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ABSTRACT 

Simulation Optimization (SO) is a class of mathematical optimization techniques in which the objective function could only 
be numerically evaluated through simulation. In this paper, a new SO approach called Golden Region (GR) search is devel-
oped for continuous problems. GR divides the feasible region into a number of (sub) regions and selects one region in each 
iteration for further search based on the quality and distribution of simulated points in the feasible region and the result of 
scanning the response surface through a metamodel. The experiments show the GR method is efficient compared to three 
well-established approaches in the literature. We also prove the convergence in probability to global optimum for a large 
class of random search methods in general and GR in particular. 

1 INTRODUCTION 

Consider a chemical reaction in which a certain amount of materials are mixed together to produce a final product. The best 
final product would be as much acidic (measured by PH) as possible. A chemist may want to conduct a number of lab expe-
riments with different combinations of materials in order to find the combination resulting in the highest PH. Assume the test 
is costly and destructive, that is the expensive consumed materials in an experiment could not be retrieved. From an opera-
tions research point of view, this is a numerical optimization problem with expensive and noisy objective function. 
 Generally, the concept of the chemical reaction experiment may be substituted with a fluids-mechanic simulation expe-
riment in mechanical engineering, system dynamics simulation in business and economic modeling, war gaming in military, 
surveying experiment in statistics/sociology and the test of a new vaccine on animals in veterinary or medicine. In these ex-
periments, one may be interested in minimizing experiments because they are monetarily expensive, time consuming or com-
putationally intensive, practically dangerous, or ethically unjustifiable. Such cases may also arise when discrete-event simula-
tion is applied to evaluate performance measure(s) of selected design points of a stochastic system. In these cases, the 
objective function may not be obtained in closed form. Hence, Simulation Optimization (SO) methods try to find the best de-
signs of a system through numerical estimations of the performance measure(s) of the underlying system obtained via simula-
tion. Our fundamental assumption in this paper is that the (simulation) experiment required to evaluate the objective function 
is very expensive. 
 Many approaches have been proposed in the literature for SO problems. Detailed review of the available methods can be 
found in Andradottir (1998a, 1998b, 2006), Olafsson and Kim (2002), Gosavi (2003), Fu et al. (2005) and Olafsson (2006). 
When the number of design options is limited, statistical selection methods are usually appropriate (Kim and Nelson 2006). 
Metamodel based methods such as Response Surface Methodology fit regression or neural networks on the response surface 
locally or globally and use it to conduct new searches (Barton and Meckesheimer 2006). A major class of SO approaches is 
random search methods such as stochastic ruler method (Yan and Mukai 1992), stochastic comparison algorithms (Gong et 
al. 1999) and COMPASS (Hong and Nelson 2006). The Model Reference Adaptive Search method (MRAS) is recently in-
troduced in Hu et al. (2007). This method considers a probability distribution model for the location of the global optimum 
and tries to pile up the density of this distribution around the global optimum by periodically updating the parameters of the 
distribution. Gradient search methods such as Stochastic Approximation (Robins and Morono 1951 and Kiefer and Wolfo-
witz 1952) estimate the gradient of the objective function (Fu 2006) and then use gradient methods of mathematical pro-
gramming. Metaheuristic methods such as Simulated Annealing (Krikpatrick et al. 1983), Genetic Algorithm (Holland 1992), 

551978-1-4244-5771-7/09/$26.00 ©2009 IEEE



Kabirian and Olafsson 
 

Tabu Search (Glover 1989, 1990) and Scatter Search (Glover 1997) are a rich set of deterministic optimization algorithms 
which are extensively used in practical SO problems and commercial packages (Olafsson 2006).  

Among recent metaheuristics, the Nested Partitioning (NP) (Shi and Olafsson 2000a) has been found to be efficient for 
combinatorial optimization. This method partitions the solution space into a number of regions; then one of the regions is se-
lected for further search and partitioning based on evaluating the quality of a number of sampled points from each region. Shi 
and Olafsson (2000b) extend the metaheuristic for stochastic optimization and Olafsson (2004) improves the efficiency of the 
method for SO problems by combining NP with Ranking and Selection (R&S). Kabirian and Olafsson (2007) and Kabirian 
(2006) propose Adaptive Partitioning Search (APS) method with similar partitioning idea for continuous problems with 2 de-
cision variables. This time, instead of costly sampling from each region, APS selects promising partition based on the quality 
of already simulated points near each region (a local search strategy), the evaluation of a globally fitted metamodel (global 
search strategy) and the largeness of each region (exploration strategy). In this paper, we generalize APS to higher dimen-
sions and combine it with appropriate R&S procedures to guarantee convergence. 

The remainder of the paper is organized as follows. In section 2, we introduce a large class of continuous optimization 
methods called Probabilistic Search algorithms, link them with R&S and prove their convergence. We then propose our new 
iterative heuristic search based method called Golden Region in section 3 and 4. We prove in section 5 that the new method 
is a probabilistic search algorithm and conclude that it converges. Section 6 discusses practical efficiency of the method. Fi-
nally, concluding remarks and future search directions are presented in section 7. 

2 ANALYSIS OF HYBRID PROBABILISTIC SEARCH METHODS  

2.1 Probabilistic Search 

Consider the deterministic continuous optimization problem min𝜃𝜃∈Θ 𝑓𝑓(𝜃𝜃) where 𝑓𝑓:Θ → ℝ  and Θ ⊂ ℝ𝑛𝑛  is the compact set of 
feasible points. Let 𝜃𝜃∗ ∈ Θ be one of the possibly many global optima of this problem. 
 Random Search methods are a class of iterative optimization algorithms in whose 𝑘𝑘-th iteration, a finite number of points 
𝜃𝜃𝑘𝑘

(1),𝜃𝜃𝑘𝑘
(2), … ,𝜃𝜃𝑘𝑘

(𝐻𝐻𝑘𝑘) ∈ Θ are selected via a specific sampling strategy Ψ𝑘𝑘  and evaluated (see Andradottir 2006 for SO version).  
 
Algorithm 1  Random Search Methods 

Step 0: (Initialize). Choose the initial sampling strategy Ψ1 and let 𝑘𝑘 = 1.  
Step 1: (Sample). Select points 𝜃𝜃𝑘𝑘

(1),𝜃𝜃𝑘𝑘
(2), … ,𝜃𝜃𝑘𝑘

(𝐻𝐻𝑘𝑘) ∈ Θ according to sampling strategy Ψ𝑘𝑘  
Step 2: (Evaluate). Compute 𝑓𝑓�𝜃𝜃𝑘𝑘

(𝑗𝑗 )�  for 𝑗𝑗 = 1,2, … ,𝐻𝐻𝑘𝑘   . 
Step 3: (Update). Considering the quality of the evaluated points thus far, pick and introduce current optimum of the search 

process. If termination condition(s) of the algorithm hold(s), stop the algorithm, otherwise choose an updated strategy 
Ψ𝑘𝑘+1 , let 𝑘𝑘 = 𝑘𝑘 + 1 and go to step 1.  

 
 This class is broad enough to include many heuristic and metaheuristic methods. We narrow the definition a bit to what 
we call Probabilistic Search (PS) methods as follows (Kabirian 2009a): 

 
Definition 1 Let 𝑊𝑊 be a Lebesgue measure. The Probabilistic Search methods are a subclass of Random Search me-

thods such that for any arbitrary subset 𝐺𝐺 ⊆ 𝛩𝛩  with 𝑊𝑊(𝐺𝐺) > 0, the followings hold: 
1) 𝑃𝑃𝑃𝑃�⋃ �𝜃𝜃𝑘𝑘

(𝑗𝑗 ) ∈ G�𝐻𝐻𝑘𝑘
𝑗𝑗=1 � > 0      ∀ 𝑘𝑘 = 1,2, … 

2) 𝑙𝑙𝑙𝑙𝑙𝑙𝑘𝑘→∞ 𝑃𝑃𝑃𝑃�⋃ �𝜃𝜃𝑘𝑘
(𝑗𝑗 ) ∈ 𝐺𝐺�𝐻𝐻𝑘𝑘

𝑗𝑗=1 � ≠ 0.  

The problem of interest in this paper is minimization of a stochastic and expensive objective function defined below 
 

min
𝜃𝜃∈Θ

�𝑓𝑓(𝜃𝜃) = E�𝐿𝐿(𝜃𝜃)�� (1)  

 
where 𝐿𝐿 is a function of decision variables and random variables of a stochastic system and it is an estimator of 𝑓𝑓, also E(. ) is 
the mathematical expectation operator. Indeed, we assume the closed form of function 𝑓𝑓(𝜃𝜃) is not available and can only be 
numerically estimated by 𝐿𝐿(𝜃𝜃) through averaging a number of independent and identically distributed sample performance 
functions obtained via simulating design point 𝜃𝜃. 
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2.2 Hybrid Probabilistic Search 

The advantage of defining PS methods in Definition 1 is that if a PS method is merged with an Indifference Zone (IZ) proce-
dure, the asymptotic convergence of the combined algorithm can be shown under a regular assumption explained below. 
 
 Assumption 1 A ball B(𝜃𝜃∗; 𝑟𝑟) = �𝑦𝑦 ∈ ℝ𝑛𝑛�|𝜃𝜃∗ − 𝑦𝑦| ≤ 𝑟𝑟�� exists such that 𝑊𝑊(B(𝜃𝜃∗; 𝑟𝑟) ∩ Θ) > 0   and 𝑓𝑓(𝜃𝜃) is continuous 
for all 𝜃𝜃 ∈ B(𝜃𝜃∗; 𝑟𝑟) ∩ Θ. 

 
We propose using IZ methods periodically during PS methods. The combination of these two, which we call Hybrid 

Probabilistic Search is outlined below. 
 
Algorithm 2  Hybrid Probabilistic Search 

Step 0: Define two sequences called error rate denoted by {𝛼𝛼ℎ}ℎ=1
∞  and IZ (parameter) denoted by {𝛾𝛾ℎ}ℎ=1

∞  where 
limℎ→∞ 𝛼𝛼ℎ = limℎ→∞ 𝛾𝛾ℎ = 0 , 0 < 𝛼𝛼ℎ+1 ≤ 𝛼𝛼ℎ ≤ 1  and  0 < 𝛾𝛾ℎ+1 ≤ 𝛾𝛾ℎ . Define the number of replications between the 
IZ implementations and denote it by 𝜏𝜏 .  

Step 1: Choose the initial sampling strategy Ψ1  and let algorithm iteration counter 𝑘𝑘 = 1 and IZ implementation counter 
ℎ = 1. 

Step 2: Denote the introduced optimum of the algorithm after iteration 𝑘𝑘 by 𝜃𝜃�𝑘𝑘∗. Set 𝜃𝜃�1
∗ = { }. 

Step 3: Select new points 𝜃𝜃𝑘𝑘
(1),𝜃𝜃𝑘𝑘

(2), … ,𝜃𝜃𝑘𝑘
(𝐻𝐻𝑘𝑘 ) ∈ Θ according to sampling strategy Ψ𝑘𝑘  and let Z𝑘𝑘 = �𝜃𝜃𝑘𝑘′

(𝑗𝑗 ) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑘𝑘′ =
1,2,…,𝑘𝑘 𝑎𝑎𝑛𝑛𝑑𝑑 𝑗𝑗=1,2,…,𝐻𝐻𝑘𝑘′. 

Step 4:  For 𝑗𝑗 = 1,2, … ,𝐻𝐻𝑘𝑘  simulate 𝜃𝜃𝑘𝑘
(𝑗𝑗 ) with 𝜂𝜂 replications.  

Step 5:  Let 𝑅𝑅𝑘𝑘�𝜃𝜃𝑘𝑘′
(𝑗𝑗 )�  be the number of simulation replications done for 𝜃𝜃𝑘𝑘′

(𝑗𝑗 ) by the end of iteration 𝑘𝑘. Set replication coun-
ter 𝑅𝑅𝑘𝑘�𝜃𝜃𝑘𝑘

(𝑗𝑗 )� = 𝜂𝜂  for 𝑗𝑗 = 1,2, … ,𝐻𝐻𝑘𝑘  . Set 𝑅𝑅𝑘𝑘�𝜃𝜃𝑘𝑘′
(𝑗𝑗 )� = 𝑅𝑅𝑘𝑘−1�𝜃𝜃𝑘𝑘′

(𝑗𝑗 )�  for 𝑘𝑘′ = 1, … , 𝑘𝑘 − 1  and 𝑗𝑗 = 1, … ,𝐻𝐻𝑘𝑘′  . 

Step 6: Denote by 𝐿𝐿𝑟𝑟�𝜃𝜃𝑘𝑘
(𝑗𝑗 )�, the objective function of 𝜃𝜃𝑘𝑘

(𝑗𝑗 ) estimated in 𝑟𝑟-th simulation replication. Set sample mean 

𝐿𝐿�𝜃𝜃𝑘𝑘
(𝑗𝑗 )� = ∑

𝐿𝐿𝑟𝑟�𝜃𝜃𝑘𝑘
(𝑗𝑗)�

𝑅𝑅𝑘𝑘�𝜃𝜃𝑘𝑘
(𝑗𝑗)�

𝑅𝑅𝑘𝑘�𝜃𝜃𝑘𝑘
(𝑗𝑗)�

𝑟𝑟=1   for 𝑗𝑗 = 1,2, … ,𝐻𝐻𝑘𝑘 . 

Step 7: If 𝑘𝑘 ≠ 𝜏𝜏ℎ, then let 𝜃𝜃�𝑘𝑘∗ ∈ arg min𝜃𝜃∈Z𝑘𝑘 𝐿𝐿(𝜃𝜃) and go to step 8; otherwise do: 

7.1. Design an IZ method and apply it to Z𝑘𝑘  such that a difference of 𝛾𝛾ℎ  or more in the mean objective functions of the 
best point in Z𝑘𝑘  and all other points in Z𝑘𝑘  is detected with probability 1 − 𝛼𝛼ℎ  or more. For 𝑘𝑘′ = 1,2, … , 𝑘𝑘  and 
𝑗𝑗 = 1,2, … ,𝐻𝐻𝑘𝑘′ , let 𝜆𝜆ℎ𝑗𝑗𝑘𝑘′  denote the total number of new simulation replications consumed in the current IZ im-
plementation for 𝜃𝜃𝑘𝑘′

(𝑗𝑗 ) ∈ Z𝑘𝑘  on top of 𝑅𝑅𝑘𝑘�𝜃𝜃𝑘𝑘′
(𝑗𝑗 )� old simulation replications available for this point and let 

𝑅𝑅𝑘𝑘�𝜃𝜃𝑘𝑘′
(𝑗𝑗 )� = 𝑅𝑅𝑘𝑘�𝜃𝜃𝑘𝑘′

(𝑗𝑗 )� + 𝜆𝜆ℎ𝑗𝑗𝑘𝑘′ . 

7.2.  Set 𝐿𝐿�𝜃𝜃𝑘𝑘′
(𝑗𝑗 )� = ∑

𝐿𝐿𝑟𝑟�𝜃𝜃𝑘𝑘′
(𝑗𝑗)�

𝑅𝑅𝑘𝑘�𝜃𝜃𝑘𝑘′
(𝑗𝑗)�

𝑅𝑅𝑘𝑘�𝜃𝜃𝑘𝑘′
(𝑗𝑗)�

𝑟𝑟=1   for all 𝜃𝜃𝑘𝑘′
(𝑗𝑗 ) ∈ Z𝑘𝑘  . Then let 𝜃𝜃�𝑘𝑘∗ ∈ arg min𝜃𝜃∈Z𝑘𝑘 𝐿𝐿(𝜃𝜃). 

7.3.  Set ℎ = ℎ + 1 and go to step 8. 

Step 8: If a termination condition holds, introduce 𝜃𝜃�𝑘𝑘∗ as the optimum and exit the algorithm. Otherwise choose an updated 
strategy Ψ𝑘𝑘+1 , let 𝑘𝑘 = 𝑘𝑘 + 1  and go to step 3.  

 Generally, any IZ procedure that uses old simulation replications along with new replications and guarantees selection of 
the best with a given probability when the true objective function of the best and the rest of the designs are distanced at least 
by an IZ parameter could be used in Hybrid PS algorithm. Boesel et al. (2003) proposes such procedures. Bayesian methods 
are other alternatives in which a posterior probability of correct selection is guaranteed (Chick and Inoue 2001a and 2001b, 
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1999, 2000).  However, as far as we are aware, all statistical selection of the best procedures in the literature (including in 
Boesel et al. 2003 and Chick and Inoue 2001a and 2001b ) assume that simulation outputs are normally distributed. Nelson et 
al. (2001) and Nelson and Goldsman (2001) study the robustness of normality assumption and conclude that probability of 
correct selection could approximately be retained with mild departures from normality. The main justification for normal as-
sumption in many simulation studies is that interesting simulation outputs are usually averages of a large number of observa-
tions; hence, central limit theorem suggests normality holds asymptotically. In addition, we need to assume that the second 
moment of the objective function for all feasible values of decision variable is finite. 

As we said earlier, any Hybrid PS method can asymptotically converge to a global optimum of problem (1) under As-
sumption 1 as Theorem 1 below states. 

 
Theorem 1 If a hybrid PS method is applied to SO problem (1) under Assumption 1, the sequence �𝑓𝑓�𝜃𝜃�𝑘𝑘∗��𝑘𝑘=1

∞
 con-

verges in probability to 𝑓𝑓(𝜃𝜃∗), that is 𝑙𝑙𝑙𝑙𝑙𝑙𝑘𝑘→∞ 𝑃𝑃𝑃𝑃��𝑓𝑓�𝜃𝜃�𝑘𝑘∗� − 𝑓𝑓(𝜃𝜃∗)� < 𝜀𝜀� = 1  for all 𝜀𝜀 > 0. 
Proof: See Kabirian (2009a). 

2.3 Example Procedure 

In this section, we showcase the effectiveness of the Hybrid PS methods. Of course, any PS method could potentially be used 
here; but here we are more interested to see how well the wedding between IZ methods and PS algorithms work. Therefore, 
we select the simplest possible PS method which is called Naïve Random Search (NRS). The sampling strategy of NRS picks 
one point ( 𝐻𝐻𝑘𝑘 = 1 for 𝑘𝑘 = 1,2, … ) uniformly randomly from the compact feasible region. The method is called “Naïve” be-
cause it ignores the information of past searches in future sampling strategies. When applied to SO problems, NRS introduces 
the point with lowest estimated objective function as the current optimum. 

 
Algorithm 3 Naïve Random Search 

Step 1: Let 𝑘𝑘 = 1. 
Step 2: Select one point from the feasible region uniformly randomly. Denote this point by 𝜃𝜃𝑘𝑘

(1)  and let Z𝑘𝑘 = �𝜃𝜃𝑘𝑘′
(1) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑘𝑘′ =

1,2,…,𝑘𝑘.  

Step 3: Simulate 𝜃𝜃𝑘𝑘
(1) with 𝜂𝜂 replications and let 𝐿𝐿�𝜃𝜃𝑘𝑘

(1)� = ∑
𝐿𝐿𝑟𝑟�𝜃𝜃𝑘𝑘

(1)�

𝜂𝜂
𝜂𝜂
𝑟𝑟=1   be the estimated objective function.  

Step 4: Let 𝜃𝜃�𝑘𝑘∗ ∈ arg min𝜃𝜃∈Z𝑘𝑘 𝐿𝐿(𝜃𝜃). 
Step 5: If termination condition(s) of the algorithm hold(s), introduce 𝜃𝜃�𝑘𝑘∗ as the optimum and stop the algorithm; otherwise 

let 𝑘𝑘 = 𝑘𝑘 + 1 and go to step 2. 
 

 We are interested in comparing the performance of NRS with the so called Hybrid NRS defined below. 
 
Definition 2 Hybrid NRS is a kind of Hybrid PS method in which the sampling strategy of each iteration selects one 

point uniformly randomly from the feasible region.  
 
 In a simple experiments, we use the IZ procedure of Boesel et al. (2003) as the IZ procedure required for the Hybrid 
NRS. Also, we set 𝜂𝜂 = 2, 𝜏𝜏 = 100, 𝛼𝛼1 = 0.50, 𝛾𝛾1 = 0.10 and for ℎ = 1,2, … we use 𝛼𝛼ℎ+1 = 0.9𝛼𝛼ℎ  and 𝛾𝛾ℎ+1 = 0.9𝛾𝛾ℎ  . To 
accelerate the experiments, we replace simulation with a noisy objective function. Specifically, we use a closed form 2-
dimensional objective function with a unique global optimum. Whenever the simulation output is required for a point, we 
generate a zero-mean normal random variable with variance 10 and add it to the objective function value computed via the 
closed-form formula. Figure 1 shows the objective function of the problem (1) used in our experiment. The decision variables 
are both bounded between 0 and 10. The global optimum of the problem is (5,5) with the objective function 1. We terminated 
the optimization process of both algorithms when a budget of 1000 simulation replications was spent. Both methods were run 
10000 times in order to get robust results. For each algorithm, we computed the average of the expected value of the objec-
tive function of the introduced optimum after each simulation replication. Figure 1 shows values of these averages as the op-
timization process progresses. 
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Figure 1: Left (The objective function of the test problem of HPS), Right (The performance curves of Naïve Random Search 
and Hybrid Random Search methods) 

Figure 1 suggests that when IZ procedure is applied for the first time in Hybrid NRS, convergence is accelerated. As ex-
pected, the disadvantage of solely using NRS is that it may simulate a bad point which turn out to have a very good estimated 
objective function such that even near optimum points no longer could outperform the misleading estimated good quality of 
the bad point. In fact, IZ helps clean up the quality of the points NRS simulates. 

In the next sections, we propose a new SO method called Golden Region search which is shown to be a PS method and 
hence benefits the convergence analysis studied in this section. 

3 OVERVIEW OF THE GOLDEN REGION ALGORITHM 

The Golden Region (GR) method is an iterative search-based optimization process (see Figure 2). Candidate solutions are 
simulated in a black box simulation module that returns estimations of objective functions to the optimizer. GR utilizes a me-
ta-model learner that mimics the role of simulation. The benefit of training the metamodel is that the optimizer can utilize 
trained metamodel to cheaply evaluate the goodness of sampled points of feasible region before actually running expensive 
simulation. 

 

 
Figure 2: The framework of the method 

 
The feasible region of the problem in the GR method is divided into a number of user defined sub regions which we 

simply call them regions in this paper. The algorithm starts out with a (random) population of feasible points. Simulating the 
design points of this initial population, the algorithm can proceed to an iterative search. In each iteration, one of the regions is 
selected, called promising region, then a new point in the promising region is chosen and simulated. Simulating this point, the 
iteration terminates and the algorithm continues until one of the terminating conditions holds. The key questions to be ad-
dressed here and in the next section are how the promising region and the new point inside it are selected. 

In each iteration of the algorithm, a probability is assigned to each region, and then the promising region is selected ran-
domly using these probabilities. we propose three criteria that affect the probability of selecting a particular region. These are 
called space score, meta-model score, and quality score. These three criteria are combined into a single indicator called total 
score for the region. The higher the total score, the more promising the region would be in terms of hiding the global opti-
mum and a higher probability of selection for further search is assigned to the region. 

The space score of a region represents how much the region has been visited. By assigning higher space score to the re-
gions that are less visited, that is, have fewer number of already simulated points inside the region and other regions in close 
proximity of the region, the algorithm seeks to explore unvisited areas of the feasible region.  

Simulation 

Golden Region Search Method 
 

Estimated 
Objective Function 

 

Candidate 
 Solution 
 
 

Metamodel 
 
 
 
 
 

Sample points 
of feasible region 

 
 
 
 
 

Approximated 
Objective Function 
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Motivated by the observation that running simulations is computationally expensive relative to other activities, GR me-

thod induces a global metamodel to the input-output of simulation. The metamodel score of a region is calculated using the 
metamodel based prediction of the objective functions of a number of sampled points inside the region. The better the pre-
dicted objective function of the samples of a region, the higher this criterion would be. In fact, this criterion monitors the 
quality of the whole feasible region.  

Finally, the quality score for a region represents the quality of the estimated objective function of simulated points inside 
the region. The better the quality of these points, the higher the quality score. This criterion exploits the information of high 
quality simulated points with the hope of discovering local (or maybe global) optima near these points.  

To construct a total score, we use a criterion coefficient for each of the three criteria, which are changed between itera-
tions based on the effectiveness of using every criterion.  

After selecting the promising region, a point is selected inside the promising region and simulated. Selection of this point 
is based on the most effective criteria of the promising region in the total score of the region, called dominating criterion, and 
consequently the probability of selecting the region. In fact, the algorithm needs to know why the promising region has been 
selected by determining the criterion which contributes most. If the dominating criterion is quality, it means the promising 
region has some high quality points that might be located in vicinity of a local optimum, so the new point is selected near the 
high quality point. If metamodel dominates, this is a signal that there are some promisingly good points in the promising re-
gion based on the global monitoring metamodel, so a promising point is simulated. Finally, in the case of space-criterion do-
mination, the algorithm hopes to simulate a good quality random point in the unvisited area of the promising region. Howev-
er, the algorithm is designed such that the new simulation point is not too close to already simulated points. 

4 DETAILED GOLDEN REGION ALGORITHM 

The feasible region of the problem Θ is partitioned into 𝜒𝜒 regions by the user in GR method. The space of 𝑖𝑖-th region is de-
noted by Θ𝑖𝑖 . Kabirian and Olafsson (2008) provides some guidelines for partitioning the feasible region. 

In the first step, a number of points, say 𝜐𝜐 points, are selected from the feasible region and simulated with a fixed number 
of replications. The initial population could be selected randomly or from certain regions of the feasible region to have a spe-
cific level of diversity in the population. After simulating initial population, the algorithm in each iteration selects one region 
called promising region among all regions, simulates a point inside the promising region and goes to next iteration if none of 
the terminating conditions hold (e.g. maximum possible iterations, maximum stalled searches, …). In the next sections, we 
discuss how the promising region and the point inside it are selected in a typical iteration 𝑘𝑘. 

4.1 Promising Region Selection 

As noted above, for selecting a new promising region, we use three criteria called space score, quality score and metamodel 
score. The algorithm assigns a value between zero and one for each criterion to each region based on some indicators and 
procedures that will be elaborated upon in the next sections. Denote by 𝑆𝑆𝑖𝑖𝑖𝑖 , 𝑄𝑄𝑖𝑖𝑖𝑖  and 𝑀𝑀𝑖𝑖𝑖𝑖 , the values of space score, quality 
score and metamodel score assigned to 𝑖𝑖-th region respectively. We define a total score, denoted by 𝜙𝜙𝑖𝑖𝑖𝑖  for region 𝑖𝑖 using: 

 
𝜙𝜙𝑖𝑖𝑖𝑖 = max{𝑠𝑠𝑘𝑘𝑆𝑆𝑖𝑖𝑖𝑖  , 𝑞𝑞𝑘𝑘𝑄𝑄𝑖𝑖𝑖𝑖  ,𝑚𝑚𝑘𝑘𝑀𝑀𝑖𝑖𝑖𝑖 }   ∀𝑖𝑖 (2)  

 
where 𝑠𝑠𝑘𝑘 , 𝑞𝑞𝑘𝑘  and 𝑚𝑚𝑘𝑘  are space, quality and  metamodel criterion coefficients which take positive values and add up to one. In 
the first iteration, these coefficients are set to 1/3, but their values are changed at the beginning of the subsequent iterations 
based on the success or failure of the dominating criterion of the previous iteration in finding a good design point (see section 
4.3 for details). 

A probability of selection, denoted by 𝜋𝜋𝑖𝑖𝑖𝑖  for 𝑖𝑖-th region, is calculated for each region by normalizing the total score 
𝜋𝜋𝑖𝑖𝑖𝑖 = 𝜙𝜙𝑖𝑖𝑖𝑖

∑ 𝜙𝜙𝑖𝑖′ 𝑘𝑘
𝜒𝜒
𝑖𝑖′=1

    ∀𝑖𝑖. Using a uniform random number between zero and one, a promising region for current iteration is then 

selected with respect to this probability mass function. 

4.1.1 Space Score 

In addition the feasible region partitioning, the algorithm requires a proximity measure for any two regions including the 
proximity of a region to itself in order to calculate the space score. This measure represents how similar the design points of 
one region are to those of the other region. We let Ν𝑖𝑖𝑖𝑖′  denote the positive-valued proximity measure of each two regions 
where 𝑖𝑖, 𝑖𝑖′ = 1,2, … ,𝜒𝜒. As an example of this measure, one may define a center point for each region (a vector of decision va-
riables as the representative of the whole region), and relate the proximity measure of two regions to the reciprocal of the 
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Euclidian distance between the center points of the regions for 𝑖𝑖 ≠ 𝑖𝑖′ and choose the proximity function of each region with 
itself such that  Ν𝑖𝑖𝑖𝑖 > max𝑖𝑖′ ≠𝑖𝑖 Ν𝑖𝑖𝑖𝑖′ . 

We let 𝑇𝑇𝑖𝑖𝑖𝑖  denote the tally of the number of simulated points inside region 𝑖𝑖. We define an indicator,  
𝑌𝑌𝑖𝑖𝑖𝑖  called the visit indicator which measures the “density” of the simulated points inside and surrounding the region by 

𝑌𝑌𝑖𝑖𝑖𝑖 =
∑ 𝑇𝑇𝑖𝑖′ 𝑘𝑘Ν𝑖𝑖𝑖𝑖′
𝜒𝜒
𝑖𝑖′=1
∑ Ν𝑖𝑖𝑖𝑖′
𝜒𝜒
𝑖𝑖′=1

  ∀𝑖𝑖. Standardizing the visit indicator, we get the space score 𝑆𝑆𝑖𝑖𝑖𝑖 =
max 𝑖𝑖′ 𝑌𝑌𝑖𝑖′ 𝑘𝑘−𝑌𝑌𝑖𝑖𝑖𝑖

max 𝑖𝑖′ 𝑌𝑌𝑖𝑖′ 𝑘𝑘−min 𝑖𝑖′ 𝑌𝑌𝑖𝑖′ 𝑘𝑘
   ∀𝑖𝑖. 

4.1.2  Quality Score 

Bayraksan and Morton (2006) provide procedures for constructing confidence intervals on optimality gap of a given good 
quality point. Here we use a simple procedure as follows to determine the quality of a region without spending more simula-
tion efforts. 
 For 𝑘𝑘 ≥ 0, let J𝑘𝑘 = {1,2, … , 𝜐𝜐 + 𝑘𝑘 } be the index set of simulated points up to iteration 𝑘𝑘. The standardized objective 
function of simulated point 𝜃𝜃𝑗𝑗  at the beginning of iteration 𝑘𝑘 denoted by 𝑓𝑓𝑗𝑗𝑗𝑗′  is defined as 

𝑓𝑓𝑗𝑗𝑗𝑗′ =
𝐿𝐿�𝑘𝑘�𝜃𝜃𝑗𝑗 �−min 𝑗𝑗 ′ 𝐿𝐿�𝑘𝑘�𝜃𝜃𝑗𝑗 ′ �

max 𝑗𝑗 ′ 𝐿𝐿�𝑘𝑘�𝜃𝜃𝑗𝑗 ′ �−min 𝑗𝑗 ′ 𝐿𝐿�𝑘𝑘�𝜃𝜃𝑗𝑗 ′ �
   ∀𝑗𝑗 ∈ J𝑘𝑘−1 where 𝐿𝐿�𝑘𝑘�𝜃𝜃𝑗𝑗 � =

∑ 𝐿𝐿𝑟𝑟(𝜃𝜃𝑗𝑗 )
𝑅𝑅𝑘𝑘 (𝜃𝜃𝑗𝑗 )
𝑟𝑟=1
𝑅𝑅𝑘𝑘 (𝜃𝜃𝑗𝑗 )

 is the sample mean. The standard objective function 

values are updated in iterations that best or worst found points change or estimates of already simulation points are renewed. 
We need the following definition for this score. 
 
Definition 3 The saturation neighborhood of a point 𝑦𝑦 = (𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑛𝑛) ∈ ℝ𝑛𝑛  denoted by 𝐸𝐸�𝜎𝜎 ,𝜉𝜉(𝑦𝑦) is the region inside an 

ellipsoid centered at 𝜃𝜃 with scale parameter vector 𝜎𝜎 = (𝜎𝜎1,𝜎𝜎2, … ,𝜎𝜎𝑛𝑛) ∈ ℝ𝑛𝑛   and radius 𝜉𝜉 ∈ ℝ ≥ 0 , that is 𝐸𝐸�𝜎𝜎 ,𝜉𝜉(𝑦𝑦) =

�𝑥𝑥 = (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) ∈ ℝ𝑛𝑛 � ∑ �𝑥𝑥𝑙𝑙−𝑦𝑦𝑙𝑙
𝜎𝜎𝑙𝑙

�
2

𝑛𝑛
𝑙𝑙=1

� ≤ 𝜉𝜉2� .  
 
If there is at least one simulated point in region 𝑖𝑖, the Quality Score is: 
 

𝑄𝑄𝑖𝑖𝑖𝑖 = max
��𝜃𝜃𝑗𝑗 ∈Θ𝑖𝑖�𝑗𝑗∈J𝑘𝑘−1�

𝑈𝑈𝑗𝑗𝑗𝑗 (1 − 𝑓𝑓𝑗𝑗𝑗𝑗′ )  ∀𝑖𝑖 (3)  

 
otherwise it is set to zero. 

In the above formula, 𝑈𝑈𝑗𝑗𝑗𝑗  that we call the saturation indicator of simulated point 𝜃𝜃𝑗𝑗  plays an important role. The key idea 
of the saturation indicator is that searches near already simulated points should be limited. If such searches were always al-
lowed, the algorithm might excessively search surrounding local optima. The better the quality of the objective function of a 
point, the higher the maximum possible searches near this point, and consequently more searches are allowed in associated 
area. We call already simulated point 𝜃𝜃𝑗𝑗  “saturated” (and set 𝑈𝑈𝑗𝑗𝑗𝑗 = 0) if the number of simulated designs in the saturation 
neighborhood E�𝜎𝜎 ,𝜉𝜉�𝜃𝜃𝑗𝑗 � exceeds its maximum possible searches, otherwise the point is “unsaturated” (and 𝑈𝑈𝑗𝑗𝑗𝑗 = 1) and is al-
lowed to contribute to the value of the quality score for the encompassing region (The parameters 𝜎𝜎 and 𝜉𝜉 are defined by us-
er).  Mathematically, if 𝑢𝑢𝑗𝑗𝑗𝑗  represents the number of already simulated points in the saturation neighborhood of 𝜃𝜃𝑗𝑗 , the satura-
tion indicator is then assigned by: 

𝑈𝑈𝑗𝑗𝑗𝑗 = �1 𝑢𝑢𝑗𝑗𝑗𝑗 ≤ 𝑈𝑈𝑗𝑗𝑗𝑗∗

0 o. w.
�     ∀𝑗𝑗 ∈ J𝑘𝑘−1 

where 𝑈𝑈𝑗𝑗∗ is the upper bound of allowed searches in the saturation neighborhood of 𝑗𝑗-th simulated point. For instance, a linear 

interpolation could be used to find 𝑈𝑈𝑗𝑗𝑗𝑗∗  for 𝜃𝜃𝑗𝑗 , that is 𝑈𝑈𝑗𝑗𝑗𝑗∗ = 1 + (𝑈𝑈∗ − 1)
�max 𝑗𝑗 ′ 𝐿𝐿�𝑘𝑘�𝜃𝜃𝑗𝑗 ′ �−𝐿𝐿�𝑘𝑘�𝜃𝜃𝑗𝑗 ��

max 𝑗𝑗 ′ 𝐿𝐿�𝑘𝑘�𝜃𝜃𝑗𝑗 ′ �−min 𝑗𝑗 ′ 𝐿𝐿�𝑘𝑘�𝜃𝜃𝑗𝑗 ′ �
. Here, the number of poss-

ible searches for the best and worst found points are respectively set to a user defined parameter 𝑈𝑈∗ and 1. 

4.1.3 Metamodel Score 

While the quality criterion acts locally, the metamodel criterion models the response surface globally and monitors the whole 
feasible region. 

Before the first iteration, a population of (random) sample points should be selected from the space of each region. 
Whenever the metamodel is updated, such as the first iteration when the metamodel is initially constructed, it predicts the ob-
jective function of sampled points from each region. Let 𝛽𝛽𝑖𝑖  be the number of metamodel samples in 𝑖𝑖-th region which is a us-
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er-defined parameter. Let 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖  be the objective function of the 𝑗𝑗-th sample of 𝑖𝑖-th region approximated by metamodel. Let 
𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖′ =

𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖 −𝜌𝜌𝐿𝐿
𝜌𝜌𝑈𝑈−𝜌𝜌𝐿𝐿

 be the standardized value of 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖  where 𝜌𝜌𝐿𝐿 and 𝜌𝜌𝑈𝑈  are user-defined parameters. The standardization makes 
sure 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖′  values are positive and bounded, say 0 < 𝜌𝜌𝐿𝐿 ≤ 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖′ ≤ 𝜌𝜌𝑈𝑈 < ∞ . The metamodel score is defined via 𝑀𝑀𝑖𝑖𝑖𝑖 =
min 𝑖𝑖′ �min 𝑗𝑗 𝐴𝐴𝑖𝑖′ 𝑗𝑗𝑗𝑗

′ �

min 𝑗𝑗 𝐴𝐴𝑖𝑖𝑗𝑗𝑗𝑗
′    ∀𝑖𝑖. 

Many different global metamodeling techniques have been developed to mimic how simulation model transforms inputs 
into outputs. Traditional examples are regression and neural network, but other options include Bayesian metamodels and 
Kriging. For an example of suitable neural network metamodel, see Kabirian (2009b) and Kabirian and Olafsson (2008). 

4.2 New Point Generation 

After selecting a new promising region, a point inside this region must be simulated. Recall from (2) that the total score 
equals the largest product of each of the three scores and its coefficient. The largest value defines the dominating criterion 
and determines the generation of the next point.  
If the dominating criterion is space, first 𝛽𝛽′ sample points are selected randomly from the space of the promising region. 
Then, the sample point whose minimum distance with other already simulated points is maximum, is selected and simulated. 
This strategy tries to improve the significance of difference between the new simulated design point and other simulated de-
signs. 

If the dominating criterion is metamodel, the algorithm chooses the point inside the promising region that has had the 
best approximated objective function based on metamodel. Mathematically, if the code of the promising region is 𝑖𝑖 , the sam-
ple point 𝑗𝑗 ∈ arg min𝑗𝑗 ′ 𝐴𝐴𝑖𝑖𝑗𝑗 ′ 𝑘𝑘

′  of the promising region is simulated. Once the new point is simulated, a new sample point is 
drawn from the space of the promising region and is replaced with the new simulated point in the population of sample points 
of the promising region for metamodel. 

Finally, if the dominating criterion is quality, then the best unsaturated simulated point of the promising region must first 
be found (see equation (3)). Denote this point by 𝜃̇𝜃𝑘𝑘 ∈ arg max𝜃𝜃𝑗𝑗∈Θ𝑖𝑖 𝑈𝑈𝑗𝑗𝑗𝑗 (1 − 𝑓𝑓𝑗𝑗𝑗𝑗′ ). Then a point is selected randomly with a 
multivariate normal distribution with mean 𝜃̇𝜃𝑘𝑘  and covariance matrix 𝜔𝜔 which is a user defined matrix. If this random point is 
feasible, it is simulated, otherwise the process of generating a point with the same distribution and checking the feasibility is 
repeated until a feasible point is found and simulated. 

4.3 Adaptive Criteria Coefficients 

The initial values of the coefficients 𝑠𝑠𝑘𝑘 , 𝑚𝑚𝑘𝑘  and 𝑞𝑞𝑘𝑘  in (2) are equal to 1/3, that is 𝑠𝑠1 = 𝑚𝑚1 = 𝑞𝑞1 = 1/3, but these values may 
change at the beginning of next iterations based on the performance of the dominating criterion in previous iteration. The 
main rule here is that when quality (metamodel) dominates in an iteration and has served to find a “good” point, then the 
coefficient of the quality (metamodel) criterion is increased and those of the other two criteria are decreased. When a bad 
point is simulated with quality (metamodel) domination, the coefficient of the quality (metamodel) criterion is decreased and 
those of the other two criteria are increased. Whenever space dominates, we always decrease its coefficient and add to those 
of metamodel and quality criterion. 
 For 𝑘𝑘 = 1,2, … , we set 𝑠𝑠𝑘𝑘 + 𝑚𝑚𝑘𝑘 + 𝑞𝑞𝑘𝑘 = 1 and 0 < 𝛿𝛿𝐿𝐿 ≤ 𝑠𝑠𝑘𝑘 ,𝑚𝑚𝑘𝑘 , 𝑞𝑞𝑘𝑘 ≤ 𝛿𝛿𝑈𝑈 ≤ 1 where 𝛿𝛿𝐿𝐿 and 𝛿𝛿𝑈𝑈 are user defined parame-
ters. Also, we update coefficients this way:𝑞𝑞𝑘𝑘+1 = 𝑞𝑞𝑘𝑘 + 𝛥𝛥𝑞𝑞𝑘𝑘+1, 𝑚𝑚𝑘𝑘+1 = 𝑚𝑚𝑘𝑘 + 𝛥𝛥𝑚𝑚𝑘𝑘+1, 𝑠𝑠𝑘𝑘+1 = 𝑠𝑠𝑘𝑘 + 𝛥𝛥𝑠𝑠𝑘𝑘+1 where Δ𝑞𝑞𝑘𝑘+1, 
Δ𝑚𝑚𝑘𝑘+1, and Δ𝑠𝑠𝑘𝑘+1 are the amount of change in associated coefficients defined as follows. We may face one of 3 cases (as-
sume region 𝑖𝑖 has been the promising region in iteration 𝑘𝑘): 
Case 1. Quality is the dominating criterion of previous iteration, that is 𝜙𝜙𝑖𝑖𝑖𝑖 = 𝑞𝑞𝑘𝑘𝑄𝑄𝑖𝑖𝑖𝑖  . Assume 𝑗𝑗-th simulated point located in 

the promising region has been the best unsaturated point in iteration 𝑘𝑘 and the new simulation point 𝑗𝑗′  has been selected 
with respect to 𝑗𝑗.  

a. If estimated objective function of point 𝑗𝑗′ is better than point 𝑗𝑗′′, that is 𝑓𝑓𝑗𝑗 ′ 𝑘𝑘
′ ≤ 𝑓𝑓𝑗𝑗𝑗𝑗′  then the algorithm increases 

(incentivizes) the coefficient of Quality criterion and simultaneously decreases the coefficients of the other two 
criteria as follows: 

𝛥𝛥𝑞𝑞𝑘𝑘+1 = 𝛿𝛿(𝛿𝛿𝑈𝑈 − 𝑞𝑞𝑘𝑘) max �
𝑓𝑓𝑗𝑗𝑗𝑗′ − 𝑓𝑓𝑗𝑗 ′ 𝑘𝑘

′

𝑓𝑓𝑗𝑗𝑗𝑗′
 , 1� 

𝛥𝛥𝑚𝑚𝑘𝑘+1 = −
𝑚𝑚𝑘𝑘 − 𝛿𝛿𝐿𝐿

𝑠𝑠𝑘𝑘 + 𝑚𝑚𝑘𝑘 − 2𝛿𝛿𝐿𝐿
𝛥𝛥𝑞𝑞𝑘𝑘+1 

558



Kabirian and Olafsson 
 

𝛥𝛥𝑠𝑠𝑘𝑘+1 = −
𝑠𝑠𝑘𝑘 − 𝛿𝛿𝐿𝐿

𝑠𝑠𝑘𝑘 + 𝑚𝑚𝑘𝑘 − 2𝛿𝛿𝐿𝐿
𝛥𝛥𝑞𝑞𝑘𝑘+1 

where the parameter 𝛿𝛿 is a constant defined by user.  
b. On the other hand, if the estimated objective function of new point 𝑗𝑗′ is worse than the best unsaturated point 𝑗𝑗, 

that is 𝑓𝑓𝑗𝑗 ′ 𝑘𝑘
′ > 𝑓𝑓𝑗𝑗𝑗𝑗′  then the reverse way is done in which Quality Score is punished as follows: 

𝛥𝛥𝑞𝑞𝑘𝑘+1 = −𝛿𝛿(𝑞𝑞𝑘𝑘 − 𝛿𝛿𝐿𝐿) max �
𝑓𝑓𝑗𝑗 ′ 𝑘𝑘
′ − 𝑓𝑓𝑗𝑗𝑗𝑗′

𝑓𝑓𝑗𝑗𝑗𝑗′
 , 1� 

𝛥𝛥𝑚𝑚𝑘𝑘+1 =
𝛿𝛿𝑈𝑈 − 𝑚𝑚𝑘𝑘

2𝛿𝛿𝑈𝑈 − 𝑠𝑠𝑘𝑘 − 𝑚𝑚𝑘𝑘
𝛥𝛥𝑞𝑞𝑘𝑘+1 

𝛥𝛥𝑠𝑠𝑘𝑘+1 =
𝛿𝛿𝑈𝑈 − 𝑠𝑠𝑘𝑘

2𝛿𝛿𝑈𝑈 − 𝑠𝑠𝑘𝑘 − 𝑚𝑚𝑘𝑘
𝛥𝛥𝑞𝑞𝑘𝑘+1 

Case 2. Metamodel is the dominating criterion of previous iteration. The similar idea as case 1 is used, but here the last si-
mulated point is compared with the best found simulated point. 

Case 3. Space is the dominating criterion of previous iteration. We always reduce the coefficient of space criterion as fol-
lows: 

𝛥𝛥𝑠𝑠𝑘𝑘+1 = −𝛿𝛿′(𝑠𝑠𝑘𝑘 − 𝛿𝛿𝐿𝐿) 

𝛥𝛥𝑚𝑚𝑘𝑘+1 =
𝛿𝛿𝑈𝑈 − 𝑚𝑚𝑘𝑘

2𝛿𝛿𝑈𝑈 − 𝑞𝑞𝑘𝑘 − 𝑚𝑚𝑘𝑘
𝛥𝛥𝑠𝑠𝑘𝑘+1 

𝛥𝛥𝑞𝑞𝑘𝑘+1 =
𝛿𝛿𝑈𝑈 − 𝑞𝑞𝑘𝑘

2𝛿𝛿𝑈𝑈 − 𝑞𝑞𝑘𝑘 − 𝑚𝑚𝑘𝑘
𝛥𝛥𝑠𝑠𝑘𝑘+1 

where constant 𝛿𝛿′ is defined by user. 

4.4 Stopping Conditions 

Many stopping criteria could be defined for GR. The followings are just a handful of examples:  
• When the number of iterations exceed a pre-specified level. Equivalently, when the number of simulation replica-

tions reaches a maximum.  
• When the number of stalled searches reaches a threshold, i.e. when the number of subsequent introduced optima 

without any improvement in terms of estimated objective function reaches a maximum. 
• When maximum total (simulation) optimization run time reaches.  

 An important question when the algorithm stops is which point should be introduced as the best. GR simply introduces 
the point with the best estimated objective function as the optimum, 𝜃𝜃�𝑘𝑘∗ ∈ arg min𝑗𝑗 ∈J𝑘𝑘 𝐿𝐿�𝑘𝑘(𝜃𝜃𝑗𝑗 ). However, when GR is merged 
with IZ procedures in the next section to form Hybrid GR, the introduced optima sequence will converge to the global opti-
mum. 

5 CONVERGENCE OF GOLDEN REGION SEARCH 

It can be shown that GR satisfies the conditions of a PS method defined in Definition 1. 
 
Theorem 2 GR is a PS method. 
Proof: See Kabirian (2009b) or Kabirian and Olafsson (2008). 
 
When GR is merged with IZ methods, the convergence is guaranteed. 

 
Definition 4 When GR is merged with IZ as the Hybrid PS Algorithm 2 outlines, the combination is called a Hybrid GR. 

 Corollary 1 By Theorems 1 and 2 and under Assumption 1 for problem (1), the objective function of introduced optima 
of any Hybrid GR converges in probability to that of the global optimum.  

6 NUMERICAL RESULTS 

We have tested GR on a variety of objective functions and compared its performance with many other methods in the litera-
ture. Kabirian and Olafsson (2008) provide a statistical test design for comparing the efficiency of two or more SO methods. 
We have used this design to compare the efficiency of GR with Genetic Algorithm (GA), globalized Stochastic Approxima-
tion (SA) (see Kabirian 2009b or Kabirian and Olafsson 2008 for the algorithm) and Model Reference Adaptive Search me-
thod 1 (MRAS1)  (Hu et al. 2005 and 2007) under two different settings: 
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1. With specialized parameters of each competing method on each test bed 
2. With an overall (generic)  parameter set for each method on all test beds. 

 Figure 3 shows one of the test problems we used in our experiments along with performance curves of 4 competing me-
thods under above two settings. We do not use IZ add-on in GR method in these results. We only test the ability of the me-
thods in hitting good quality points, not necessarily their ability to recognize the quality of the hit points. Therefore the y-axe 
shows the expected value of the best hit points. 
 Obviously, performance of all methods under specialized parameters are better than that under generic parameters. These 
graphs along with other computational results documented in Kabirian (2009b) and Kabirian and Olafsson (2008) suggest 
that GR is efficient when compared to other methods. 
 
 

  
Figure 3: Left (Test Function), Middle(Results for Generic Parameters), Right (Results for Specialized Parameters) 

7 REMARKS 

In this paper, a new simulation optimization method called Golden Region search was developed based on some ideas to im-
prove the efficiency of simulation optimization methods. GR is primarily aimed at continuous optimization problems. The 
method combines different search strategies to explore the feasible region. The proposed method requires partitioning of the 
feasible region and uses a metamodel along with the information of the distribution and goodness of past simulation points to 
find the GR containing the global optimum. We proposed a neural network framework as metamodel with structuring and 
training procedures. Merging the core optimizer of GR with R&S procedure, we prove the asymptotic convergence of the 
method. We tested the efficiency of merging R&S procedures with Random Search methods and the performance of GR.  

GR has a generic framework which is very flexible for professional users of SO methods. However, we think it is critical 
to provide some guidelines for ordinary users to implement the method in practice. In Kabirian (2009b) and Kabirian and 
Olafsson (2008), we discuss three major implementation issues in details. These include guidelines for partitioning an arbi-
trary feasible region, tuning the parameters of the method and a neural network metamodel structuring and training proce-
dure. Moreover, Kabirian (2009b) and Kabirian and Olafsson (2008) document more computational results which show GR 
works efficiently on different test problems with a set of educated guesses for its parameters. Therefore, we believe the me-
thod does not suffer too much from large set of its parameters. 

A number of research directions remain open. The GR method can be extended to the problems with stochastic con-
straints (Kabirian and Olafsson 2009a and 2009b). Metamodeling can improve the efficiency of the SO methods in many 
ways (Barton and Meckesheimer 2006). We used a neural network approach proposed in Kabirian (2006) and Kabirian snd 
Olafsson 2008) with a specific updating procedure. The appropriateness of other metamodel updating procedures as well as 
metamodel types deserves more investigation. We used batch training procedure, however incremental training might be 
more efficient for our method. 

Optimal Computing Budget Allocation (Chen and Lin 2000) is one of the potential ranking and selection methods that 
could be merged with GR to form a Hybrid GR. The idea is to define an increasing simulation budget periodically to spend 
on “cleaning up” the already simulated points aiming at increasing the approximated probability of correct selection.  

We believe that extreme values of decision variables are more likely to be the optimal solutions of real SO problems. It 
might be beneficial if SO methods first try the extreme values before their main optimization routines. Since many of the 
heuristic methods of SO including our proposed method in this paper document use an initial population of points, the ex-
treme solutions might be included in these populations. 
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