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ABSTRACT 

When selecting the best design of a system among a finite set of possible designs, there may be multiple selection criterion. 
One formulation of such a multi-criteria problem is minimization (or maximization) of one of the criterions while constrain-
ing the others. In this paper, we assume the criteria are unobservable mean values of stochastic outputs of simulation. We 
propose a new heuristic iterative algorithm for finding the best in this situation and use a number of experiments to demon-
strate the performance of the algorithm. 

1 INTRODUCTION 

Selecting-the-Best design of a system among a finite set of designs when there are stochastic constraints on the performance 
of the desired system has wide applications, but is subject to various computational challenges. The applications range from 
toy examples of simulation-based optimization of a bank in which the bank manager wants the average waiting time of cus-
tomers to be less than a target upper bound, to sophisticated manufacturing design models in which throughput should satisfy 
average frequency requirements while the maximum work in process ought to be less than available physical inventory ca-
pacity. 

However, the application of Selection of the Best problems/methods in general and with expensive (stochastic) con-
straints in particular are not limited to the use of discrete event simulation as the expensive model for evaluating the objective 
function/constraints. Wherever an expensive model/experiment is needed to know the feasibility or quality of the designs, 
there is a potential need for such methods. In fact, the discrete-event simulation context  studied here may be substituted with 
a fluids-mechanic simulation experiment in mechanical engineering, system dynamics simulation in business and economic 
modeling, war gaming in military, surveying experiment in statistics/sociology or the test of a new vaccine on animals in ve-
terinary or medicine. The experiments in these cases are  monetarily expensive, time consuming or computationally inten-
sive, practically dangerous, or ethically unjustifiable. 

Essentially, the Selection of the Best problem we consider in this paper has these properties: 
1. The number of available designs is finite and each design is characterized only by a code assigned to it. 
2. The selection is based on evaluating each design on a number of decision criteria. One of these criteria is called objec-

tive. A design is called feasible if the values of its non-objective criteria are within desired limits. The problem is 
about finding the feasible design with the best value of the objective. 

3. For each design, the vector of criteria is the unobservable mean vector of a multivariate normal distribution. The outputs 
of running a discrete-event simulation model of the design is a random sample of this distribution. Hence, estimates of 
the mean values obtained by simulation sampling can be used to approximate the criteria. 

4. Simulation is computationally expensive; hence evaluating the objective or the feasibility of each design using estimates 
of criteria is costly. 

5. Simulation outputs are noisy. Hence the estimates of objective and non-objective criteria are subject to noise. This is why 
the limits put on non-objective criteria are called stochastic constraints. Moreover, unless infinite simulation effort is 
spent on each design which is practically impossible, no optimization algorithm could “surely” guarantee finding the 
optimum design or even determining if a design is feasible.  

In the simulation literature, Ranking and Selection (RS) and Multiple Comparison (MC) procedures which include Se-
lection of the Best methods have been the focus of research for many decades. A review of such methods can be found in 
Kim and Nelson (2006b), Bechhofer et. al. (1995), Goldsman and Nelson (1998).  
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There are two major paradigms for developing RS methods. Some authors try to bound the probability of correct selec-

tion and provide the number of simulation replications required to reach this probability. Bechhofer (1954) introduces the so-
called indifference zone method that finds the best with a minimum probability when the difference between the best and the 
rest of the designs are more than indifference parameter. Since then, many more efficient procedures have been proposed. For 
examples, see KN procedure by Kim and Nelson (2001), and the KN++ by Kim and Nelson (2006a). The next paradigm is 
RS procedures that bound the total simulation replications consumed and allocating the simulation budget to the designs such 
that (approximated) probability of correct selection is maximized. An example of this approach is Optimal Computing Budg-
et Allocation introduced by Chen et. al. (2000). 

Although a lot of attention has been focused in the literature on Selection of the Best problems without stochastic con-
straints, the literature is surprisingly poor in proposing efficient methods for handling such constraints (Kim and Nelson 
2007). Butler et. al (2001) combine multiple measures together using utility theory and apply an RS procedure to them. An-
dradóttir et. al (2005) proposes a procedure for one stochastic constraint. Batur and Kim(2005) provide a procedure for de-
tecting feasibility in multiple stochastic constraint cases. 

In this paper, we bridge the research gap by presenting an iterative heuristic algorithm which could be used with a limita-
tion on the simulation budget or probability of correct selection as the terminating condition of the algorithm. The method is 
useful for Selection of the Best problems with stochastic constraints, though it could also be used for unconstrained problems 
as well. 

In section 2, we define the problem mathematically. In section 3.1, the intuition behind our new method and its overall 
procedure is provided. In section 3.2, the detailed algorithm is outlined. Section 4 provides several numerical results and sec-
tion 5 concludes the paper. 

2 PROBLEM DEFINITION 

Assume there are 𝜔𝜔 designs ,indexed by 𝑗𝑗 ∈ J = {1,2, … ,𝜔𝜔}, of a stochastic system among which the best design must be se-
lected. There are 𝜍𝜍 + 1 decision criteria (performance measures) indexed by 𝑖𝑖 for selecting the best design. Mathematically, 
the problem is: 

 
min
𝑗𝑗 ∈J

𝜇𝜇0𝑗𝑗  

 s. t.   𝜇𝜇𝑖𝑖𝑗𝑗 < 0    ∀ 𝑖𝑖 ∈ I = {1,2, … , 𝜍𝜍} 

(1)  

 
In this formulation, the objective function is to minimize one decision criterion, namely the expected value 𝜇𝜇0𝑗𝑗 , while 

constraining the expected value of the other criteria, 𝜇𝜇𝑖𝑖𝑗𝑗 , to be less than an upper bound. Note that a typical constraint 𝜇𝜇𝑖𝑖𝑗𝑗 < 0 
in this formulation is broad enough to cover constraints such as 𝜇𝜇𝑖𝑖𝑗𝑗′ > 0 (using 𝜇𝜇𝑖𝑖𝑗𝑗 = −𝜇𝜇𝑖𝑖𝑗𝑗′ < 0) or 𝜇𝜇𝑖𝑖𝑗𝑗′ < 𝑏𝑏 where 𝑏𝑏 ∈ ℝ (us-
ing 𝜇𝜇𝑖𝑖𝑗𝑗 = 𝜇𝜇𝑖𝑖𝑗𝑗′ − 𝑏𝑏 < 0). We assume the set of feasible designs Φ = �𝑗𝑗 ∈ J�𝜇𝜇𝑖𝑖𝑗𝑗 < 0    ∀ 𝑖𝑖 ∈ I� is nonempty. Also we let 
Φ′ = J\Φ be the set of infeasible designs. 

The vector 𝝁𝝁𝑗𝑗 = �𝜇𝜇0𝑗𝑗 , 𝜇𝜇1𝑗𝑗 , … , 𝜇𝜇𝜍𝜍𝑗𝑗 � is unknown and unobservable. But we assume there exists a simulation model of de-
sign 𝑗𝑗 of the stochastic system; the output of running this model in 𝑟𝑟-th replication is the observed vector 
𝒚𝒚𝑗𝑗𝑟𝑟 = �𝑦𝑦0𝑗𝑗𝑟𝑟 ,𝑦𝑦1𝑗𝑗𝑟𝑟 , … ,𝑦𝑦𝜍𝜍𝑗𝑗𝑟𝑟 � which is an independent sample of random vector 𝒀𝒀𝑗𝑗 = �𝑌𝑌0𝑗𝑗 ,𝑌𝑌1𝑗𝑗 , … ,𝑌𝑌𝜍𝜍𝑗𝑗 �. We assume 𝒀𝒀𝑗𝑗  follows a 
multivariate normal distribution with mean vector 𝝁𝝁𝑗𝑗  and covariance matrix 𝑪𝑪𝑗𝑗 = �𝐶𝐶𝑖𝑖𝑖𝑖′ 𝑗𝑗 �𝑖𝑖 ,𝑖𝑖′ ∈{0,1,…,𝜍𝜍}

. 

3 THE NEW METHODOLOGY 

In this section, we present our new algorithm for selection of the best with stochastic constraints. We first outline the basic 
ideas and intuition behind this methodology (section 3.1), and then provide a detailed outline of the algorithm (section 3.2). 

3.1 Overview 

Our heuristic algorithm has an iterative procedure that continues until a terminating condition (e.g. the probability of correct 
selection or budget) is satisfied.  

To initialize the algorithm, each design is simulated with a number of replications denoted by 𝜂𝜂 ≥ 2. The idea here is to 
get initial rough estimates of the expected values of criteria and their variability. In each iteration, the algorithm then screens 
the eligibility of all designs for more simulation replications. The intuitive idea is that a design should be simulated further if 
there is reason to believe that the design is both feasible and of sufficiently high quality. Thus, the algorithm employs two 
measures, which we term the quality and feasibility indicators. Using these indicators, there are then two major rules: 
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1. A design must not be simulated more if there is sufficient evidence (feasibility indicator) that it is infeasible. 
2. A design must not be simulated further if there is sufficient evidence (quality indicator) that its objective function is 

inferior to that of another design which is believed to be feasible. 
Before describing the method further, we need to introduce some notations. Let 𝑛𝑛 be the counter of the total number of 

simulation replications spent for all the designs. Denote the total number of simulation replications of design 𝑗𝑗 right after 𝑛𝑛-th 
simulation replication by 𝜐𝜐𝑗𝑗𝑛𝑛  . Obviously ∑ 𝜐𝜐𝑗𝑗𝑛𝑛𝑗𝑗∈J = 𝑛𝑛. The sample mean vector 𝒚𝒚�𝑗𝑗𝑛𝑛 = �𝑦𝑦�0𝑗𝑗𝑛𝑛 ,𝑦𝑦�1𝑗𝑗𝑛𝑛 , … ,𝑦𝑦�𝜍𝜍𝑗𝑗𝑛𝑛 � and sample co-
variance matrix 𝒄𝒄𝑗𝑗𝑛𝑛 = �𝑐𝑐𝑖𝑖𝑖𝑖′ 𝑗𝑗𝑛𝑛 �𝑖𝑖 ,𝑖𝑖′ ∈{0,1,…,𝜍𝜍}

 of design 𝑗𝑗 ∈ J up to replication 𝑛𝑛 could then be obtained using: 
 

𝑦𝑦�𝑖𝑖𝑗𝑗𝑛𝑛 = 𝜐𝜐𝑗𝑗𝑛𝑛−1 � 𝑦𝑦𝑖𝑖𝑗𝑗𝑟𝑟
𝜐𝜐𝑗𝑗𝑛𝑛

𝑟𝑟=1
       ∀𝑖𝑖 ∈ {0,1, … , 𝜍𝜍} (2)  

𝑐𝑐𝑖𝑖𝑖𝑖′ 𝑗𝑗𝑛𝑛 = �𝜐𝜐𝑗𝑗𝑛𝑛 − 1�−1 �� �𝑦𝑦𝑖𝑖𝑗𝑗𝑟𝑟 𝑦𝑦𝑖𝑖′ 𝑗𝑗𝑟𝑟 � − 𝜐𝜐𝑗𝑗𝑛𝑛 𝑦𝑦�𝑖𝑖𝑗𝑗𝑛𝑛 𝑦𝑦�𝑖𝑖′ 𝑗𝑗𝑛𝑛
𝜐𝜐𝑗𝑗𝑛𝑛

𝑟𝑟=1
�          ∀𝑖𝑖, 𝑖𝑖′ ∈ {0,1, … , 𝜍𝜍} (3)  

After 𝑛𝑛-th simulation replication, design 𝑗𝑗 is labeled as feasible if ,when estimated means are used in lieu of the expected 
values, all the constraints of the problem are satisfied for the design. Specifically, a feasibility label is defined as follows: 

 

𝐹𝐹�𝑗𝑗𝑛𝑛 = �1 if 𝑦𝑦�𝑖𝑖𝑗𝑗𝑛𝑛 < 0  ∀ 𝑖𝑖 ∈ I
0 otherwise

� 

 

(4)  

The algorithm then divides the set of designs into two parts called (approximated) feasible and infeasible sets denoted by 
Φ�𝑛𝑛  and Φ�𝑛𝑛′  respectively: 

 
Φ�𝑛𝑛 = �𝑗𝑗 ∈ J �𝐹𝐹�𝑗𝑗𝑛𝑛 = 1� (5)  

Φ�𝑛𝑛′ = �𝑗𝑗 ∈ J �𝐹𝐹�𝑗𝑗𝑛𝑛 = 0� (6)  

Obviously, Φ�𝑛𝑛 ∪ Φ�𝑛𝑛′ = J and Φ�𝑛𝑛 ∩ Φ�𝑛𝑛′ = { } for all 𝑛𝑛.  
Let the best design up to 𝑛𝑛-th simulation replication be denoted by 𝑗𝑗𝑛𝑛∗ which is the design in Φ�𝑛𝑛  with least estimated ob-

jective function. When there is a tie between the estimated objective functions of two or more designs in Φ�𝑛𝑛 , we for simplici-
ty introduce the design with lowest index among these designs as the best. Since Φ�𝑛𝑛  might potentially be empty in our algo-
rithm, a “dummy” design 0 with objective value of  +∞ is returned as the optimum: 

 

𝑗𝑗𝑛𝑛∗ = �min �𝑗𝑗′�𝑗𝑗′ ∈ arg min
𝑗𝑗∈Φ� 𝑛𝑛

𝑦𝑦�0𝑗𝑗𝑛𝑛 �      if �Φ�𝑛𝑛� ≥ 1

0 otherwise
� 

 

(7)  

The feasibility and quality indicators used in the proposed algorithm are both probabilistic terms defined on the distribu-
tion of the estimated criteria. We assume the estimated criteria of a design follow a multivariate normal distribution. Then the 
estimated means and co-variances are used for the multivariate normal distribution of each design. We hope that as the num-
ber of simulation replications of each design increases, the estimates get more accurate by the laws of large numbers, and that 
the normality assumption is better justified by central limit theorem.  

For the feasibility indicator, denoted by 𝜑𝜑𝑗𝑗𝑛𝑛 , the algorithm computes the probability of feasibility as follows: 
 

𝜑𝜑𝑗𝑗𝑛𝑛 = Pr�𝑍𝑍𝜍𝜍 ��𝑦𝑦�1𝑗𝑗𝑛𝑛 , 𝑦𝑦�2𝑗𝑗𝑛𝑛 , … , 𝑦𝑦�𝜍𝜍𝑗𝑗𝑛𝑛 � ,  �
𝑐𝑐𝑖𝑖𝑖𝑖′ 𝑗𝑗𝑛𝑛
𝜐𝜐𝑗𝑗𝑛𝑛

�
𝑖𝑖 ,𝑖𝑖′ ∈{1,2,…,𝜍𝜍}

� < (0,0, … ,0)� 
(8)  

 
where 𝑍𝑍𝑑𝑑(𝑎𝑎, 𝑏𝑏) is a 𝑑𝑑-dimensional multivariate normal random vector with mean vector 𝑎𝑎 and covariance matrix 𝑏𝑏. 

To compute the quality indicator of design 𝑗𝑗 ≠ 𝑗𝑗𝑛𝑛∗, denoted by 𝜏𝜏𝑗𝑗𝑛𝑛 , first an indifference zone 𝛿𝛿𝑘𝑘 > 0 is defined for itera-
tion 𝑘𝑘 of the algorithm; then quality indicator would be the probability that the objective function of design 𝑗𝑗 is at least 𝛿𝛿𝑘𝑘  
units better than that of design 𝑗𝑗𝑛𝑛∗ as the following equation shows: 

 

576



Kabirian and Olafsson 
 

𝜏𝜏𝑗𝑗𝑛𝑛 = �Pr �𝑍𝑍1 �𝑦𝑦�0𝑗𝑗𝑛𝑛 − 𝑦𝑦�0𝑗𝑗𝑛𝑛∗ 𝑛𝑛  ,
𝑐𝑐00𝑗𝑗𝑛𝑛

𝜐𝜐𝑗𝑗𝑛𝑛
+
𝑐𝑐00𝑗𝑗𝑛𝑛∗ 𝑛𝑛

𝜐𝜐𝑗𝑗𝑛𝑛∗𝑛𝑛
� < −𝛿𝛿𝑘𝑘� if 𝑗𝑗𝑛𝑛∗ ≠ 0

1 if 𝑗𝑗𝑛𝑛∗ = 0

� 
(9)  

 
With those preliminaries, we can now describe the overall procedure of the algorithm in a typical iteration 𝑘𝑘. Each itera-

tion has three phases as follows: 
1. Screen the feasibility of the best design in the set Φ�𝑛𝑛  which consists of the designs that are estimated to be feasible. 
2. Screen the quality of the  designs other than the best in Φ�𝑛𝑛 . 
3. Screen the feasibility and quality of the designs in Φ�𝑛𝑛′  which consists of the designs that are estimated to be infeasi-

ble. 
The algorithm is fully sequential and simulates a single replication of a design at a time.   
In phase 1, the set Φ�𝑛𝑛  is ordered based on increasing estimated objective function. Then, the best design thus far (𝑗𝑗𝑛𝑛∗) 

must provide more evidence of being feasible. Therefore it is simulated as many simulation replications as necessary until 
one of the below conditions are satisfied: 

1. The evidence is obtained, that is the feasibility indicator of the best is at least 1 − 𝛽𝛽𝑘𝑘  where {𝛽𝛽𝑘𝑘′ }𝑘𝑘′=1
∞  is a sequence 

of feasibility thresholds that gradually converges to zero as the iterations of the algorithm increases. 
2. The best turns out to be infeasible, that is the feasibility label of the best becomes zero. In this case, the “best” is no 

longer the best because it is labeled infeasible. This old best is moved to the approximated infeasible set. Then a new 
best, if approximated feasible set is not empty, is determined and phase one is repeated for the new best.  

3. The total number of simulation replications of the best design performed in the current iteration reaches a maximum 
allowed.  

4. The “best” turns out to be actually worse than another design in the approximated feasible set. Then, the phase is re-
peated after a new best is determined. 

In phase 2, the algorithm seeks more evidence that all the non-best members of the set Φ�𝑛𝑛  are actually not better than the 
best. Hence more simulation replications are spent to reach the desired evidences. We define a quality threshold sequence 
{𝛼𝛼𝑘𝑘′ }𝑘𝑘′ =1

∞  that gradually converges to zero as the iterations of the algorithm increases. In this phase, first the eligibility of the 
second best design in the ordered set Φ�𝑛𝑛  is studied for further simulation by computing the quality indicator of this design. If 
the quality indicator of the second best is more than 𝛼𝛼𝑘𝑘 , then it means that the second best might actually be better than the 
already known best, hence either the best or the second best (whichever has a higher estimated objective function variance 
and whose number of simulation replications in the current iteration has not reached the maximum allowed) is simulated with 
one more replication to get more accurate estimates of objective function. After setting 𝑛𝑛 = 𝑛𝑛 + 1, some estimates are up-
dated with the data from the new simulation replication. If the previous second best design is still feasible and is not the new 
best after the new simulation replication, the quality indicator of this design is computed again and the eligibility of this de-
sign or the best for more simulation is examined at this stage. If the quality is less than the threshold, the algorithm moves to 
the third design in the  ordered set Φ�𝑛𝑛 . This process continues to the last design in Φ�𝑛𝑛 .  

After screening the quality of the approximated feasible designs, the algorithm in phase 3 computes both quality and fea-
sibility of the designs in Φ�𝑛𝑛′  one at a time. A design in Φ�𝑛𝑛′  is simulated one more replication if its quality and feasibility indi-
cators are more than 𝛼𝛼𝑘𝑘  and 𝛽𝛽𝑘𝑘  respectively and the number of simulation replications of the design in this iteration has not 
reached a predefined maximum. However, after simulating a design in Φ�𝑛𝑛′ , if the design turns out to be feasible, then the ite-
ration is immediately restarted (going back to phase 1). This is done because a design that is recently believed to be feasible, 
might actually be the new best introduced design and hence the quality indicators of all the other designs and consequently 
their eligibility for further simulation must be defined based on the quality of this design, not the old best. 

The three parameters 𝛼𝛼𝑘𝑘 , 𝛽𝛽𝑘𝑘  and 𝛿𝛿𝑘𝑘  are reduced for each iteration based on a user defined plan. An example plan is the 
following: 

𝛼𝛼𝑘𝑘 = (𝑐𝑐𝛼𝛼)𝑘𝑘−1𝛼𝛼1 
𝛽𝛽𝑘𝑘 = �𝑐𝑐𝛽𝛽�

𝑘𝑘−1𝛽𝛽1 
𝛿𝛿𝑘𝑘 = (𝑐𝑐𝛿𝛿)𝑘𝑘−1𝛿𝛿1 

(10)  

 
where 𝛼𝛼1 ∈ (0,1) , 𝛽𝛽1 ∈ (0,1) , 𝛿𝛿1 ∈ (0, +∞) are iteration-one parameters and 𝑐𝑐𝛼𝛼 ∈ (0,1), 𝑐𝑐𝛽𝛽 ∈ (0,1), 𝑐𝑐𝛿𝛿 ∈ (0,1) are de-
crease coefficients.  

As we said earlier, the total number of simulation replications spent on each design in each iteration must not exceed an 
upper bound denoted by 𝛾𝛾. This is because the estimated objective functions of a non-best design in Φ�𝑛𝑛  and the best (𝑗𝑗𝑛𝑛∗) 
might get arbitrarily close. Hence, when unknown to us, none of these two designs are actually the optimum design of the 
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problem, clarifying which design among these two is better is just futile, though very costly. Therefore, the algorithm post-
pones the “fight” between these two designs until the actual best hopefully comes out of shadow and overwhelms both or the 
algorithm continues the fight partly in the next iteration(s). 

3.2 The Algorithm 

After providing an overall picture of the algorithm of this paper in previous section, we present detailed steps here. 
 

Step 1: Simulate each design with 𝜂𝜂 ≥ 2 replications and let 𝑛𝑛 = 𝜂𝜂𝜔𝜔. Set 𝜐𝜐𝑗𝑗𝑛𝑛 = 𝜂𝜂 for 𝑗𝑗 ∈ J.  
I: Initialization: 

Step 2: For 𝑗𝑗 ∈ J, compute the sample means and sample co-variances using Equations 2 and 3.  
Step 3: For 𝑗𝑗 ∈ J, compute the feasibility label using Equation 4. 
Step 4: Create the approximated feasible and infeasible sets Φ�𝑛𝑛 ,Φ�𝑛𝑛′  using Equations 5 and 6. 
Step 5: Determine the introduced optimum 𝑗𝑗𝑛𝑛∗ using Equation 7. 
Step 6: Set iteration counter 𝑘𝑘 = 1. 
 

Step 7: Let 𝜉𝜉𝑗𝑗  denote the counter of simulation replications of design 𝑗𝑗 performed in the current iteration. Set 𝜉𝜉𝑗𝑗 = 0 for 𝑗𝑗 ∈ J. 
II: Iterative Phase: 

Step 8: If �Φ�𝑛𝑛� ≤ 1, then go to step 13. 
Step 9: Let 𝑗𝑗ℎ  be the ℎ-th best design of the set Φ�𝑛𝑛  in terms of estimated objective function. If there is tie between estimated 

objective functions of two or more designs, consider the lower-indexed design as a better design. Obviously 𝑗𝑗1 = 𝑗𝑗𝑛𝑛∗ and 
𝑦𝑦�0𝑗𝑗1𝑛𝑛 ≤ 𝑦𝑦�0𝑗𝑗2𝑛𝑛 ≤ ⋯ ≤ 𝑦𝑦�0𝑗𝑗 �Φ� 𝑛𝑛 �𝑛𝑛

 and if 𝑦𝑦�0𝑗𝑗ℎ𝑛𝑛 = 𝑦𝑦�0𝑗𝑗ℎ+1𝑛𝑛  for some ℎ ∈ �1,2, … , �Φ�𝑛𝑛� − 1�, then  𝑗𝑗ℎ < 𝑗𝑗ℎ+1 . Let 𝑆𝑆 = �Φ�𝑛𝑛�. 
  

Step 10: If 𝜉𝜉𝑗𝑗1 < 𝛾𝛾, then do 10.1-10.2 . 
IIII..II::  SSccrreeeenniinngg  tthhee  ffeeaassiibbiilliittyy  ooff  tthhee  bbeesstt  

10.1. Compute 𝜑𝜑𝑗𝑗1𝑛𝑛  , the feasibility probability of design 𝑗𝑗1, using Equation 8.  
10.2. If 𝜑𝜑𝑗𝑗1𝑛𝑛 < 1 − 𝛽𝛽𝑘𝑘  , then do 10.2.1-10.2.7 : 

10.2.1. Simulate 𝑗𝑗1 for one more independent replication and let 𝜉𝜉𝑗𝑗1 = 𝜉𝜉𝑗𝑗1 + 1 and 𝑛𝑛 = 𝑛𝑛 + 1. 
10.2.2. Set 𝑗𝑗̇̃ = 𝑗𝑗1 and then set: 

 

𝜐𝜐𝑗𝑗𝑛𝑛 = �
𝜐𝜐𝑗𝑗 ,𝑛𝑛−1 + 1 if 𝑗𝑗 = 𝑗𝑗̇̃
𝜐𝜐𝑗𝑗 ,𝑛𝑛−1 otherwise

� 

 

(11)  

Φ�𝑛𝑛 = Φ�𝑛𝑛−1 ; Φ�𝑛𝑛′ = Φ�𝑛𝑛−1
′  (12)  

10.2.3. For 𝑗𝑗 = 𝑗𝑗1 , calculate parameters in Equations 2-4.  
10.2.4. For 𝑗𝑗 ∈ J\{𝑗𝑗1} , set 𝒚𝒚�𝑗𝑗𝑛𝑛 = 𝒚𝒚�𝑗𝑗 ,𝑛𝑛−1 , 𝒄𝒄𝑗𝑗𝑛𝑛 = 𝒄𝒄𝑗𝑗 ,𝑛𝑛−1 and 𝐹𝐹�𝑗𝑗𝑛𝑛 = 𝐹𝐹�𝑗𝑗 ,𝑛𝑛−1. 
10.2.5. If 𝐹𝐹�𝑗𝑗1𝑛𝑛 = 0 , then move 𝑗𝑗1 from Φ�𝑛𝑛  to Φ�𝑛𝑛′  , update the best 𝑗𝑗𝑛𝑛∗ in Equation 7 and go to step 8. 
10.2.6. If 𝐹𝐹�𝑗𝑗1𝑛𝑛 = 1 and  𝑦𝑦�0𝑗𝑗1𝑛𝑛 ≤ 𝑦𝑦�0𝑗𝑗2𝑛𝑛  , then set 𝑗𝑗𝑛𝑛∗ = 𝑗𝑗𝑛𝑛−1

∗  and go to step 10.  
10.2.7. If 𝐹𝐹�𝑗𝑗1𝑛𝑛 = 1 and  𝑦𝑦�0𝑗𝑗1𝑛𝑛 > 𝑦𝑦�0𝑗𝑗2𝑛𝑛  , let 𝑗𝑗𝑛𝑛∗ = 𝑗𝑗2  and go to step 9. 

 

Step 11: For ℎ = 2,3, … , 𝑆𝑆 , do 11.1. 
IIII..IIII::  SSccrreeeenniinngg  tthhee  qquuaalliittyy  ooff  eessttiimmaatteedd  ffeeaassiibbllee  sseett  

11.1. If 𝜉𝜉𝑗𝑗ℎ < 𝛾𝛾  or 𝜉𝜉𝑗𝑗𝑛𝑛∗ < 𝛾𝛾, then do 11.1.1-11.1.2. 
11.1.1. Compute 𝜏𝜏𝑗𝑗ℎ𝑛𝑛   ,the quality probability of design 𝑗𝑗ℎ , using Equation 9. 
11.1.2. If 𝜏𝜏𝑗𝑗ℎ𝑛𝑛 > 𝛼𝛼𝑘𝑘  , then do 11.1.2.1-11.1.2.2. 

11.1.2.1. If 
𝑐𝑐00𝑗𝑗ℎ 𝑛𝑛

𝜐𝜐𝑗𝑗ℎ 𝑛𝑛
>

𝑐𝑐00𝑗𝑗𝑛𝑛∗ 𝑛𝑛

𝜐𝜐𝑗𝑗𝑛𝑛∗ 𝑛𝑛
  and 𝜉𝜉𝑗𝑗ℎ < 𝛾𝛾, then do 11.1.2.1.1-11.1.2.1.7: 

11.1.2.1.1. Simulate 𝑗𝑗ℎ  for one more replication and let 𝜉𝜉𝑗𝑗ℎ = 𝜉𝜉𝑗𝑗ℎ + 1 and 𝑛𝑛 = 𝑛𝑛 + 1.  
11.1.2.1.2. Set 𝑗𝑗̇̃ = 𝑗𝑗ℎ  and update Equations 11-12. 
11.1.2.1.3. For 𝑗𝑗 = 𝑗𝑗ℎ , calculate parameters in Equations 2-4.  
11.1.2.1.4. For 𝑗𝑗 ∈ J\{𝑗𝑗ℎ}, set 𝒚𝒚�𝑗𝑗𝑛𝑛 = 𝒚𝒚�𝑗𝑗 ,𝑛𝑛−1 , 𝒄𝒄𝑗𝑗𝑛𝑛 = 𝒄𝒄𝑗𝑗 ,𝑛𝑛−1 and 𝐹𝐹�𝑗𝑗𝑛𝑛 = 𝐹𝐹�𝑗𝑗 ,𝑛𝑛−1. 
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11.1.2.1.5. If 𝐹𝐹�𝑗𝑗ℎ𝑛𝑛 = 0 , then move 𝑗𝑗ℎ  from Φ�𝑛𝑛  to Φ�𝑛𝑛′  and set  𝑗𝑗𝑛𝑛∗ = 𝑗𝑗𝑛𝑛−1
∗ . 

11.1.2.1.6. If 𝐹𝐹�𝑗𝑗ℎ𝑛𝑛 = 1 and  𝑦𝑦�0𝑗𝑗ℎ𝑛𝑛 < 𝑦𝑦�0𝑗𝑗𝑛𝑛−1
∗ 𝑛𝑛  , then set  𝑗𝑗𝑛𝑛∗ = 𝑗𝑗ℎ  and go to step 9. 

11.1.2.1.7. If 𝐹𝐹�𝑗𝑗1𝑛𝑛 = 1 and  𝑦𝑦�0𝑗𝑗ℎ𝑛𝑛 ≥ 𝑦𝑦�0𝑗𝑗𝑛𝑛−1
∗ 𝑛𝑛  , then set  𝑗𝑗𝑛𝑛∗ = 𝑗𝑗𝑛𝑛−1

∗  and go to step 11.1. 

11.1.2.2. If 
𝑐𝑐00𝑗𝑗ℎ 𝑛𝑛

𝜐𝜐𝑗𝑗ℎ 𝑛𝑛
≤

𝑐𝑐00𝑗𝑗𝑛𝑛∗ 𝑛𝑛

𝜐𝜐𝑗𝑗𝑛𝑛∗ 𝑛𝑛
  and  𝜉𝜉𝑗𝑗𝑛𝑛∗ < 𝛾𝛾, then do 11.1.2.2.1-11.1.2.2.7: 

11.1.2.2.1. Simulate 𝑗𝑗𝑛𝑛∗ for one more replication and let 𝜉𝜉𝑗𝑗𝑛𝑛∗ = 𝜉𝜉𝑗𝑗𝑛𝑛∗ + 1 and 𝑛𝑛 = 𝑛𝑛 + 1. 
11.1.2.2.2. Set  𝑗𝑗̇̃ = 𝑗𝑗𝑛𝑛−1

∗  and update Equations 11-12.  
11.1.2.2.3. For  𝑗𝑗 = 𝑗𝑗𝑛𝑛−1

∗ , calculate parameters in Equations 2-4.  
11.1.2.2.4. For 𝑗𝑗 ∈ J\{𝑗𝑗𝑛𝑛−1

∗ }, set 𝒚𝒚�𝑗𝑗𝑛𝑛 = 𝒚𝒚�𝑗𝑗 ,𝑛𝑛−1 , 𝒄𝒄𝑗𝑗𝑛𝑛 = 𝒄𝒄𝑗𝑗 ,𝑛𝑛−1 and 𝐹𝐹�𝑗𝑗𝑛𝑛 = 𝐹𝐹�𝑗𝑗 ,𝑛𝑛−1. 
11.1.2.2.5. If 𝐹𝐹�𝑗𝑗𝑛𝑛−1

∗ 𝑛𝑛 = 0 , then move 𝑗𝑗𝑛𝑛−1
∗  from Φ�𝑛𝑛  to Φ�𝑛𝑛′  , update 𝑗𝑗𝑛𝑛∗ in Equation 7 and go to step 8. 

11.1.2.2.6. If 𝐹𝐹�𝑗𝑗𝑛𝑛−1
∗ 𝑛𝑛 = 1 and  𝑦𝑦�0𝑗𝑗𝑛𝑛−1

∗ 𝑛𝑛 ≠ min𝑗𝑗 ∈Φ� n 𝑦𝑦�0𝑗𝑗𝑛𝑛  , then update 𝑗𝑗𝑛𝑛∗ in Equation 7 and go to step 9. 
11.1.2.2.7. If 𝐹𝐹�𝑗𝑗𝑛𝑛−1

∗ 𝑛𝑛 = 1 and  𝑦𝑦�0𝑗𝑗𝑛𝑛−1
∗ 𝑛𝑛 = min𝑗𝑗 ∈Φ� n 𝑦𝑦�0𝑗𝑗𝑛𝑛  , then set 𝑗𝑗𝑛𝑛∗ = 𝑗𝑗𝑛𝑛−1

∗  and go to step 11.1. 
 

Step 12: If Φ�𝑛𝑛′  is empty, go to step 15. 
IIII..IIIIII::  SSccrreeeenniinngg  tthhee  qquuaalliittyy  aanndd  ffeeaassiibbiilliittyy  ooff  eessttiimmaatteedd  iinnffeeaassiibbllee  sseett  

Step 13: Let 𝑗𝑗ℎ′  be the ℎ-th best design of the set Φ�𝑛𝑛′  in terms of estimated objective function. If there is tie between estimated 
objective functions of two or more designs, consider the lower-indexed design as a better design. Let 𝑆𝑆′ = �Φ�𝑛𝑛′ �. 

Step 14: For ℎ = 1,2, … , 𝑆𝑆′ , do 14.1. 
14.1. If  𝜉𝜉𝑗𝑗ℎ′ < 𝛾𝛾 , then do 14.1.1-14.1.2. 

14.1.1. Compute 𝜏𝜏𝑗𝑗ℎ′ 𝑛𝑛  ,the quality probability of design 𝑗𝑗ℎ′ , using Equation 9. 
14.1.2. If 𝜏𝜏𝑗𝑗ℎ′ 𝑛𝑛 > 𝛼𝛼𝑘𝑘  , then do 14.1.2.1-14.1.2.2. 

14.1.2.1. Compute 𝜑𝜑𝑗𝑗ℎ′ 𝑛𝑛   , the feasibility probability of design 𝑗𝑗ℎ′  , using Equation 8. 
14.1.2.2. If 𝜑𝜑𝑗𝑗ℎ′ 𝑛𝑛 > 𝛽𝛽𝑘𝑘  , then do 14.1.2.2.1-14.1.2.2.6: 

14.1.2.2.1.  Simulate 𝑗𝑗ℎ′  for one more replication and let 𝜉𝜉𝑗𝑗ℎ′ = 𝜉𝜉𝑗𝑗ℎ′ + 1 and 𝑛𝑛 = 𝑛𝑛 + 1.  
14.1.2.2.2. Set 𝑗𝑗̇̃ = 𝑗𝑗ℎ′  and update Equations 11-12.  
14.1.2.2.3. For 𝑗𝑗 = 𝑗𝑗ℎ′  , calculate parameters in Equations 2-4.  
14.1.2.2.4. For 𝑗𝑗 ∈ J\{𝑗𝑗ℎ′  }, set 𝒚𝒚�𝑗𝑗𝑛𝑛 = 𝒚𝒚�𝑗𝑗 ,𝑛𝑛−1 , 𝒄𝒄𝑗𝑗𝑛𝑛 = 𝒄𝒄𝑗𝑗 ,𝑛𝑛−1 and 𝐹𝐹�𝑗𝑗𝑛𝑛 = 𝐹𝐹�𝑗𝑗 ,𝑛𝑛−1. 
14.1.2.2.5. If 𝐹𝐹�𝑗𝑗ℎ′ 𝑛𝑛 = 1, then move 𝑗𝑗ℎ′  from Φ�𝑛𝑛′  to Φ�𝑛𝑛 , update 𝑗𝑗𝑛𝑛∗ in Equation 7 and go to step 8. 
14.1.2.2.6. If 𝐹𝐹�𝑗𝑗ℎ′ 𝑛𝑛 = 0 , then set 𝑗𝑗𝑛𝑛∗ = 𝑗𝑗𝑛𝑛−1

∗ and go to step 14.1. 
Step 15: If a termination condition of the algorithm holds, return 𝑗𝑗𝑛𝑛∗ as the optimum and exit; otherwise set 𝑘𝑘 = 𝑘𝑘 + 1 and go 

to step 7. 

4 NUMERICAL RESULTS 

In this section we analyze the performance of the new algorithm through a set of experiments. In the first section we consider 
how the correct selection probability advances as the number of simulation replications is increased. In the second experi-
ment we consider how the problem size affects the algorithm performance. In the third section we illustrate how various 
types of infeasibility settings for the problem affect the algorithm, and finally, in the fourth section we  show how the number 
of constraints influences performance.  

4.1 Average Correct Selection Curve 

The empirical probability of correct selection is a key performance measure of the algorithm. Intuitively we expect this prob-
ability to increase as the number of simulation runs increases, but the rate at which this occurs is of great interest. Thus, in 
our first experiment we will generate a average correct selection curve for a single problem, as a function of the number of 
simulation replications. The properties of the problem are given in Table 1. 

We set the parameters of the algorithm as follows: 𝜂𝜂 = 5, 𝛾𝛾 = 10, 𝑐𝑐𝛼𝛼 = 0.95, 𝑐𝑐𝛽𝛽 = 0.95, 𝑐𝑐𝛿𝛿 = 0.95, 𝛼𝛼1 = 0.5, 𝛽𝛽1 = 0.5, 
and 𝛿𝛿1 = 10. These are our educated guesses and are not guaranteed to be the best parameter settings. More experimentation 
is needed to determine guidelines for setting these parameters. The terminating condition of the algorithm was set to a budget 
of 10000 simulation replications.  

For this experiment we ran the algorithm 1000 times to solve the problem. We define the correct selection (𝐶𝐶𝑆𝑆𝑛𝑛 ) as the 
following indicator function 
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𝐶𝐶𝑆𝑆𝑛𝑛 = �1 𝑖𝑖𝑖𝑖 𝑗𝑗𝑛𝑛∗ = 1
0 otherwise

� 
 
This indicator is then averaged over the 1000 replications, and Figure 1 shows the resulting average correct selection 

function. We observe from those results that for this problem, to get an average 90% and 95% correct selection, one needs to 
spend an average simulation replication budget of 4496 and 5698 respectively. In other words, a budget of more than 4496 
would find the optimum with more than 90% probability. 

 
Table 1: Properties of the test problem 

Features of the problem Description 
Number of all designs 100 
Feasible Designs 50 
Stochastic Constraints 5 
Joint distribution of Criteria 6-dimensional multivariate normal 
Mean Values of objective func-
tion (Criterion 0) of each design 
(except design 1) 

Uniformly randomly from (0,100] 

Mean Values of objective func-
tion (Criterion 0)  of design 1 

0 

Mean Values of Criteria 1-5 for 
each feasible designs 

Uniformly randomly from [-100,0) 

Mean Values of Criteria 1-5 for 
each infeasible designs 

Uniformly randomly from [-
100,100] and guaranteeing that at 
least one of the mean values is posi-
tive. 

Variances of the Criteria of each 
design 

Uniformly randomly from (0,50] 

Correlations between each two 
criteria of each design 

Uniformly randomly from [-1,1] and 
guaranteeing that the covariance ma-
trix of the distribution of criteria re-
mains positive definite. 

 

 

Figure 1: The average correct selection indicator function obtained from 1000 runs of the algorithm and a logarithmic trend 
line (dashed line) 
 

Furthermore, at least from this single example, the rate of increase for the empirical probability of correct selection ap-
pears to be well modeled by a logarithmic function. That is, the increase is initially very rapid but when the probability ap-
proaches one improving it further requires a large increase in the average number of simulation replications.  
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4.2 Problem Size 

In the second experiment we investigate the effect of problem size and the number of feasible designs on the perfor-
mance of the algorithm. To this end we generated random problems with 20,60,200,500,1000 designs, each of which with 3 
different levels of feasible designs: one with too many feasible designs (95% feasible), one with too many infeasible designs 
(5% feasible) and another with balanced number of feasible and infeasible designs (50% feasible). The specific settings are 
shown in the first two columns of Table 2.  

For this experiment we generated 500 problems with given number of all designs and feasible designs. Except these two 
features, the other features of the generated problems were the same as Table 1. Moreover, the parameters of the algorithm 
were the same as those described in section 4.1. The algorithm was run 1 time on each problem. Table 2 summarizes the re-
sults obtained. 

From Table 2 we observe the trend that when the fraction of feasible designs in a set of designs is increased, the problem 
gets more difficult. This is intuitive because more infeasible designs means more opportunity of quarantining them in the ap-
proximated infeasible set.  

Another trend that can be observed from Table 2 is that as the total number of designs increases, the required budget in-
creases nonlinearly. (From these results, the required budget appears to be growing exponentially.)  

 
Table 2: Average Simulation Replications Budget for Different Correct Selections in 500 random problems with 1 single run 
of the algorithm on each problem 

 

# of 
designs 

# of 
feasible 
designs 

Average # of  Simulation Replica-
tions 

CS=75% CS=90% CS=95% 

20 
1 <100 147 243 

10 250 408 507 
19 359 960 1499 

60 
3 <300 356 457 

30 372 565 1007 
57 1367 3108 3973 

200 
10 1069 1316 2294 

100 3110 5671 8848 
190 7501 14520 16819 

500 
25 2871 3462 4173 

250 11889 26275 36439 
475 20813 39936 63057 

1000 
50 6614 11590 15194 

500 39462 103703 179340 
950 102492 161834 219599 

 
Table 3: Average Budget. In Configuration 1, the infeasible designs have a better objective function than the best, but in con-
figuration 2, the infeasible designs are worse than the best. 

 
Configuration Average # of  Simulation Replica-

tions 
CS=75%   CS=90%   CS=95%   

1 13670 28940 42980 
2 7697 16940 27497 

4.3 Infeasibility Challenge 

The number of infeasible designs in a problem has a mixed effect on the difficulty of the problem. On the one hand, the more 
the number of infeasible designs the easier the work of the algorithm to eliminate them as part of the estimated infeasible list 
and spend the computation effort on the reduced feasible set. On the other hand, when the infeasible designs have very good 
objective function values (better than the best feasible design) and are only marginally infeasible, i.e. the mean value of all of 
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the criteria in the constraints are less than a small positive number, then the chance of wrongly labeling them as feasible and 
consequently announcing them as the best are high. 

To illustrate this mixed effect of infeasible designs, we conducted an experiment with 500 designs with 250 feasible de-
signs and 2 different configurations: 
1. The mean objective function of all the designs are better than that of the best feasible design. 
2. The mean objective function of all the designs are worse than that of the best design. 

The other features of the problem were the same as section 4.1. We ran the algorithm on 1000 generated problems with 
above features. Table 3 reports the results that confirms our initial intuition.  

4.4 Number of Constraints 

Finally, we address the issue of how the number of constraints affects the performance of the algorithm. This time, a new ex-
periment was conducted on a problem with 20 designs, of which 10 are feasible. We used 1,5, 10, and 20 stochastic con-
straints. The algorithm was run one time on 1000 random problems for each constraint-size configuration. The other features 
of the generated problems and the algorithm are the same as section 4.1. 

 
Table 4: Average Budget for Different Number of Stochastic Constraints 

 
# of Stochastic 

Constraints 
Average # of  Simulation Replica-

tions 
CS=75%   CS=90%   CS=95%   

1 104 234 386 
5 246 396 519 

10 316 728 1709 
20 867 2067 3591 

 
Table 4 reports the results of the above experiment. We note from these results that the increase in the number of con-

straints has mixed effects on the total computational time to solve the problem with our algorithm. On the one hand, as the 
number of constraints grows the chance of detecting the infeasibility of infeasible designs increases, and this facilitates the 
selection of the feasible best process by eliminating the infeasible designs. (This effect is further confirmed by this experi-
ment.) On the other hand, when there is a large number of stochastic constraints, there is a greater chance of incorrectly list-
ing a feasible design into the approximated infeasible set exists. Moreover, our algorithm has to find the feasibility indicator, 
whose computations exponentially grows with the increase in the number of stochastic constraints. 

5 CONCLUSION 

In this paper, we introduced a new methodology for selection of the best when there are some stochastic constraints. We 
presented the theory of the asymptotic almost-sure convergence of the method to optimal solution. We used many numerical 
examples to illustrate how the correct selection would behave in practice. The results show the effectiveness of the algorithm 
in dealing with different test problems. 

Several research directions are open based on the new methodology presented here. One open question is the study of the 
correct selection probability analytically, that is, finding an expression (or a lower bound) for the probability of correct selec-
tion under general assumption. 

We believe Bayesian prior distributions could be defined for the means and covariance matrices of the design and then, 
the posterior distribution of the means be used for calculating the quality and feasibility indicators. 

We used educated guesses for the parameters of our algorithm, but more experiments are required to study the perfor-
mance of the algorithm under different parameter settings. 
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