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ABSTRACT

This paper considers the problem of optimizing a complex stochastic system over a discrete set of feasible values of a
parameter when the objective function can only be estimated through simulation. We propose a new gradient–based method
that mimics the Newton–Raphson method and makes use of both the gradient and the Hessian of the objective function.
The proposed algorithm is designed to give guidance on how to choose the sequence of gains which plays a critical role in
the empirical performance of a gradient–based algorithm. In addition to the desired fast convergence in the first few steps
of the procedure, the proposed algorithm converges to a local optimizer with probability one as n goes to infinity with rate
1/n where n is the number of iterations.

1 INTRODUCTION

When we consider the problem of optimizing a complex system whose performance depends on a parameter, we often find
that the system requires simulation as an inevitable means of evaluating its performance. When optimizing such systems
over a set of feasible values of a parameter, we need different approaches than the traditional optimization methods in order
to account for the errors incurred from measuring the system performance through simulation.

In many practical situations, the set of feasible values of a parameter is finite or countably infinite rather than continuous.
For instance, when controlling an inventory of a certain product, the cost function associated with the inventory system is a
function of the ordering quantity of the product which can only take on nonnegative integers. When allocating buffers to
several stations in a queueing system, the average sojourn time in the system depends on the number of buffers which can
only take on nonnegative integers. To optimize such systems over discrete sets, several algorithms such as the simulated
annealing method by Gelfand and Mitter (1989), the random search method by Andradottir (1995), the nested partitions
method by Shi and Olafsson (2000), the sample average approximation method by Kleywegt et al. (2001), a method balancing
the search process and the simulation effort by Lin and Lee (2006), and COMPASS by Hong and Nelson (2006) have been
proposed.

Recently, gradient–based methods have been proposed by Lim and Glynn (2006) and Dupăc and Herkenrath (1982) for
the case where the parameter space is discrete. The algorithm resembles stochastic approximation which was designed for
continuous parameter spaces. Stochastic approximation (Robbins and Monro 1951) is a recursive method which updates θn,
the estimated optimal point at the nth iteration, by the following formula:

θn+1 = θn−anDn. (1)

Algorithm (1) above moves along the direction of negative gradient so that the objective function is reduced in each step.
In the discrete counterpart of (1) as proposed in Lim and Glynn (2006), Dn mimics the derivative of the objective function
by computing the difference of the objective values evaluated at the nearest point of θn to the right and the nearest point of
θn to the left.

When applying a gradient–based algorithm such as (1) in practice, we encounter a problem of choosing the right sequence
of gains {an}. To ensure the convergence of (1), {an} needs to satisfy ∑an = ∞ and ∑a2

n < ∞. A typical choice of an is c/n
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for some positive constant c. In most practical situations where the computational budget and hence the number of simulation
runs is pre–determined, the choice of the sequence of gains {an} influences the empirical performance of the algorithm.
When the gains are too large, the estimates for the optimal solution will bounce around the parameter space whereas when
the gains are too small, the estimates for the optimal solution will seem to get stuck at some point. Furthermore, one often
has no a priori information on the choice of the sequence of gains.

To illustrate the significance of the choice of {an}, consider the problem of minimizing a cost function f which depends
on a parameter θ in f (θ) = θ 2 for all integers θ . For the purpose of simplicity, assume that the measurement of the objective
function f (θ) is exact, i.e., the problem is deterministic. We assume that the initial point θ1 is 100.10. Since one has no a
priori information on {an}, one needs to guess the values of a1 and an. Suppose that one decides to try sequences of gains
an = 5/n, an = 1/n, and an = 1/5n, then the trajectories of [θn], the nearest integer to θn, generated from:

θn+1 = θn−an ( f (dθne)− f (bθnc)) , (2)

for each choice of the sequence are as follows:

an = 5/n 100 −905 3618 −8441 12661 −12660
an = 1/n 100 −101 −1 0 0 0
an = 1/5n 100 60 48 42 38 35

In (2), dxe is the smallest integer greater than or equal to x and bxc is the largest integer less than or equal to x. When
an = 5/n, the estimated optimal points [θn] tend to bounce around too much whereas when an = 1/5n, [θn] tends to converge
slowly.

To suggest the choice of {an}, we consider a Newton–Raphson type approach. Recall that the Newton–Raphson method
to find the optimal point of f is based on the following recursion:

θn+1 = θn−
f ′(θn)
f ′′(θn)

, (3)

where f ′ and f ′′ are the first and second derivatives of f , respectively. Considering that stochastic approximation (1) is
asymptotically optimal when an = 1/( f ′′(θ∗)n) where θ∗ is the optimal point of f as proven in Chung (1954), we propose
the following procedure:

θn+1 = θn−
c
n

Dn

Hn
, (4)

where Dn is an estimate of f ′(θ) and Hn is an estimate of f ′′(θ∗).
The algorithm (4) resembles the Newton–Raphson method and makes use of both the gradient and the Hessian information

of the objective function. It suggests a multiple of the reciprocal of the Hessian as the sequence of gains. In addition to
fast convergence in the first few iterations, the proposed algorithm enjoys a nice asymptotic property. It converges to a local
optimizer with probability one at rate 1/n where n is the number of iterations. The convergence rate 1/n is induced from
the fact that the objective function is defined on a discrete set and hence E(Dn/Hn) in (4) stays at a constant value when
θn gets close to θ∗, whereas when a smooth objective function is defined on a continuous set, E(Dn) in (1) converges to
zero as θn gets close to θ∗. Therefore, the convergence rate of (4) differs from the conventional convergence rates that are
obtained in continuous cases.

This paper is organized as follows. In Section 2, we present the proposed algorithm and our main results. In Section 3,
we provide proofs for the main results. In section 4, we illustrate the empirical behavior of the proposed algorithm.

2 PROBLEM FORMULATION AND MAIN RESULTS

Consider the following problem of optimization

min
θ∈Z

f (θ) = E[X(θ)], (5)
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where Z is the set of integers. Suppose that f (θ) cannot be evaluated exactly, it must be estimated through simulation. Our
goal is to generate a sequence of random variables {θ1,θ2, . . .} that converges to the optimal solution θ∗ of f .

The proposed algorithm proceeds as follows. Choose θ1 randomly from Z. Given θ1, . . . ,θn, one generates X+
n , X−n , X ′n,

X ′′n , and X ′′′n where

X+
n = f (dθne)+ ε

+
n

X−n = f (bθnc)+ ε
−
n

X ′n = f ([θn]−1)+ ε
′
n

X ′′n = f ([θn])+ ε
′′
n

X ′′′n = f ([θn]+1)+ ε
′′′
n

and (ε+
n ,ε−n ,ε ′n,ε

′′
n ,ε ′′′n ;n = 1,2, . . .) are independent and identically distributed random variables with mean zero. Let

F1 ⊂F2 ⊂ . . . be an increasing sequence of σ–fields such that ε+
n ,ε−n ,ε ′n,ε

′′
n , and ε ′′′n are Fn–measurable and independent

of Fn−1 for all n≥ 2. Then θn+1 is computed from the recursion

θn+1 = θn−
c
n

X+
n −X−n

Hn
, (6)

where Hn is a truncated average of (X ′i −2X ′′i +X ′′′i ; i = 1, . . . ,n). That is,

Hn =

 a, if Gn < a
Gn, otherwise
b, if Gn > b,

where

Gn =
1
n

n

∑
i=1

(X ′i −2X ′′i +X ′′′i ).

At iteration n, the estimate of the optimal solution is the nearest integer to θn.
Below is the detailed description of the proposed algorithm.

Algorithm

1. Set n = 1 and choose θn randomly from Z.
2. Set

θn+1 = θn−
c
n

X+
n −X−n

Hn
.

3. Set n = n+1 and go to Step 2.

The following assumptions will be needed:

A1. f has only one local minimum at θ∗. We say θ ∈ Z is a local minimum if f (θ)≤ f (θ +1) and f (θ)≤ f (θ −1).
A2. There exist known constants a and b such that

0 < a < f (θ∗+1)−2 f (θ∗)+ f (θ∗−1) < b < ∞.

A3. max
(
Var(ε+

1 ),Var(ε−1 ),Var(ε ′1),Var(ε ′′1 ),Var(ε ′′′1 )
)
≤ σ

2 < ∞.
A4. There exists a constant β > 0 such that | f (θ +1)− f (θ)| ≥ β for all θ ∈ Z.
A5. There exists a constant C such that

| f (θ +1)− f (θ)| ≤C(1+ |θ −θ∗|),

for all θ ∈ Z.
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A6. c is large enough so that cγ > ( f (θ∗+1)−2 f (θ∗)+ f (θ∗−1)), where

γ = inf
θ∈R

| f (dθe)− f (bθc)|
|θ −θ∗|

> 0

A7. There exists K < ∞ such that

max(|ε+
1 |, |ε

−
1 |, |ε

′
1|, |ε ′′1 |, |ε ′′′1 |) < K

and

|θ1| ≤ K

with probability one.

We now state our main results as follows:
Theorem 1 Under A1–A5, θn→ θ∗ as n→ ∞ with probability one.
Theorem 2 Under A1–A7,

|θn−θ∗|= Op

(
1
n

)
as n→ ∞.

3 PROOFS

Proof of Theorem 1 For simplicity of writing, we assume θ∗ = 0. Let An = (X+
n −X−n )/Hn. First, we prove

inf
ε≤|θn−θ∗|≤1/ε

(θn−θ∗)EAn ≥ εβb−1 > 0 for every ε > 0 (7)

E(A2
n|Fn)≤C1(1+(θn−θ∗)2) for some constant C1. (8)

For any θn with ε ≤ |θn−θ∗| ≤ 1/ε ,

(θn−θ∗)E(An|Fn)

= θnE
[

X+
n −X−n

Hn

]
= θn ( f (dθne)− f (bθnc))E [1/An] .

Note that A1 implies f (dθe)− f (bθc) ≥ 0 if θ > 0 and f (dθe)− f (bθc) ≥ 0 if θ ≤ 0. So, θ ( f (dθe)− f (bθc)) =
|θ ||( f (dθe)− f (bθc)) | for any θ ∈ R. So,

θn ( f (dθne)− f (bθnc))E [1/Hn] = |θn|| f (dθne)− f (bθnc)|E [1/Hn]
≥ εβb−1 by A4.

Hence (7) is proven. Note that

E(A2
n|Fn)

= E
[
(X+

n −X−n )2

H2
n

∣∣∣Fn

]
≤

(
( f (dθne)− f (bθnc))2 +2σ

2
)

E
[

1
H2

n

∣∣∣Fn

]
≤ b−2

(
( f (dθne)− f (bθnc))2 +2σ

2
)

by A2

≤ b−2
(

C2 (1+ bθnc)2 +2σ
2
)

by A5
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≤ b−2
(

C2 (2+ |θn|)2 +2σ
2
)

≤ C1(1+ |θn|2),

for some constant C1. Hence, (8) is proven.
To prove θn→ 0, note

E(θ 2
n+1|Fn)

= E
((

θn−
c
n

An

)2
|Fn

)
= θ

2
n +

c2

n2 E(A2
n|Fn)−

2c
n

θnE(An|Fn)

≤ θ
2
n +

c2

n2 C1
(
1+θ

2
n
)
− 2c

n
θnE(An|Fn) by (8)

≤
(

1+
c2C1

n2

)
θ

2
n +

c2C1

n2 −
2c
n

θnE(H(θn)|Fn).

By the theorem for almost supermartingales in Robbins and Siegmund (1971), θ 2
n → θ∞ for some random variable θ∞ as

n→ ∞ and

∞

∑
n=1

1
n

θnE(An|Fn) < ∞ (9)

with probability one. We now need to show θ∞ = 0 with probability one. Suppose, on the contrary, that ω is such that
θ∞(ω) 6= 0. Then there exist δ > 0 and N such that for all n > N, δ ≤ θn(ω)≤ 1/δ . Since θnE(An|Fn)≥ δβb−1 > 0 for
all δ ≤ θn(ω)≤ 1/δ from (7), we have

∞

∑
n=1

1
n

θnE(An|Fn) = ∞,

which contradicts (9). Hence θ∞ = 0 with probability one. 2

Proof of Theorem 2 It suffices to prove

sup
n=1,2,...

E (n|θn−θ∗|) < ∞

since for any constant C,

P(n|θn−θ∗|> C)≤ E (n|θn−θ∗|)
C

.

For simplicity of writing, assume θ∗ = 0. First assume θ1 = θ∗. (We will consider the general case later.) Let Yn =
n(θn−θ∗),n = 1, . . .. We will prove that there exists N such that for all n≥ N,

E(Yn+1−Yn|Fn) ≤ −ε
′ on the event Yn > θ∗ (10)

and

E(Yn+1−Yn|Fn) ≥ ε
′′ on the event Yn < θ∗ (11)

for some constants ε ′,ε ′′ > 0. From

θn+1 = θn−
c
n

X+
n −X−n

Hn
,

617



Lim

we get

(n+1)θn+1 = (n+1)θn− c
(

1+
1
n

)
X+

n −X−n
Hn

,

or equivalently,

Yn+1 = Yn +θn− c
(

1+
1
n

)
X+

n −X−n
Hn

.

When Yn > θ∗,

E(Yn+1−Yn|Fn)

= θn− c
(

1+
1
n

)
E
[

X+
n −X−n

Hn

]
= θn− c

(
1+

1
n

)
( f (dθne)− f (bθnc))E

[
1

An

]
.

Under A1–A4, θn → θ∗ as n→ ∞ with probability one by Theorem 1, and hence 1/An → 1/( f (1)− 2 f (0) + f (−1))
with probability one as n→ ∞. Since 1/b ≤ 1/|Hn| ≤ 1/a for all n, by the bounded convergence theorem, E[1/Hn]→
( f (1)−2 f (0)+ f (−1))−1 as n→ ∞. Take ε small enough so that

γc( f (1)−2 f (0)+ f (−1))−1−1 > cγε. (12)

Then there exists N such that for all n≥ N,

|E[1/Hn]− (( f (1)−2 f (0)+ f (−1))−1| ≤ ε.

For n≥ N,

θn− c
(

1+
1
n

)
( f (dθne)− f (bθnc))E

[
1

Hn

]
≤ θn− c

(
1+

1
n

)
( f (1)−2 f (0)+ f (−1))−1− ε)( f (dθne)− f (bθnc))

≤ dθne− c
(

1+
1
n

)
( f (1)−2 f (0)+ f (−1))−1− ε)( f (dθne)− f (bθnc)) because θn > 0

≤ dθne− c( f (1)−2 f (0)+ f (−1))−1− ε)( f (dθne)− f (bθnc))
≤ dθne− c(( f (1)−2 f (0)+ f (−1))−1− ε)γdθne by A6
= dθne

(
1− c( f (1)−2 f (0)+ f (−1))−1

γ + cεγ
)

≤ −ε
′dθne for some ε

′ > 0 by (12)
≤ −ε

′ because dθne ≥ 1 for all θn > 0.

Hence (10) holds. (11) follows in a similar way.
Let µi = E((i+1)θi+1− iθi|Fi) for i = 1,2, . . .. Note that A7 implies

|µi| ≤ b(K,N), (13)

for all i = 1, . . . ,N with probability one where b(K,N) is a constant depending on K and N because

|µi| = |E((i+1)θi+1− iθi|Fi)|
= E(|(i+1)θi+1− iθi||Fi)
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= E
(∣∣∣∣θi− c

(
1+

1
i

)
X+

i −X−i
Hi

∣∣∣∣ ∣∣∣Fi

)
≤ |θi|+ c

(
1+

1
i

)
E
(
|X+

i −X−i |
|Hi|

∣∣∣Fi

)
≤ |θi|+ c

(
1+

1
i

)
a−1( f (dθie)− f (bθic)+2K)

≤ |θi|+ c
(

1+
1
i

)
a−1(C(1+ dθie)+2K)

≤ C2(1+ |θi|)

for some constant C2 and

|θi| =

∣∣∣∣∣θi−1−
c

i−1
X+

i−1−X−i−1

Hi−1

∣∣∣∣∣
≤ |θi−1|+

C3

i−1
(1+ |θi−1|)

≤
(

1+
C3

i−1

)
|θi−1|+

C3

i−1

≤ . . .≤
(

1+
C3

i−1

)(
1+

C3

i−2

)
. . .

(
1+

C3

1

)
|θ1|+

i−1

∑
k=1

k−1

∏
j=1

(
1+

C3

i− j

)
C3

i− k
,

for come constant C3.
We will compute an upper bound for E|Yn| that does not depend on n. Let U = max{k ≤ n : Yk ≤ 0} denote the last

time up to n such that {Yk}k=1,... takes a nonpositive value.
For t > N ·b(K,N), we have

P(Yn ≥ t)

=
n−1

∑
k=1

P(Yn ≥ t,U = k)

≤
n−1

∑
k=1

P(Yn−Yk ≥ t,Yk ≤ 0,Yi > 0 for k < i < n)

≤
N−1

∑
k=1

P(Yn−Yn−1−µn−1 + . . .+Yk+1−Yk−µk ≥ t + ε(n−N)−b(K,N)(N− k))

+
n−1

∑
k=N

P(Yn−Yn−1−µn−1 + . . .+Yk+1−Yk−µk ≥ t + ε(n− k))

≤
N−1

∑
k=1

E |Yn−Yn−1−µn−1 + . . .+Yk+1−Yk−µk|p

|t + ε(n−N)−b(K,N)(N− k)|p

+
n−1

∑
k=N

E |Yn−Yn−1−µn−1 + . . .+Yk+1−Yk−µk|p

|t + ε(n− k)|p

for any p > 6.
Note that (Yn+1−Yn−µn : n = 1, . . .) is a sequence of a martingale difference with supn |Yn+1−Yn−µn|p < ∞ because

E|Yn+1−Yn−µn|p

= E
∣∣∣∣c(1+

1
n

)
X+

n −X−n
Hn

− c
(

1+
1
n

)
E
(

X+
n −X−n

Hn

)∣∣∣∣p
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= cp
(

1+
1
n

)p

E
∣∣∣∣X+

n −X−n
Hn

−E
(

X+
n −X−n

Hn

)∣∣∣∣p
≤ cp2pE

∣∣∣∣X+
n −X−n − ( f (dθne)− f (bθnc))E (1/Hn)Hn

Hn

∣∣∣∣p
≤ cp2pb−pEC4(1+ |θn|)p

≤ cp2pb−p(C4 +E|θn|p)

for some constant C4 and

E|θn+1|p = E
∣∣∣∣θn−

c
n

X+
n −X−n

Hn

∣∣∣∣p
≤ E|θn|p +

cp

np b−pC5 (1+E|θn|p)

=
(

1+
C5

np

)
E|θn|p +

C5

np

for some constants C5 and C6. Hence, by Lemma 1 of Venter (1966), E|θn|p is bounded.
Note

n−1

∑
k=N

E |Yn−Yn−1−µn−1 + . . .+Yk+1−Yk−µk|p

|t + ε(n− k)|p
≤

n−1

∑
k=N

Cp(n− k)p/2

(t + ε(n− k))p ≤
∞

∑
k=1

Cpkp/2

(t + εk)p

and that

N−1

∑
k=1

E |Yn−Yn−1−µn−1 + . . .+Yk+1−Yk−µk|p

|t + ε(n−N)−b(K,N)N|p
≤

N−1

∑
k=1

Cp(n− k)p/2

|t + ε(n−N)−b(K,N)N|p

for some constant Cp by Lemma 2.1 of Li (2003). So,

E max(Yn,0) =
∫

∞

0
P(Yn > t)dt

= N ·b(K,N)+
∫

∞

N·b(K,N)

∞

∑
k=1

Cpkp/2

(t + εk)p

+
∫

∞

N·b(K,N)

N−1

∑
k=1

Cp(n− k)p/2

|t + ε(n−N)−b(K,N)N|p

= N ·b(K,N)+
∞

∑
k=1

∫
∞

b(K,N)

Cpkp/2

(t + εk)p

+
N−1

∑
k=1

∫
∞

N·b(K,N)

Cp(n− k)p/2

|t + ε(n−N)−b(K,N)N|p

= N ·b(K,N)+
∞

∑
k=1

1
p−1

Cpkp/2

|N ·b(K,N)+ εk|p−1

+
N

∑
k=1

1
p−1

Cp(n− k)p/2

|N ·b(K,N)+ ε(n−N)−b(K,N)N|p

≤ K′

for some constant K′ < ∞ which does not depend on n. E max(−Yn,0) < ∞ follows in a similar way. Hence the desired
result is proven. For the general case, let Yn = n(θn−θ∗)− (θ1−θ∗). Then it follows E(n(θn−θ∗)− (θ1−θ∗))+ < ∞ and
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E(n(θn−θ∗)− (θ1−θ∗))− < ∞. So

E|n(θn−θ∗)| ≤ E|n(θn−θ∗)−θ1|+E|θ1|+θ∗ < ∞

by A7. Hence, the desired result is proven. 2

4 A NUMERICAL EXAMPLE

Consider the single–period newsvendor problem where θ units are ordered and stacked at the beginning of the period. The
goal is to find an ordering level θ that minimizes the cost function f (θ) = E[cθ +hmax(0,θ −D)+ pmax(0,D−θ)], where
c is the unit cost for producing each unit, h is the holding cost per unit remaining at the end of the period, p is the shortage
cost per unit of unsatisfied demand, and the expectation is taken with respect to the random demand D. The optimal solution
for this problem is given by

θ∗ = F−1
(

p− c
p+h

)
,

where F is the cumulative distribution function of D.
We compare the proposed algorithm:

θn+1 = θn−
1
n

X+
n −X−n

An
(14)

to the following algorithm:

θn+1 = θn−
1
n
(X+

n −X−n ), (15)

which was proposed in Lim and Glynn (2006) and which does not make use of the Hessian information.
Table 1 compares the performance of (14) and (15) with c = 3,h = 5, and p = 9. Demand follows a Poisson distribution

with parameter 100, resulting in θ∗ = 98. In (14) and (15), 1/n is adjusted according to the total number of the iterations
as follows:

Total number of iterations
10 ·n

so that an ∈ {1/1,1/2,1/3, . . . ,1/10} and an does not get too small at the end of iterations.
At each θn, X+

n is the average of 500 replications of cdθne+h(dθne−D)+ + p(D−dθne)+. X−n , X ′n, X ′′n , and X ′′′n are
computed in a similar way. Table 1 shows the sample mean and the sample standard deviation of θn based on 200 independent
replications with θ1 = 5.231. n1 and n2 are the total numbers of iterations for (14) and (15), respectively. The ratio of n1 to
n2 is set to be 2 to 5 reflecting the fact that we need to generate X(θ) at 5 and 2 different values of θ at each iteration of
(14) and (15), respectively. Hence the same amount of computational budget is allocated to (14) and (15).

Table 1: Performance of Algorithms (14) and (15)

n1 = 15,n2 = 6 n1 = 25,n2 = 10 n1 = 35,n2 = 14
θ∗ = 98 |θn−θ∗| Variance MSE |θn−θ∗| Variance MSE |θn−θ∗| Variance MSE

Algorithm (14) 51.14 1003.00 3618.29 24.00 967.21 1543.21 18.14 907.21 1236.27
Algorithm (15) 69.31 73.49 4877.32 50.94 106.92 2701.80 33.69 153.76 1288.78

Table 1 shows that the proposed algorithm, Algorithm (14), approaches the optimal solution faster than Algorithm (15),
but shows more variability. However, the overall efficiency summarized by the mean square error indicates that the proposed
algorithm outperforms Algorithm (15) since the variance increase is more than offset by the bias reduction.
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