fixed number of batches), so our current results do not encompass those in
Damerdji and Nakayama (1999). Kim and Nelson (2006) develop a sequential screening procedure for comparing steady-
state means. Mukhopadhyay and Solanky (1994) cover various selection procedures for comparing means of independent
populations, using independent and identically distributed (i.i.d.) sampling within each population.
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There is also other previous work that studies comparing alternatives via simulation under different frameworks than
what we consider here. For example, there are Bayesian methods that determine the allocation of samples to the alternatives
to maximize the posterior probability of correctly selecting the true best alternative; e.g., see Chick (2006) for an overview.
Also, Glynn and Juneja (2004) adopt a large-deviations perspective for comparing alternatives.

The rest of the paper has the following organization. Section 2 lays down the mathematical framework. We describe a
two-stage multiple-comparison procedure in Section 3 and an extension to make it a selection procedure in Section 4. We also
discuss the asymptotic validity of the procedures in those sections. Section 5 gives conditions under which our assumptions
hold for three types of performance measures often arising in simulation practice: transient means, steady-state means and
quantiles. Our methods apply much more generally, though. We provide some concluding comments in Section 6. Proofs
are given in Nakayama (2009).

2 FRAMEWORK

Suppose there are k alternatives 1,2, . . . ,k, where each alternative i has an associated parameter i, whose value is unknown
and is to be estimated via simulation. We compare the alternatives in terms of their parameters i, i = 1, . . . ,k, with larger
values being better. Corresponding to each alternative i is an estimation process ̂i = [̂i(t) : t ≥ 0], where ̂i(t) is the estimator
of i based on a simulation of length t of alternative i. For example, suppose we have k stochastic processes X1, . . . ,Xk

to compare, where the ith process Xi = [Xi(t) : t ≥ 0] has steady-state mean i, which we use to compare the alternatives.
Then we could take ̂i(t) = (1/t)

∫ t
0 Xi(s)ds. We can also handle discrete-time estimators ̂i,n in our framework by letting

̂i(t) = ̂i,�t�, where �a� is the greatest integer less than or equal to a ∈. For example, suppose we have k populations,
where population i has distribution Fi (not necessarily normal) and mean i. Let Xi,1,Xi,2, . . . be i.i.d. samples from Fi, and
we can define ̂i,n = (1/n)n

j=1 Xi, j as the sample mean of the first n samples from Fi.

We assume the estimation processes ̂1, . . . , ̂k are independent. Moreover, we will assume that there exists a parameter
 > 0 such that the following central limit theorem (CLT) holds for each alternative i:

t
[
̂i(t)−i

]
⇒ N(0,2

i ) (1)

as t →, where 0 < i < is some constant, ⇒ denotes convergence in distribution (Billingsley 1999), and N(a,b2) denotes
a normal distribution with mean a and variance b2. In many settings, the parameter  assumes the canonical value of 1/2,
but we allow for other values also. The CLT in (1) implies that ̂i(t) is a consistent estimator of i as t → .

We will develop two-stage procedures to compare the k alternatives. In our two-stage multiple-comparison procedure,
the goal is to develop joint confidence intervals for specified functions of the parameters 1, . . . ,k, with each interval having
half-width at most  , which the user specifies beforehand. To do this, the user runs a first stage to estimate 2

i for each
alternative i, and the estimate of 2

i is used to determine the total run length Ti( ) required for alternative i so the resulting
confidence intervals are no wider than  . Thus, each Ti( ) depends on  and the simulated first-stage of alternative i (and
possibly of other alternatives j �= i), so Ti( ) is random. Our approaches require that the estimator (appropriately centered
and scaled) of each i at the end of the second stage Ti( ) is asymptotically normally distributed, which will require that we
strengthen the CLT in (1) to allow for a random-time change. As we will later see, it turns out that for each alternative i,
the total run length satisfies

 1/Ti( ) ⇒ i as  → 0, where 0 < i <  is a constant. (2)

Let i, = i−1/ , and we assume the following random-time-change CLT:
Assumption 1 There exists a constant 0 <  <  such that for each i = 1, . . . ,k, and for Ti( ) satisfying (2),(

i,
[
̂i(Ti( ))−i

]
, i = 1, . . . ,k

)
⇒ (

Ni(0,2
i ), i = 1, . . . ,k

)
as  → 0, (3)

where Ni(0,2
i ), i = 1, . . . ,k, are independent normals.

By replacing Ti( ) with i, in (2) and (3), we see that the CLT in (1) is a special case of Assumption 1.
We also assume that for each alternative i, there exists another estimation process Vi = [Vi(t) : t ≥ 0], where Vi(t) is the

estimator of 2
i appearing in (1) and (3) from simulating alternative i for a run length of t. We also allow for discrete-time

estimators Vi,n by taking Vi(t) = Vi,�t�. For example, in our previous example of comparing k populations relative to their
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means i, we can take Vi,n = (1/(n−1))n
j=1(Xi, j − ̂i,n)2, the sample variance. We assume that each Vi(t) is a consistent

estimator of 2
i :

Assumption 2 For each i, Vi(t) ⇒ 2
i as t → .

We discuss in Section 5 conditions under which Assumptions 1 and 2 hold.

3 TWO-STAGE MULTIPLE COMPARISONS

We first focus on multiple comparisons with the best (MCB), where the goal is to construct simultaneous confidence intervals
for i −max��=i �, i = 1,2, . . . ,k; see Hsu (1984). Below we present a two-stage procedure for constructing MCB intervals
having prespecified width parameter  > 0. The procedure extends one developed by Rinott (1978).

Procedure A

1. Specify the confidence level 1− , the desired absolute-width parameter  of the MCB confidence intervals, and
the first-stage run length T0,i for each alternative i.

2. Independently simulate each alternative i for a run length of T0,i.

3. For each alternative i, compute the total run length required as

Ti( ) = max

⎛⎝T0,i,

(

√

Vi(T0,i)


)1/
⎞⎠ , (4)

where the constant  ≡ (k,1−) =
√

2z(1−)1/(k−1) , with z satisfying (z ) =  for 0 <  < 1,  is the distribution
function of a standard (mean 0 and variance 1) normal distribution,  is as defined in Assumption 1, and Vi(t) is
any estimator satisfying Assumption 2.

4. For each alternative i, continue to simulate from time T0,i to Ti( ), where the k alternatives are simulated independently,
and form the point estimator ̃i( ) = ̂i(Ti( )) of i.

5. Use the width parameter  to construct simultaneous MCB confidence intervals

Ii( ) =

[
−
(
̃i( )−max

��=i
̃�( )−

)−
,

(
̃i( )−max

��=i
̃�( )+

)+
]

, i = 1, . . . ,k,

for i −max��=i �, i = 1, . . . ,k, respectively, where −( )− = min( ,0) and ( )+ = max( ,0).

Let ̄ ≡ ̄(k,1−) =
√

2z̄k−1,1− , where z̄p, is the upper- equicoordinate point of a p-variate standard normal distribution
with unit variances and common correlation coefficient 1/2. Table B.1 of Bechhofer, Santner, and Goldsman (1995) provides
values for z̄p, for various p and  . When i, i = 1, . . . ,k, in (1) and (3) are known, one can instead use a single-stage procedure
with the total run length for alternative i being (̄i/ )1/ (Section 2.6 of Bechhofer, Santner, and Goldsman 1995).

Theorem 1 Suppose that the CLT in (1) and Assumption 2 hold, and suppose that Procedure A is used with first-stage
run length T0,i = i− for each alternative i, where i > 0 and 0 <  ≤ 1/ are any constants. Then

(i) the limit in equation (2) holds with

i =
{

(i)1/ if  < 1/
max(i,(i)1/) if  = 1/

. (5)

Moreover, if {Vi(t) : t ≥ 0} is uniformly integrable, then E[ 1/ Ti( )] → i as  → 0.

In addition, if the CLT in (1) is strengthened to Assumption 1, then the following also hold:

(ii) lim→0 P
{
i −max��=i � ∈ Ii( ), i = 1, . . . ,k

}
> 1− .
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(iii) If  = 1/2 in Assumption 1 and 0 <  < 2, then (i)–(ii) still hold when  in (4) is replaced with ̄ , and ̄ <  . Moreover,
Ti( )/(̄i/ )2 ⇒ 1 as  → 0, and if, in addition, {Vi(t) : t ≥ 0} is uniformly integrable, then E[Ti( )/(̄i/ )2]→ 1
as  → 0.

Part (i) shows that for each alternative i, the total run length Ti( ) for small  is roughly i/ 1/ , where i in (5) is
deterministic. Part (ii) establishes that the asymptotic joint coverage of the MCB intervals is greater than the nominal level
1− . Part (iii) considers the special case when  assumes the canonical value 1/2 and when we replace the critical point 
in (4) with ̄ . In this case, Procedure A is asymptotically efficient, in the sense that the total run length for each alternative is
asymptotically equivalent (in distribution and in mean) to what we would use if we knew each 2

i (Chow and Robbins 1965).
Procedure A produces MCB intervals in which the half-width of the resulting intervals are at most  . Nakayama (2009)

also develops asymptotically valid two-stage MCB procedures that yield intervals having prespecified relative half-widths;
i.e., the half-widths are at most 100% of the point estimators.

4 SELECTION PROCEDURE

Procedure A constructs asymptotically valid MCB confidence intervals. Matejcik and Nelson (1995) showed that MCB
in the non-asymptotic setting is often closely related to a selection procedure under Bechhofer’s (1954) indifference-zone
formulation. In the indifference-zone set-up, the user is indifferent between two alternatives whose parameter values are
less than  apart. To show that we can similarly extend our asymptotic MCB procedure to also allow for selection, we
first define [1], [2], . . . , [k] such that ̃[1]( ) ≤ ̃[2]( ) ≤ ·· · ≤ ̃[k]( ); i.e., alternative [i] has the ith smallest estimator after
simulating the second stage. Then we modify to Procedure A to get the following:

Procedure A.2

Use steps 1–5 of Procedure A, and include the additional step:

6. Select alternative [k] as the best alternative.

Let  = (1, . . . ,k) be the vector of parameter values of the alternatives, and define the event of a correct selection as

CS ( ) = {[k] > [i], i = 1,2, . . . ,k−1},

which occurs when the selected alternative [k] actually has the largest true parameter value. We would like to show that for
Procedure A.2, the probability of correct selection (PCS) is at least 1− asymptotically as  → 0. When establishing such
a result, we need to be careful in formulating the problem to end up with a theoretically interesting conclusion. Specifically,
suppose we fix the alternatives and their parameter values i beforehand and then take the limit as  → 0. The asymptotic
set-up in Theorem 1 assumes the first stage of each alternative i in Procedure A.2 has run length T0,i = i− , for arbitrary
constants i > 0 and 0 <  ≤ 1/ , and lets  get small. Hence, as  → 0, each first-stage length grows to infinity, so the
total run lengths also do. But then typically a strong law of large numbers implies each estimator ̃i( ) → i almost surely
as  → 0, so lim→0 P(CS( ))→ 1. In fact, virtually any procedure that lets run lengths of every alternative grow to infinity
will have asymptotic probability of correct selection equal to 1, so this asymptotic set-up is not theoretically interesting.

To obtain a non-trivial result, we need to make the problem “harder.” One way of doing this is to allow the configuration
of parameter values 1, . . . ,k to vary as  shrinks. Specifically, define (1),(2), . . . ,(k) such that (1) ≤ (2) ≤ ·· · ≤ (k); i.e.,
alternative (i) has the ith smallest parameter value. Now define

( ) = { : (k) > (k−1) +},

which is the preference zone, the configurations of parameter values in which the user prefers only alternative (k). It now
becomes considerably more difficult to prove that the limit of the PCS over all configurations of parameters  ∈( ) is at
least 1− as  → 0, e.g., see Damerdji et al. (1996). Thus, we adopt a simplifying assumption:

Assumption 3 For each alternative i, there exists a process Yi = [Yi(t) : t ≥ 0] such that ̂i(t) = i +Yi(t) for all
t > 0, where the distribution of Yi does not depend on i, and Y1, . . . ,Yk are independent.

When Assumption 3 holds, we can think of each i as a “location” parameter and Yi is a “noise” process added to i.
Kim and Nelson (2006) make a similar assumption in establishing the asymptotic validity of their selection procedure for
steady-state means.
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Theorem 2 If Assumptions 1, 2 and 3 hold and Procedure A.2 is used with first-stage run length T0,i = i− for
each alternative i, where i > 0 and 0 <  ≤ 1/ are any constants, then

lim
→0

inf
∈( )

P

{
CS ( ), i −max

��=i
� ∈ Ii( ), i = 1, . . . ,k

}
> 1−.

Thus, we see that the joint event of correct selection and simultaneous MCB interval coverage has asymptotic probability
greater than 1− .

5 EXAMPLES

We now show that Assumptions 1 and 2 hold in a variety of simulation contexts arising in practice. We first consider the
case of comparing means of independent population, with i.i.d. sampling within each population to construct the sample
mean as the estimator of the true mean.

Example 1 [Population means] Suppose each alternative i corresponds to a population with distribution Fi, and let
Xi,1,Xi,2, . . . be i.i.d. samples from Fi. Let i = E[Xi,1], and the goal is to compare the k populations in terms of their means.
Let ̂i,n = (1/n)n

j=1 Xi, j be the sample mean of the first n samples from Fi. Let 2
i be the variance of Fi, and we assume that

0 < 2
i < . Then the ordinary CLT in (1) holds with  = 1/2 (e.g., Theorem 6.4.4 of Chung 2001). Thus, Assumption 1

holds with  = 1/2 by Theorem 7.3.2 of Chung (2001). The sample variance Vi,n = (1/(n−1))n
j=1(Xi, j − ̂i,n)2 satisfies

Assumption 2; e.g., see p. 73 of Serfling (1980).
Example 1 covers the setting of comparing means in transient simulations. Specifically, let Xi denote the (random)

performance of alternative i over a finite (possibly random) time horizon. Then i = E[Xi] is the transient mean of alternative i,
and we compare the k alternatives relative to 1, . . . ,k. We run i.i.d. replications of each alternative i to yield Xi,1,Xi,2, . . .,
which we use to estimate i and 2

i using the ordinary sample mean and sample variance, respectively. One could also use
other estimators of i and 2

i as long as they satisfy Assumptions 1 and 2.
For Example 1, Assumption 1 immediately follows from the ordinary CLT in (1) without any additional conditions.

However, this is not always the case, so we need to strengthen the ordinary CLT in (1) for Assumption 1 to hold. One such
way is by also assuming Anscombe’s (1952) condition below.

Condition 1 (Anscombe) For each alternative i and for each positive  and  , there exist positive ci and ti such
that

P

{
sup

s : |s−t|≤cit
t
∣∣∣̂i(s)− ̂i(t)

∣∣∣> 

}
< , for all t ≥ ti.

Proposition 1 The CLT in (1) and Condition 1 together imply Assumption 1.
Next we consider a functional central limit theorem (FCLT), which states that each estimation process, when properly

centered and scaled, converges in distribution to a Brownian motion. To state an FCLT precisely, let D[0,1] denote the space
of left-continuous functions with right limits on the unit interval. See Billingsley (1999) for details on D[0,1] and Brownian
motion.

Condition 2 (FCLT) There exist finite positive constants  ,  and  with 2− = 2 such that for each i, Ui,n ⇒Ui

in D[0,1] as n → , where Ui,n = [Ui,n(t) : 0 ≤ t ≤ 1], Ui = [Ui(t) : 0 ≤ t ≤ 1], Ui,n(t) = n t
[
̂i(nt)−i

]
for 0 ≤ t ≤ 1,

Ui(t) = iBi(t) for 0 ≤ t ≤ 1, and Bi = [Bi(t) : t ≥ 0] a standard Brownian motion.
The canonical case for the FCLT has  = 1/2 and  =  = 1, in which case the limiting process Ui(t) = iBi(t). The

following shows that the FCLT is stronger than the combination of the ordinary CLT in (1) and Anscombe’s condition
considered in Proposition 1.

Proposition 2 If Condition 2 holds, then the CLT in (1) and Condition 1 hold, so Assumption 1 also holds.
We now describe some other simulation settings where Assumptions 1 and 2 hold.
Example 2 [Steady-state simulations] Suppose each alternative i corresponds to a stochastic process Xi = [Xi(t) :

t ≥ 0], which we assume has a steady-state mean i. The goal is to compare the k processes in terms of their steady-state
means. Let ̂i(t) = (1/t)

∫ t
0 Xi(s)ds for t > 0, and ̂i(0) = 0, so ̂i(t) is the time-average of the process Xi over the first t time

units. Under a variety of assumptions on the process Xi, the estimator ̂i satisfies a FCLT with  = 1/2 and  =  = 1, in
which case Assumption 1 holds by Proposition 2. For example, under appropriate conditions, the FCLT holds for Markov
chains, martingales, and regenerative processes; e.g., see Section 4.4 of Whitt (2002). Various methods have been developed
for constructing estimators Vi(t) of 2

i that satisfy Assumption 2 under a variety of conditions. The techniques include the
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regenerative method (Glynn and Iglehart 1993), spectral methods (Damerdji 1991), autoregressive estimators (Fishman 1978,
p. 252), and various batch means and batched area estimators with the number of batches growing to infinity (Damerdji 1994).

Example 3 [Quantiles] Suppose that each alternative i is a population with distribution function Fi. For any
distribution function G and constant 0 < q < 1, define G−1(q) = inf{x : G(x) ≥ q}. For a fixed value 0 < p < 1, let
i = F−1

i (p), which is the pth quantile of Fi, so we are comparing the alternatives in terms of their pth quantiles. We assume
that Fi is differentiable at i, with F ′

i (i) > 0, where prime denotes derivative. Let Xi,1,Xi,2, . . . be i.i.d. samples from Fi. For each
n ≥ 1, define the empirical distribution function Fi,n based on the first n samples from Fi as Fi,n(x) = (1/n)n

j=1 I{Xi, j ≤ x},
where I{A} is the indicator function of the event {A}, evaluating to 1 when {A} occurs, and 0 otherwise. We define
a discrete-time estimator ̂i,n = F−1

i,n (p) of i based on n samples from population i. Then the CLT in (1) holds for

each population i with 2
i = p(1− p)/(F ′

i (i))2; e.g., see p. 77 of Serfling (1980). Anscombe (1952) establishes that
Condition 1 holds with  = 1/2, so Assumption 1 holds by Proposition 1. To construct an estimator Vi,n of 2

i that satisfies
Assumption 2, first define qi,n = p+

√
p(1− p)/n+o(1/

√
n), where h(n) = o(g(n)) means h(n)/g(n) → 0 as n → . Then

Vi,n = n(F−1
i,n (qi,n)−F−1

i,n (p))2 ⇒ 2
i as n → , so Assumption 2 holds; e.g., see p. 94 of Serfling (1980). Other estimators

of 2
i satisfying Assumption 2 could also be used, including the bootstrap quantile variance estimator or smoothed versions

of bootstrap estimators (Hall 1992, pp. 319–320).
Many other settings arising in simulation contexts also satisfy Assumptions 1 and 2. These include comparing comparing

functions of means of i.i.d. random vectors and Kiefer-Wolfowitz (1952) stochastic approximation. The last case is of special
interest because Assumption 1 holds with noncanonical  = 1/3.

6 CONCLUSIONS

We described a general framework for establishing the asymptotically validity of two-stage procedures for MCB and selection
for comparing alternatives. The assumptions for the asymptotic validity are that the alternatives are independent, the estimators
satisfy a random-time-change CLT, and we have consistent estimators for the variance parameters appearing in the CLT. Our
framework encompasses a wide variety of settings that are of interest to the simulation user, including the comparison of
means in transient simulations, steady-state means of stochastic processes, and quantiles of populations.
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