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ABSTRACT 

We develop a Ranking and Selection procedure for selecting the best configuration based on a transient mean performance 
measure. The procedure extends the OCBA approach to systems whose means are a function of some other variable such as 
time. In particular, we characterize this as a prediction problem and imbed a regression model in the OCBA procedure. In this 
paper, we analyze a problem with sequential sampling constraints for each configuration and offer a heuristic to use a poly-
nomial regression model when variance reduction is possible. 

1 INTRODUCTION 

Morrice et al. (2008) develop a ranking and selection procedure for selecting the best configuration based on a transient mean 
performance measure. The procedure uses a regression-based approach to extend the Optimal Computing Budget Allocation 
(OCBA) method (Chen et al. 2000 and 2008) to systems whose means are changing according to a linear functional relation-
ship.  

In this paper, we extend the Morrice et al. (2008) procedure to address a special but important case with non-linear func-
tional relationships and sequential sampling constraints. More specifically, we assume that transient mean is a function of a 
discrete index such as observation number or discretely sampled time. Due to the sequential sampling constraints inherent in 
such indices, the optimal sample location is not the focus of this approach. Instead, we focus on developing a procedure that 
utilizes all possible simulation observations to reduce the variance of the each transient mean evaluated at a particular index 
value.   

For example, consider a simulated queuing configuration that is initialized as empty and idle. Suppose that one is inter-
ested in the  waiting time for the M-th customer, W(M), before the system has achieved steady state. A naïve way to estimate 
the expected value of W(M) is to do replications of the simulation and simply calculate the sample average of W(M) across 
replications. A more sophisticated way is to fit a model to the transient observations generated by simulation prior to observa-
tion n and predict the expected value of W(M). By using as many observations at possible, one makes more efficient use of 
information or, equivalently, reduces the variance of the statistics used to estimate the transient mean performance measure. 
Figure 1 illustrates the idea for a generic performance measure and for multiple configurations. 

We take a regression approach to fitting the transient. The approach is complicated by non-linear behavior, lack of nor-
mality, and statistical dependency in the data. To address the issue of non-linearity, we use a polynomial regression approach 
(Draper and Smith, 1981, Section 5.1). We deal with non-normality by making macro-replications (Goldsman et al. 1991) 
and tackle statistical dependency by using simulation observations spaced far enough apart to in the data series to effectively 
eliminate serial correlation. 

The resultant OCBA procedure incorporates the regression results for configurations in which a variance reduction is 
possible. Regular OCBA and a naïve approach is used for configurations in which a variance reduction is not possible in or-
der to save the regression analysis overhead.  

The rest of the paper is organized in the following manner. Section 2 provides the problem statement and Section 3 cov-
ers the details of the regression analysis. In Section 4, we provide a heuristic procedure for the extended OCBA formulation. 
Section 5 contains an example to illustrate the variance reduction potential of this approach. Section 6 provides our conclu-
sions and future research directions.    
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Figure 1: The mean performance of multiple configurations up to time M 
 
 

2 PROBLEM STATEMENT 

Let x represent the observation index and y represent the expected performance measure of interest. The variable x can as-
sume the values 1, 2 , M . This paper explores a problem with the principle goal of selecting the best of K alternative confi-
gurations at index value M. Without loss of generality, we consider the minimization problem shown below where the “best” 
configuration is the one with smallest expected performance measure, ie.,  

 
min ( ); 1,= jj

y M j K . 

 
The expected performance measure ( )jy x  must be estimated via simulation with noise where the simulation output ( )j if x  is 
defined as 

( ) ( ) ; 1, , ,ε= + = j jf x y x i K  where 2~ (0, )ε σ jN .       (1)  
 

Note: we assume that the error is normal and independent for the development of the theory. The heuristic procedure in Sec-
tion 4 accounts for non-normal and statistically dependent data. 

In this paper, we assume that the expectation of the unknown underlying function for each configuration is polynomial (or 
can be closely approximated by a polynomial) on the prescribed domain, i.e.,  

 
2

0 1 2( ) n
j j j j njy x x x xβ β β β= + + + + .          (2) 

 
Our problem is to select the configuration associated with the smallest mean performance measure from among the K 

configurations within the constraint of a computing budget with only T  simulation replications. We designate the configura-
tion with the smallest estimated mean performance measure at M as ˆ ( )by M  so that ˆarg min ( )j

j
b y M= . Given the uncertain-

ty of the estimate of the underlying function, b is a random variable and we define Correct Selection as the event where b is 
indeed the best configuration. 

M 

t 

Performance 
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We define jN  as the number of simulation replications conducted for configuration j. Since the simulation is expensive 

and the computing budget is restricted, we seek to develop an allocation rule for each jN  in order to provide as much infor-
mation as possible for the identification of the best configuration. Our goal then is to determine the optimal allocations to the 
configurations that maximize the probability that we correctly select the best configuration (PCS). This Optimal Computing 
Budget Allocation (OCBA) problem is reflected in (3) below.  

 

1

max { ( ) ( ) }

. .
=

= ≤ ∀

=∑
j

b jN

K

j
j

PCS P y M y M j

s t N T
          (3) 

 

The constraint 
1=

=∑
K

j
j

N T  denotes the total computational cost and implicitly assumes that the simulation execution times 

for one sample are constant across the configurations and that each simulation replication is of length M. 
The OCBA problem statement in (3) simply represents standard OCBA if  

 
( )

1ˆ ( )

jN

jl
l

j
j

f M
y M

N
==
∑

 

where ( )jlf M is the simulation output for replication l of configuration j (j=1, 2, …, K) at index value M. However, if (2) 
holds, then least squares regression can be used to estimate ( )jy M . The additional overhead associated with a regression 
analysis is justified only if it results in a substantial variance reduction in the statistic ˆ ( )jy M . 

3 REGRESSION ANALYSIS 

For configuration j, let β j  represent an ( )1 1n + × vector of parameters from (2), let jX be an ( )1M n× +  matrix with rows of 

the form 1 nx x    for each index value, and jF be an 1M ×  vector with a simulation output observation (from (1) ) 

corresponding to each row in jX . Using the Baysesian regression framework detailed in Morrice et al (2008) with a non-
informative prior, the posterior distribution of β j is given by 

 
1 2 1~ [( ) , ( ) ]σ− −β X X X F X X T T T

j j j j j j j jN  .           (4) 
 

The non-informative prior distribution represents the fact that we have no information about the unknown parameters and 
places emphasis upon the information we collect with our simulation runs. 

Since ( )jy M  is a linear combination of the elements β j , this means that ( )jy M has a Gaussian distribution of the form 
 

1 2 1( ) ~ [ ( ) , ( ) ],σ− −X X X X F X X X X T T T T
j M j j j j j M j j My M N          (5) 

 
where [1 ]=X T n

M M M . After the simulation is performed, the mean and variance of the performance measure for 
configuration j are estimated by 1( )−X X X X FT T

M j j j j  and 2 1( )−X X X XT T
j M j j Ms , respectively, where 2

js is the mean square resi-
dual from the regression analysis. 

Proposition 1 Let 

( ) ( ) ( )
1

1 0

1 1
1

p i
j p

p
i j

M p i p
S M i j

M i j

−

= =

+ − + +  
= − −   −  
∑∑        (6) 

for 1,2, , 2p n=  . For expression (2), each X XT
j j has the form 
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( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2
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n

n
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S M S M S M S M
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+

+

+ +
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 
 
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





   



       (7) 

 
Proof Since x assumes the values 1,2 , M , then  
 

2

2

2

2

1 1 1 1
1 2 2 2
1 3 3 3

1

n

n

n
j

nM M M

 
 
 
 =
 
 
  

X







    



           (8) 

   

Hence, each element of X XT
j j is  a power sum ( )

1

M
p

p
k

S M k
=

= ∑ which can be rewritten as (6) (Wolfram MathWorld 2009). 

Note The X XT
j j matrix has elements which are power sums regardless of whether or not all terms in the polynomial in 

(2) are included in the final regression model. Hence, a similar result to Proposition 1 holds for all such models. 
 
Using Proposition 1 and Mathematica (Wolfram 1999), we can derive expressions for the prediction variance factor 

1( )−X X X XT T
M j j M  as a function of M. Tables 1 and 2 contain results for all models up to order 5n = . Table 1 describes the 

31 possible models and assigns them a model number. The latter is used to denote the model in Tables 2 and 3.  
To gain a better understanding of the expressions in Tables 2 and 3, we plot  1( )−X X X XT T

M j j M   versus M in Figures 1 

and 2 for the models of the form ∑
=

+=
n

i

i
i xxy

1
0)( ββ and the form n

n xxy ββ += 0)( respectively. These models illu-

strate general principles common to all 31 models. In particular, 
1. All 31 models have a similar shape to those in Figures 1 and 2, decreasing monotonically from the value one as M 

increases. In other words, for large enough M, the prediction variance factor provides a variance reduction. 
2. Figure 1 illustrates that as more terms are added to the polynomial regression model, 1( )−X X X XT T

M j j M  increases for 
any given value of M or, equivalently, the variance reduction diminishes as more terms are added to the regression 
model. 

3. Figure 2 illustrates that for an equivalent number of terms in the model (in this case, one term in addition to the con-
stant), 1( )−X X X XT T

M j j M  increases with the degree of the polynomial for any given value of M. 
Items (2) and (3) support the principle of parsimony which will be used in the heuristic that we develop in Section 4.  

Proposition 2 Suppose R replications (or macro-replications, if necessary) are made. Then the prediction variance fac-

tor equals 
1( )−X X X XT T

M j j M

R
. 

Proof With R replications, each column of the matrix X j is just the columns in (8) repeated R times. Therefore each 

term in X XT
j j  is multiplied by R and the result follows from the inversion of the matrix. 

Proposition 2 implies that the regression approach gets the same variance reduction as the naïve approach simply by us-

ing replication (i.e., the variance of the prediction decreases by 1
R

). Hence, the variance reduction from indicated by the pre-

diction variance factor 1( )−X X X XT T
M j j M  when the regression approach is used is over and above what is possible when the 

naïve approach is used. 
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Table 1: All possible polynomial regression models up to order 5n =  
Model # Model 

1 0 1j j xβ β+  
2 2

0 2j j xβ β+  
3 2

0 1 2j j jx xβ β β+ +  
4 3

0 3j j xβ β+  
5 3

0 1 3j j jx xβ β β+ +  
6 2 3

0 2 3j j jx xβ β β+ +  
7 2 3

0 1 2 3j j j jx x xβ β β β+ + +  
8 4

0 4j j xβ β+  
9 4

0 1 4j j jx xβ β β+ +  
10 2 4

0 2 4j j jx xβ β β+ +  
11 3 4

0 3 4j j jx xβ β β+ +  
12 2 4

0 1 2 4j j j jx x xβ β β β+ + +  
13 3 4

0 1 3 4j j j jx x xβ β β β+ + +  
14 2 3 4

0 2 3 4j j j jx x xβ β β β+ + +  
15 2 3 4

0 1 2 3 4j j j j jx x x xβ β β β β+ + + +  
16 5

0 5j j xβ β+  
17 5

0 1 5j j jx xβ β β+ +  
18 2 5

0 2 5j j jx xβ β β+ +  
19 3 5

0 3 5j j jx xβ β β+ +  
20 4 5

0 4 5j j jx xβ β β+ +  
21 2 5

0 1 2 5j j j jx x xβ β β β+ + +  
22 3 5

0 1 3 5j j j jx x xβ β β β+ + +  
23 4 5

0 1 4 5j j j jx x xβ β β β+ + +  
24 2 3 5

0 2 3 5j j j jx x xβ β β β+ + +  
25 2 4 5

0 2 4 5j j j jx x xβ β β β+ + +  
26 3 4 5

0 3 4 5j j j jx x xβ β β β+ + +  
27 2 3 5

0 1 2 3 5j j j j jx x x xβ β β β β+ + + +  
28 2 4 5

0 1 2 4 5j j j j jx x x xβ β β β β+ + + +  
29 3 4 5

0 1 3 4 5j j j j jx x x xβ β β β β+ + + +  
30 2 3 4 5

0 2 3 4 5j j j j jx x x xβ β β β β+ + + +  
31 2 3 4 5

0 1 2 3 4 5j j j j j jx x x x xβ β β β β β+ + + + +  
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Figure 1: Prediction Variance Factor (i.e., 1( )−X X X XT T

M j j M ) versus M for Models 1, 3, 7, 15, and 31 
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Figure 2: Prediction Variance Factor (i.e., 1( )−X X X XT T

M j j M ) versus M for Models 1, 2, 4, 8, 16 
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4 AN HEURISTIC PROCEDURE 

The heuristic has two phases. Phase 1 establishes whether or not the regression approach provides variance reduction for each 
configuration. For any configuration on which regression does not provide variance reduction, it is rejected in favor of the 
naïve approach in order to save the overhead associated with the regression analysis.  

Phase 2 conducts the regular OCBA analysis using either the naïve approach results or the regression results for a given 
configuration depending on the outcome of Phase 1. 

 
 Heusistic 

For each configuration 
Phase 1: 

1) Generate N0 initial replications 
2) Average each observation across replications 
3) Fit a regression model to the replication averages 
4) Check for normality of the residuals 
5) If residuals fail normality test, make an additional replication and go to 2) else 
6) Check for serial correlation in the residuals 
7) If the residuals fail serial correlation test, starting at last observation, discard the number of spacing observations 

indicated by the largest significant lag and go to step 6) else 
8) Index the remaining observations 1, 2, …, m where m ≤ M 
9) Fit a regression model to the m observations 
10) If there is variance reduction based on the number of observations and the regression model from step 9), use re-

gression modeling approach, else use naïve approach 
End for. 
 

Conduct regular OCBA (Chen et al 2000)  to determine the number of macro-replications for all configurations. For the con-
figurations in which the regression modeling approach is used, the form of regression model and observation spacing identi-
fied in Phase 1 are used. For multiple macro-replications, use Proposition 2 when regression is used. 

Phase 2: 

 
In step 7 of Phase 1, we make a phi-mixing assumption (Billingsley 1968, p.166) that the serial correlation decreases as 

the spacing between observations in the data series increases. By the construction of Step 7, Step 8 represents a simple shift 
and scaling of the index of the remaining observations which does not change the analysis of variance results for the regres-
sion model in (2). It enables us to use the results in Propositions 1 and 2. 

5 AN EXAMPLE 

Since our procedure is a direct extension of regular OCBA, this example is designed to illustrate how the procedure is im-
plemented and the potential for variance reduction when the regression approach is used. Additional analysis and testing to 
rigorously establish variance reduction remains the topic of future research. We simulate an M/M/1 queue with traffic intensi-
ty 0.8 for the first 100 customers waiting times when the model is initialized empty and idle. Hence, the average waiting 
times as a function of customer number form an initial transient as the model “warms up” (Kelton and Law 1985, Law and 
Kelton, 2000). We chose this example because we can compare our results to the analytical results from Kelton and Law 
(1985) which show that the expected delay for the 100th customer in this queuing model is 3.81 to two decimal places of ac-
curacy. 

We run through Phase 1 of the Heuristic by setting N0 = 20 and averaging the observations across the 20 replications for 
each customer. Using the add-in StatTools 5.0 for Excel (Palisade Corp. 2008) to do the statistical analysis, yields a regres-
sion model with linear, quadratic, cubic, and fifth order terms (adjusted R2 = 0.8987) when both forward and stepwise regres-
sion procedures are used. A Chi-Square test of the residuals for normality does not reject the null hypothesis of normality at 
the five percent level.  

A serial correlation test of the residuals detects significant lag one and lag two correlations. Starting at observation 100 
and working back through the data series, two observations are thinned from the data set between each remaining data point 
(hence the remaining data points are 100, 97, 94, …,7, 4, 1). Forward and stepwise regression on this new thinned data set 
produces a full quadratic model (adjusted R2 = 0.8527). The resultant serial correlation test on the residuals identifies a sig-
nificant lag one correlation. Hence, thinning is conducted again leaving the following 17 data points 100, 94, 88, …, 16, 10, 4 
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in the data set. As on the last step, forward and stepwise regression yields a full quadratic model (adjusted R2 = 0.8111). The 
residuals from this regression show no significant correlation. 

The observation indices are shifted and  rescaled as 1, 2, …, 17. The regression yields the estimates: 
1( )−X X X X FT T

M j j j j = 3.94 and 2
js = 0.284. From Proposition 1 and Table 2 (model 7),  1( )−X X X XT T

M j j M = 0.422. Hence, the 
prediction variance is 0.120 and the prediction standard deviation is 0.346.  

Employing the naïve approach of simply averaging the waiting times across the 20 replications for customer 100 yields a 
predication average is 3.671 with standard deviation 0.720. Hence, the regression approach yields a standard deviation that is 
less that half of the standard deviation from the naïve approach.  
 

6 CONCLUSIONS     

We have presented a Ranking and Selection procedure for selecting the best configuration based on a nonlinear transient 
mean performance measure with sequential sampling constraints. We have offered  a heuristic to use results from a poly-
nomial regression model when variance reduction is possible. There are certainly ways to improve upon these results. Most 
notably, an examination of Tables 2 and 3 show that there is some structure to the results and that it may be possible to derive 
a general form for the results. 
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