
Proceedings of the 2009 Winter Simulation Conference
M. D. Rossetti, R. R. Hill, B. Johansson, A. Dunkin, and R. G. Ingalls, eds.

G-SSASC: SIMULTANEOUS SIMULATION OF SYSTEM MODELS WITH BOUNDED HAZARD RATES

Shravan Gaonkar
William H. Sanders

Information Trust Institute and Coordinated Science Laboratory
1308 W. Main Street

Urbana, IL, 61801, USA

ABSTRACT

The real utility of simulation lies in comparing different design choices by evaluating models represented using a simulation
framework. In an earlier paper, we presented the Simultaneous Simulation of Alternative System Configurations (SSASC)
simulation algorithm, which provides a methodology to exploit the structural/stochastic similarity among the alternative design
configurations in an efficient manner that evaluates multiple alternative configurations of a system design simultaneously.
However, this technique was limited to Markovian models. In this paper, we propose G-SSASC, which expands the domain
of system models that can be modeled and evaluated to those non-Markovian models that have distributions with bounded
hazard rates. We also show that we obtain a speed-up of up to an order of magnitude for a case study model that evaluates
the reliability of a storage system.

1 INTRODUCTION

The value of simulation and modeling is always well-understood in hindsight. The early decades of simulation research
started with the goal of providing cost-effective techniques to develop and evaluate mathematical models to predict potential
pitfalls in future implementation of system designs. While research in simulation is on its way towards achieving those initial
stated goals, simulation, modeling, and analysis have progressed to the extent that one can make scientific design choices
that would enable designers to use simulation as a valuable tool to diagnose and differentiate good design choices from bad
ones.

Various approaches, such as drafting, prototyping, and simulation, exist to validate and articulate system designs
quantitatively. Of the existing approaches, prototyping and simulation are the most favored and commonly used. While
prototyping and simulation are similar in their utility to a design engineer, a distinction has often been made between physical
prototypes and computer simulation. With recent advances in computer technology, this distinction has often been blurred, as
the computer simulation methodology has been refined to such an extent that it has almost eliminated the need for physical
prototyping. Lower costs and the ability to alter designs have allowed simulation to emerge as the leading standard for
evaluation of system designs.

From the perspective of project managers, whether they are trying to develop the next highly available web server
or trying to deliver the next space vehicle, cost overrun and resource crunch are two of the biggest factors that impact
timely delivery of the project results. That, in turn, severely impacts the resources that get allocated to development of
simulation models to analyze the system that the project intends to build. This resource crunch could be in either manpower
or computational resources. While there has been extensive research progress in parallel and distributed simulation methods,
it has not resulted in the widespread use of these techniques in the real world, as it is difficult for companies to justify
the purchase of the large clusters of computer nodes needed to run parallel and distributed simulation. Furthermore, even
though the clock speed of sequential processors improves every year, the complexity of the systems that must be modeled
also increases every year, which makes it harder to improve the simulation efficiency by just providing additional hardware
and compute resources.

To encourage the widespread use of simulation, it is necessary to make simulation more efficient in evaluating large
numbers of alternative design choices and configurations from an algorithmic perspective. If the system under evaluation

663978-1-4244-5771-7/09/$26.00 ©2009 IEEE

Gaonkar and Sanders

is scrutinized carefully, one will notice that changing the system configuration or parameter values does not dramatically
alter the structure or behavior. In light of this insight, (Gaonkar and Sanders 2009) developed a methodology, called
Simultaneous Simulation of Alternative System Configurations (SSASC), that exploits the structural similarity among the
alternative configurations to provide a solution that algorithmically improves the speed-up of simulation evaluation efficiency
by 1–2 orders of magnitude. However, SSASC is limited to Markovian system models. In this paper, we propose G-SSASC,
which expands the domain of system models that can be modeled and evaluated to those non-Markovian models that have
distributions with bounded hazard rates. We show that the changes required to upgrade SSASC to G-SSASC are minimal,
from both the implementation and execution perspectives. We also show that we obtain a speed-up of up to an order of
magnitude for a case study model that evaluates the reliability of a storage system. In addition, G-SSASC opens up system
models to take advantage of variance reduction techniques that are enabled by SSASC due to use of common random numbers.
Simulation optimization methodologies could exploit this variance reduction methodology to choose the best configurations
with better efficiency and speed. Furthermore, the G-SSASC algorithm itself is parallelizable, which allows G-SSASC to
use the existing compute infrastructure to provide additional efficiency in simulation and evaluation of designs.

2 RELATED WORK

In this section, we describe the existing approaches taken to simulate alternative design configurations simultaneously to
speed up the evaluation and analysis of system models.

2.1 Simultaneous Simulation of Markovian Models

Single-Clock Multiple Simulations (SCMS) (Vakili 1992) are a class of simulation techniques that exploit the commonality
that exists during evaluation of the alternative configurations of a discrete-event system. The salient feature of the technique
is that SCMS uses a single clock to update all the alternative configurations and eliminates the need to maintain any event
list. However, as mentioned by Vakili (Vakili 1992), this technique gives rise to the possibility of generation of excessive
pseudo transitions (event generation in which no real work is completed), creating the potential for inefficiency in simulation.
Gaonkar and Sanders (2005) developed SSASC to mitigate the pseudo transitions by integrating adaptive uniformization into
SCMS to achieve better efficiency.

2.2 Simultaneous Simulation of Non-Markovian Systems

Both the SCMS and SSASC techniques are quite efficient for simulating a large number of alternative configurations. However,
their applicability is limited to Markovian system models. Several approximation techniques exist that try to match the first,
second, and higher-order moments of the general distribution using phase-type distributions, such as hyper-exponential and
hypo-exponential distributions (Chen and Ho 1995, Altiok 1985, Altiok 1989, Smeitink and Dekker 1990), which can be be
used to convert the non-Markovian models into Markovian models to take advantage of the SCMS and SSASC approaches. Quasi
birth-death processes with exponential distributions have also been used to approximate general distributions to evaluate systems,
particularly queuing systems with general distributions (Li and Mark 1985, Kawanishi 2008). Several others have developed
hybrid simulation approaches in which the simulation technique of uniformization for exponential distributions is combined with
traditional event list management for nonexponential distributions (Chen 1995; Nicola, Heidelberger, and Shahabuddin 1992;
Shanthikumar and Sargent 1983). The major drawback of these approaches is that their solutions are approximate.

Schruben (1997) first introduced the concept of event-time dilation as a vehicle for choosing the best alternative
configuration. He referred to his approach as Simultaneous Simulation. Here, each event is assigned a set of parameter values
that correspond to all of the alternative configurations. Running such a simultaneous simulation experiment might result
in an enormous list of future events for simulation to process. However, the event-dilation technique tries to minimize the
impact of a large future event list by trying to concentrate on execution of those simulation runs that might have interesting
results (Hyden and Schruben 2000, Hyden and Schruben 1999). Unlike G-SSASC, event-time dilation is applicable to all
distributions. However, the technique is not scalable, due to linear scaling in the size of the simulation’s future-event list
with respect to the number of alternative configurations.

Sonderman (1978) originally developed the technique of constructing two new random processes on the same probability
space so that the two new processes have the same distribution as the original process (Sonderman 1979a, Sonderman 1979b,
Sonderman 1980). (Shanthikumar 1984) used the construction developed by Sonderman to demonstrate the use of uni-
formization to generate samples of random variates of the renewal processes that have bounded hazard rate functions
(BHR) (Shanthikumar 1986, Shanthikumar 1985). However, it is computationally more expensive to generate events using

664

Gaonkar and Sanders

(Shanthikumar 1984)’s approach than with the inversion method used by Traditional Discrete Event Simulators (TDES).
In the next section, we present G-SSASC in which we show how to modify Shantikumar’s approach to random variate
generation and adopt it in the context of simultaneous simulation that is practical and more efficient than TDES.

3 G-SSASC: NON-MARKOVIAN SYSTEM MODELS WITH BHR DISTRIBUTION

Gaonkar and Sanders (2009) describes the SSASC technique for evaluating alternative configurations of system models with
exponential distributions in wait time. Sonderman (1980) initially presented a technique to perform path-wise comparison
of semi-Markov processes by constructing a common underlying probability space. Shanthikumar (1986) used Sonderman’s
technique to generate samples for BHR distributions by constructing an equivalent Poisson process using uniformization.
In G-SSASC, we extend (Shanthikumar 1986)’s technique to the same class of general distributions, but for simultaneous
simulation of alternative configurations. The parameters of general distributions are varied to obtain alternative configurations
of system models. In the next few sections, we extend the existing theory and the algorithm necessary to generalize SSASC
to support distributions with the BHR function. Readers are referred to Chapter 2 in (Keilson 1979) for additional details
on uniformization of distributions with bounded hazard rates.

3.1 Generalizing SSASC

Consider a stochastic process G≡{Y (t), t ∈R+}. Uniformization represents the stochastic process G as a discrete-time stochas-
tic process Gn, where Y ≡ {Gn,n ∈ N+} and N is a Poisson process. Lewis and Shedler (1978) and Sonderman (1980), and
others used this underlying Poisson process to uniformize distributions. Shanthikumar (1984) noted that if 0 = S0 < S1 < S2 < ...
are consecutive points of N on real line R+, then Z|(Sn)

∞
0 is a Markov chain. Using both the properties of Poisson process N and

the Markov property of Z|(Sn)
∞
0 , (Shanthikumar 1984) proposed a general approach to simulate a uniformizable point process.

Corollary 1 If λ is a uniformization constant used to obtain the first passage time for a distribution G with BHR,
then any uniformization rate, Λ (∞ > Λ ≥ λ), converges to obtain the first passage time for G.

Proof: Let r(x) be the hazard rate function of G, 0 ≤ x ≤ ∞. Note that Λ ≥ λ ≥ r(x), ∀x. Theorem 2.1 in (Shanthikumar 1984)
proves that λ converges to obtain first passage time for distribution G.
Let Nλ be the number of renewal points that need to be generated to obtain the first passage time (firing of an event). The

probability of reaching the absorbing state at any Ni (0 ≤ Nλ) epoch is given by pλ (Ti) = r(Ti)
λ , where Ti =

i−1

∑
0

ti. Since

pλ (T) > 0,∀T ≥ 0, the process will hit the absorbing state as Nλ → ∞.
Similarly, for Λ that generates NΛ renewal points, the same arguments about pΛ(T) can be used to show that uniformization
with Λ converges to obtain the first passage time for G. ⋄

Insight: Suppose r(x) = λ ,∀x (as in the case of Exponential Distribution). Then pλ = 1, which means that it takes one
renewal point to obtain the first passage time. Now, if one sets Λ = 2λ , then pΛ = 0.5. The expected number of renewal
points that need to be generated to obtain the first passage time would be 2. One would generate events at rate Λ and
appropriately thin the process for other alternative configurations, as described by the SSASC algorithm.

This process of uniformization can be extended to use a nonhomogeneous Poisson process, where the value of λ (t)
can be varied as long as λ (t) ≥ r(t). Furthermore, for each alternative configuration, one could use thinning of the Poisson
process to determine whether the general distribution has hit its first passage time. We label this process of thinning a Poisson
process across alternative configurations as Inter-Configuration Thinning (ICT). This ICT process enables us to develop an
algorithm with which one can use a single uniformization process, which can obtain the first passage time for alternative
configurations for any distribution G (listed in column 2 of Table 1) with BHR. The trick is to keep track of t for each
alternative configuration. In the next section, we develop the G-SSASC algorithm based on the concept of ICT.

4 G-SSASC ALGORITHM

Consider a random variable, G, that is a distribution with BHR. Table 1 enumerates a few standard distributions that have
BHR. For simplicity, let event g be the event that represents G in the alternative configuration’s model. Suppose that the
parameters of g are varied across alternative configurations, obtaining v different random variables, each denoted by Gv. The
uniformization constant used to generate the time to first passage or absorption is represented as λ ≡ max

∀v
(rv(x)) ,x > 0.

665

Gaonkar and Sanders

Table 1: Uniformization rates for distributions with bounded hazard rate functions

Distribution Parameters Density Function Distribution Hazard rate Uniformization rate

f (x) F(x) r(x) =
f (x)

1−F(x) Λ ≡ sup(r(x)),x ≥ 0

Exponential rate λ , λ > 0 λe−λx; x ≥ 0 1− e−λx; x ≥ 0, λ λ

Hyper- (p1,p2,...,pK),pi ≥ 0, K

∑
i=1

piλi

(

e−λix
)

1−
K

∑
i=1

pi

(

e−λix
)

K

∑
i=1

piλi

(

e−λix
)

K

∑
i=1

pi

(

e−λix
)

K

∑
i=1

piλi

Exponential
and

K

∑
i=1

pi = 1

(λ1,λ2,...,λK), λi ≥ 0

Erlang

shape k, 0 < k,int(k) = k

λ kxk−1e−λx/(k−1)! 1−
k−1

∑
n=0

e−λx(λx)n

n!

λkxk−1e−λx

(k−1)!

k−1

∑
n=0

e−λx(λx)n

n!

λrate λ , λ > 0

Conditional
shape k, 0 < k ≥ 1

α
β

(

x+t
β

)α−1
e
−

(

x+t
β

)α

e
−

(

t
β

)α 1− e
−

(

x+t
β

)α

e
−

(

t
β

)α
α
β

(

x+t
β

)α−1 α
β α

(1
t

)1−α
rate λ , λ > 1

Weibull t, t > 0

Logistic λ e−λx

λ(1+e−λx)
2

1
1+e−λx

λ
1+e−λx λ

Note: Hyper-exponential and conditional Weibull have decreasing hazard rates. Erlang and Logistic have increasing hazard
rates. Exponential has a constant hazard rate.

The first step to generalize SSASC is to generalize the uniformization of the clock generation algorithm. Algo-
rithm 1 describes the modification to (Shanthikumar 1986)’s dynamic uniformization to support simultaneous simulation of
v random variables of G. The key addition is the time epoch, xv, that tracks the time since the general event has been
activated for each alternative configuration. With this additional information, one can integrate the single-clock generation
of SSASC with events with general distribution (with BHR) to drive a single simulation clock for all alternative configurations.

4.1 Adaptive Uniformization Algorithm of G-SSASC

The G-SSASC algorithm (See Algorithm 2) is an amalgamation of the SSASC algorithm and dynamic uniformization of
general renewable processes (See Algorithm 1). The G-SSASC algorithm has three major components: (a) a Common
Adaptive Clock (CAC), (b) State Update, and (c) Reward Computation. State update and reward computation are typical
operations in simulation algorithms based on Uniformization. Readers are referred to (Gaonkar and Sanders 2009) for
additional information. G-SSASC modifies the common adaptive clock. Therefore, our discussion will emphasize only the
CAC in the next section.

4.1.1 Common Adaptive Clock for G-SSASC

The clock for the G-SSASC algorithm needs to track all the activated events with general distributions for all the alternative
configurations. Therefore, a variable ET v

gk
, whose size is N ∗ sizeo f (G), is defined to store the last epoch when the general

event was enabled (see line 8(c) in Algorithm 2). In essense, ET v
gk

tracks the aging and time to fire of general event g. The
adaptive uniformization rate Λ is modified so that the rate is greater than the hazard rate, hv

gk
(x), of any enabled general

event, g, or rates of enabled exponential events (see line 3 and 8(d)). After generating the next event (see line 6(a)), the

666

Gaonkar and Sanders

Algorithm 1 Dynamic uniformization to generate a first passage time in a Simultaneous Simulation environment
1: Let

λ = max∀v (rv(0)), a uniformization constant
τ = Time epoch
erv(r) = Exponential random variable at rate r
v = Number of alternative configurations
xv = Sample value of general distribution Gv

2: ∀v,xv = 0
3: repeat
4: Generate sample t = erv(λ) and set τ = τ + t
5: Generate a uniform random sample u between 0 and 1

(a) for any v, if u < rv(τ)
λ , set xv = t.

(b) λ = max
∀v

(rv(τ))

6: until for any v,xv 6= 0

G-SSASC algorithm first iterates through the general events (see line 6(e)). If none of the g’s are fired, then the G-SSASC
algorithm proceeds to thin the exponential events to pick the potential exponential event e.

5 EXPERIMENTAL EVALUATION

This section presents Stochastic Activity Network (SAN) models of a dependable system as a case study to evaluate and
compare G-SSASC with the TDES (Meyer, Movaghar, and Sanders 1985). The steady-state availability of the Storage
Area Network (StAN) in Abe’s cluster, first described in (Gaonkar et al. 2008), is used to evaluate G-SSASC. We evaluate
different model configurations by varying parameter values to generate alternative configurations. We show that the G-SSASC
algorithm is efficient and scalable for evaluating large numbers of alternative configurations and achieves speed-up of an
order of magnitude to determine the best alternative configuration.

5.1 Evaluation Environment

The G-SSASC and TDES simulators were run on an AMD Athlon XP 2700+ processor running at 2.2 GHz with 4GB
RAM in a Linux environment. The implementation was compiled using g++ 3.4 with optimization level -03. G-SSASC
was integrated into the Möbius simulator available at <www.mobius.illinois.edu>. That integration gave us a fair
platform for comparing the TDES built into Möbius against the G-SSASC algorithm to evaluate algorithmic speed-up obtained
while evaluating a large number of alternative configurations. The steady-state simulations were run for 10,000 batches.

Figure 1: Compositional Rep/Join model of the StAN

667

Gaonkar and Sanders

Figure 2: Atomic SAN model of RAID CONTROLLER Figure 3: Atomic SAN model of RAID6TIERS

5.2 SAN Model of Storage Area Network (StAN) used in Abe’s Cluster File-System

The Rep/Join composition SAN model of the StAN in Abe’s CFS is shown in Figure 1. The DDN UNITS composed SAN
model composes replicated atomic SAN models of RAID6 UNITS (see Figure 3) along with an atomic SAN model of
RAID CONTROLLER (see Figure 2).

The RAID6 UNITS atomic model models R RAID-6 tiers in a Data-Direct Network (DDN) enclosure (McBryde, Manning, Illar, Williams,
Each RAID6TIER has W working disks. Of the W working disks, the RAID6TIER has P parity disks. The RAID6TIER is
said to be in working state if W −P disks are working. The disk failure is modeled as a Conditional Weibull distribution
with failure rate DiskMT T F , shape parameter α , and t = 3 months. A disk can be corrupted either because of internal
hardware failure due to faults and wear, or because of software corruption from the data reads and writes. The disks are
repaired at a replacement rate repairRate.

The RAID CONTROLLER atomic model represents a dependability model of a RAID controller used in the StAN of
Abe’s cluster. The RAID CONTROLLER is said to be working if at least 2 of the C disk controller’s units are working.
The disk controllers can fail because of hardware failures. Failure from corrupted disk controllers can propagate to other
working disk controllers. In addition, software corruption from RAID6TIER can propagate and corrupt the disk controllers.

The StAN is said to be available if at least 2 disk controllers and W −P disks in each of the R tiers are in the working
state. The parameter values used to generate alternative configurations are described in Table 2.

Table 2: Parameter values of the StAN model

Sub-model Parameter description Parameter values: Range, Step size
R Number of RAID6 tiers in an enclosure 8 to 11; 1
W Number of working disks 10 to 13; 1
P Number of parity disks 1 to 4; 1
C Number of disk controllers in the DDN 1 to 4; 1
DiskMT T F Annualized failure rate of disks 100,000 to 400,000; 100,000
α Conditional Weibull shape parameter 0·7 to 1·0,0·1
repairRate Repairing rates 1 to 4; 1

668

Gaonkar and Sanders

5.3 Scalability of G-SSASC

To present the overall advantage of G-SSASC over TDES, we compare the scalability of G-SSASC against TDES as we scale
the number of alternative configuration experiments that are being simultaneously simulated from 1 to 4096 configurations.
G-SSASC achieves speed-up of up to 1 order of magnitude for steady-state evaluation of StAN. G-SSASC achieves maximum
speed-up at 64 to 256 configurations for this particular case study (See Table 3).

Table 3: Scalability of G-SSASC and TDES: Evaluating StAN using steady-state simulation

Number of alternative Simulation time (seconds)
Speed-up

configurations TDES G-SSASC
1 29.14 42.44 0.68
4 118.26 47.23 2.50

16 473.97 112.54 4.21
64 1,897.40 158.53 11.96

256 7,587.60 706.50 10.74
1024 30,368.00 10,002.00 3.03
4096 119,980.00 53,894.00 2.22

5.3.1 Cost of Event Generation and State Update

G-SSASC achieves speed-up because of two components in its simulation algorithm: (a) the common adaptive clock, and
(b) the data-structure used to update the state of the model. Table 4 illustrates the comparison of G-SSASC and TDES when
they are used to evaluate StAN model. Table 4 reiterates the fact that combining alternative configurations into one large
simulation model has significant advantages. However, note that the obtained speed-up falls if the number of alternative
configurations is larger than the 256 configurations for this casestudy. These drops in speed-up are attributed mainly to the
cost involved in large array manipulations in all the simulation stages of the G-SSASC algorithm. Readers are referred to
(Gaonkar 2009) for more details.

Table 4: Comparison of SSASC/G-SSASC against TDES using the total number of events generated and the state updates
for evaluating alternative configurations

Number of St AN
alternative Generated events State updates

configurations TDES G-SSASC TDES G-SSASC
1 2.0967×1007 2.0453×1007 7.2956×1007 7.0393×1007

4 8.4058×1007 2.4902×1007 2.9235×1008 9.1345×1007

16 3.3622×1008 8.4292×1007 1.1694×1009 5.1234×1008

64 1.3448×1009 2.4825×1008 4.6773×1009 1.0237×1009

256 5.3794×1009 6.2748×1008 1.8709×1010 5.8684×1009

1,024 2.1517×1010 7.3648×1009 7.4837×1010 2.9371×1010

4,096 8.6070×1010 3.6736×1010 2.9935×1011 1.6249×1011

5.4 Cost of Event Generation of Conditional Weibull Distribution on G-SSASC

The main advantage of G-SSASC over SSASC is its ability to uniformize a certain class of general distributions (refer to
Table 1 for the list of distributions). In this section, we focus our analysis on comparing G-SSASC’s nonuniform random
variate generation (RVG) against TDES’s inversion approach of non-uniform RVG, and we describe how G-SSASC changes
the technique of (Shanthikumar 1984)’s RVG to make it practical in the context of simultaneous simulation.

The activity failDisk (refer to Figure 3) has conditional Weibull as its failure distribution. The value of the shape
parameter, α , was varied over values from 0.7 to 1.0 in steps of 0.1. The rate parameter, β , was varied over values from
100,000 to 400,000 in steps of 100,000 as we evaluated 4,096 alternative configurations of the StAN model. Table 5
presents a comparison of the average numbers of events that were necessary to generate a sample for the conditional Weibull
distribution in the DDNCFS model. We normalized the results for each alternative configuration of TDES. Therefore, the

669

Gaonkar and Sanders

values in column 4 in Table 5 is the same as the number of alternative configurations (values in column 2 in Table 5). The
results in Table 5 were collected when failDisk is the lone entry in EES.

We notice that the number of events generated to uniformize the conditional Weibull in G-SSASC is clearly independent
of the number of alternative configurations. However, note that the number of events generated in G-SSASC depends on
the ratio between the firing of the fastest rate of alternative configurations and the firing of the slowest rate of alternative
configurations. G-SSASC’s approach of extending Shantikumar’s technique of nonuniform RVG and a common adaptive
clock definitely makes nonuniform RVG practical. The TDES’s approach of nonuniform RVG using inversion always
performs better than Shantikumar’s technique (compare values of column 4 to values of column 5). However, G-SSASC
takes advantage of the common adaptive clock to mitigate the number of events generated as one scales the number of
alternative configurations.

Table 5: Average number of uniformization points generated for conditional Weibull normalized to individual alternative
configuration of TDES

1 2 3 4 5 6 7 8

Line #
Parameter

TDES
Shantikumar’s RVG G-SSASC’s RVG

values
α Mean SD Mean SD

01 4 0.7 4 8.9352 1.4822 8.9342 1.4775
02 4 0.8 4 8.7106 1.8110 8.6942 1.8252
03 4 0.9 4 7.8520 2.2481 7.8557 2.2461
04 4 1.0 4 5.4896 1.1201 5.4899 1.1281

total 16 ∗ 16 30.9874 3.4395 30.9740 3.4248

05 16 0.7 16 35.8692 5.8822 8.9462 1.4777
06 16 0.8 16 34.8136 7.3355 8.6983 1.8314
07 16 0.9 16 31.4852 9.0470 7.8270 2.2654
08 16 1.0 16 21.9220 4.4757 5.4918 1.1103

total 64 ∗ 64 124.0900 13.7882 30.9633 3.4643

09 64 0.7 64 142.9184 24.0699 8.9544 1.4649
10 64 0.8 64 139.2928 29.4515 8.6900 1.8342
11 64 0.9 64 124.6816 35.9597 7.8544 2.2549
12 64 1.0 64 87.9696 17.9692 5.4730 1.1245

total 256 ∗ 256 494.8624 55.6852 30.9718 3.4632

13 256 0.7 256 573.1776 94.9479 8.9526 1.5095
14 256 0.8 256 555.0656 117.7062 8.6769 1.8232
15 256 0.9 256 503.6224 143.8245 7.8364 2.2493
16 256 1.0 256 351.4816 71.5122 5.4959 1.1173

total 1,024 ∗ 1,024 1,983.3472 220.3915 30.9618 3.4427

17 1,024 0.7 1,024 2,294.7072 379.1811 8.9667 1.4982
18 1,024 0.8 1,024 2,228.0192 465.9980 8.7170 1.8137
19 1,024 0.9 1,024 2,006.1184 581.4884 7.8233 2.2702
20 1,024 1.0 1,024 1,407.1296 287.4720 5.5058 1.1218

total 4,096 ∗ 4,096 7,935.9744 878.5687 31.0128 3.4573

6 CONCLUSION

In this paper, we proposed G-SSASC, which expands the domain of system models that can be modeled and evaluated using
simultaneous simulation to those non-Markovian models that have distributions with bounded hazard rates. In addition, we
showed that G-SSASC modifies (Shanthikumar 1984)’s approach to random variate generation, which is practical (and more
efficient compared than the inversion approach) in the context of simultaneous simulation.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science Foundation under Grant Number CNS-0406351 and a
generous gift from HP Labs. It is a part of the Ph.D. thesis work of Shravan Gaonkar. We would like to thank Professor
David M. Nicol, Professor Sheldon Jacobson, Professor Klara Nahrstedt, and Dr. Kimberly Keeton for their input as thesis

670

Gaonkar and Sanders

committee members. We would also like to thank Jenny Applequist for her editorial comments and Eric W. D. Rozier for
his technical comments.

REFERENCES

Altiok, T. 1985. On the phase-type approximations of general distributions. IIE Transactions 17:110–116.
Altiok, T. 1989. Approximate analysis of queues in series with phase-type service times and blocking. Operations Research 37

(4): 601–610.
Chen, C.-H. 1995. A hybrid approach of the standard clock method and event scheduling approach for general discrete

event simulation. In Proceedings of the 1995 Winter Simulation Conference, ed. C. Alexopoulos and K. Kang, 786–790.
Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Chen, C.-H., and Y.-C. Ho. 1995. An approximation approach of the standard-clock method for general discrete-event
simulation. Control Systems Technology 3 (4): 309–318.

Gaonkar, S. 2009. Exploring Design Configurations of System Models: From Simultaneous Simulation to Search Heuristics.
Ph.d. dissertation, University of Illinois, Urbana Champaign,.

Gaonkar, S., E. Rozier, A. Tong, and W. H. Sanders. 2008. Scaling file systems to support petascale clusters: A dependability
analysis to support informed design choices. In Proceedings of the International Conference on Dependable Systems
and Networks, DSN, 386–391.

Gaonkar, S., and W. H. Sanders. 2005. Simultaneous simulation of alternative system configurations. In Proceedings of the
11th Pacific Rim International Symposium on Dependable Computing, 41–48.

Gaonkar, S., and W. H. Sanders. 2009. Simultaneous Simulation of Alternative System Configurations. In University of
Illinois at Urbana-Champaign Coordinated Science Laboratory technical report UILU-ENG-09-2203 (CRHC-09-02),
<http://www.crhc.illinois.edu/TechReports/2009reports/09GAO01.pdf>.

Hyden, P., and L. Schruben. 1999. Designing simultaneous simulation experiments. In Proceedings of the 1999 Winter
Simulation Conference, ed. P. A. Farrington, H. B. Nembhard, D. T. Sturrock, and G. W. Evans, 389–394. Piscataway,
New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Hyden, P., and L. Schruben. 2000. Improved decision processes through simultaneous simulation and time dilation. In
Proceedings of the 2000 Winter Simulation Conference, ed. J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick,
743–748. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Kawanishi, K. August, 2008. QBD approximations of a call center queueing model with general patience distribution.
Computers and Operations Research 35:2463–2481.

Keilson, J. 1979. Markov Chain Models- Rarity and Exponentiality. Springer-Verlag.
Lewis, P. A., and G. S. Shedler. 1978. Simulation methods for Poisson processes in nonstationary systems. In Proceedings

of the 1978 Winter Simulation Conference, 155–163. Piscataway, New Jersey: Institute of Electrical and Electronics
Engineers, Inc.

Li, S.-Q., and J. Mark. 1985. Performance of voice/data integration on a TDM system. IEEE Transactions on Communications 33
(12): 1265–1273.

McBryde, L., G. Manning, D. Illar, R. Williams, and M. Piszczek. 2006. Data Management Architecture. US Patent number
7127668.

Meyer, J. F., A. Movaghar, and W. H. Sanders. July 1985. Stochastic activity networks: Structure, behavior, and application.
In Proceedings of the International Workshop on Timed Petri Nets, 106–115.

Nicola, V., P. Heidelberger, and P. Shahabuddin. 1992. Uniformization and exponential transformation: Techniques for
fast simulation of highly dependable non-markovian systems. FTCS-22, Digest of Papers, Twenty-Second International
Symposium on Fault-Tolerant Computing:130–139.

Schruben, L. W. 1997. Simulation optimization using simultaneous replications and event time dilation. In Proceedings of
the 1997 Winter Simulation Conference, ed. S. Henderson, B. Biller, M. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton,
177–180. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Shanthikumar, J. G. 1984. A random variate generation method useful in hybrid simulation/analytical modelling. In Proceedings
of the 1984 Winter Simulation Conference, ed. S. Sheppard, U. W. Pooch, and C. D. Pegden, 160–167. Piscataway, New
Jersey: Institute of Electrical and Electronics Engineers, Inc.

Shanthikumar, J. G. 1985, Sep.. Discrete random variate generation using uniformization. European Journal of Operational
Research 21 (3): 387–398.

Shanthikumar, J. G. 1986. Uniformization and hybrid simulation/analytic models of renewal processes. Operational Research 34
(4): 573–580.

671

Gaonkar and Sanders

Shanthikumar, J. G., and R. G. Sargent. 1983. A unifying view of hybrid simulation/analytic models and modeling. Operations
Research 31 (6): 1030–1052.

Smeitink, E., and R. Dekker. 1990. A simple approximation to the renewal function. IEEE Transactions on Reliability 39
(1): 71–75.

Sonderman, D. 1978. Comparision Results for Stochastic Processes Arising in Queuing Systems. Ph.d. dissertation, Yale
University.

Sonderman, D. 1979a. Comparing multi-server queues with finite waiting rooms, i: Same number of servers. Advances in
Applied Probability 11 (2): 439–447.

Sonderman, D. 1979b. Comparing multi-server queues with finite waiting rooms, ii: Different numbers of servers. Advances
in Applied Probability 11 (2): 448–455.

Sonderman, D. 1980. Comparing semi-Markov processes. Mathematics of Operations Research 5 (1): 110–119.
Vakili, P. 1992. Massively parallel and distributed simulation of a class of discrete event systems: A different perspective.

ACM Transactions on Modeling and Computer Simulation 2 (3): 214–238.

AUTHOR BIOGRAPHIES

SHRAVAN GAONKAR is a researcher in the Advanced Technology Group at NetApp. His research interests include file
and storage systems, performance and modeling, and fault tolerance. He has worked at NetApp since completing his Ph.D..
in Computer Science at the University of Illinois Urbana-Champaign in 2008. His dissertation is entitled Exploring Design
Configurations of System Models: From Simultaneous Simulation to Search Heuristics. He also received a Master of Science
degree in Computer Science at the University of Illinois at Urbana-Champaign and a Bachelor of Engineering degree in
Computer Engineering from the National Institute of Technology, Surathkal, India. His email address for these proceedings
is <gaonkar@ieee.org>.

WILLIAM H. SANDERS is a Donald Biggar Willett Professor of Engineering, the Director of the<Information Trust Institute>
and Acting Director of the <Coordinated Science Laboratory> at the University of Illinois. He is a professor in
the Department of Electrical and Computer Engineering. He is a Fellow of the IEEE and the ACM, a past Chair of the
IEEE Technical Committee on Fault-Tolerant Computing, and past Vice-Chair of IFIP Working Group 10.4 on Dependable
Computing. In addition, he serves on the editorial board of Performance Evaluation and is the Area Editor for Simulation and
Modeling of Computer Systems for the ACM Transactions on Modeling and Computer Simulation. Dr. Sanders’s research
interests include performance/dependability evaluation, dependable computing, and reliable distributed systems. He has
published more than 200 technical papers in these areas. He is a co-developer of three tools for assessing the performability
of systems represented as stochastic activity networks: METASAN, UltraSAN, and Möbius. <Möbius> and UltraSAN have
been distributed widely to industry and academia; more than 500 licenses for the tools have been issued to universities,
companies, and NASA for evaluating the performance, dependability, security, and performability of a variety of systems. He
is also a co-developer of the Loki distributed system fault injector and the AQuA/ITUA middlewares for providing depend-
ability/security to distributed and networked applications. His email address for these proceedings is<whs@illinois.edu>.

672

Gaonkar and Sanders

Algorithm 2 G-SSASC using Adaptive Uniformization: General distribution with bounded hazard rates
1: Let

EES = /0, enabled event set initialized to empty set,
N = number of alternative configurations,
E = set of exponential events in the system model,
G = set of generally distributed (bounded hazard rate) events in the system model,
v = index of the vth alternative configuration,
n = index to the nth event epoch,
τn = nth event epoch,
ne = event fired in the nth event epoch,
e j = exponential event j in discrete-event system model, 0 ≤ j < size(E),
λ v

e j
= exponential rate of event j in configuration v,

λe j = max(λ v
e j

),
gk = general event k in discrete-event system model, 0 ≤ k < size(G),
hv

gk
(x) = hazard rate of event k in configuration v, x ≥ 0 and h(x) ≤ h(0) < ∞,

ET v
gk

= event epoch, τ when event gv
k was last enabled,

hgk (x) = max(hv
gk

(τn −ET v
gk

)),
sv

0 = initial state of each configuration,
D(e) = dependency list that maintains the set of enabled events enabled due to firing of event e or g,
u = U(0,1), uniform random variable,
Rv

l = lth reward measure defined on variant v,
erv = exponential random variable with rate 1,
Λn = adaptive uniformization rate.

2: ∀e|g ∈
⋃N

v=0 E(sv
0), EES = EES +{e|g}.

3: Λ0 = max
(

∑λe j ,max(hgk (0))
)

where e j|gk ∈ EES.

4: n = 0, τ0 = 0.
5: repeat
6: Generate next event

(a) τn+1 = τn + erv
Λn

.
(b) P[0] = 0.

(c) f or(m = 1; m≤ |EES|; m++) P[m] = P[m−1] + λem
Λn

, where em ∈ E.
(d) ne = 0.
(e) ∀gm ∈ (EES∪G) and ne == 0,

i. Generate u.
ii. Set ne = gm iff u ≤ hv

gm

(

τn −Ev
gm

)

, for any v.
(f) ne = em where em ∈ EES iff [(P[m−1] ≤ u < P[m]) and ne = 0].

7: Update state
(a) ∀v with ne ∈ E(sv

n) enabled, set sv
n to the next state s′vn+1 if u > p(s′vn+1,s

v
n,ne).

8: Update EES
(a) ∀e ∈ EES, EES = EES−{e}, if e /∈

⋃

E(sv
n+1) or e /∈

⋃

G(sv
n+1).

(b) ∀e′ ∈ D(ne), e′ ∈
⋃

E(sv
n+1) or e ∈

⋃

G(sv
n+1), EES = EES +{e}.

(c) ET v
gk

= τn+1 iff gv
k ∈

⋃

G(sv
n+1).

(d) Λn+1 = max
(

∑λe j ,max
(

hgk (τn+1 −ETgk)
)

)

where e j|gk ∈ EES.

9: ∀v,∀l, compute Rv
l .

10: n = n+1.
11: until a defined terminating condition.

673

