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ABSTRACT

Optimization of simulated systems is the goal of many methods, but most methods assume known environments. In this
paper we present a methodology that does account for uncertain environments. Our methodology uses Taguchi’s view of the
uncertain world, but replaces his statistical techniques by either Response Surface Methodology or Kriging metamodeling.
We illustrate the resulting methodology through the well-known Economic Order Quantity (EOQ) model.

1 INTRODUCTION

The main purpose of this contribution is to present a methodology for robust simulation-optimization. Simulation is much
applied in Operations Research and Management Science (ORMS). The goal of these simulations is often the optimization of
the real system being simulated (another goal is sensitivity analysis, which often precedes optimization; see Kleijnen 2009).
The resulting problem domain is called simulation-optimization; this domain includes a variety of methodologies (see Fu 2007).
Unfortunately, these methodologies ignore the fact that, in practice, some inputs of the given simulation model are uncertain, so
the optimum solution that is derived—ignoring these uncertainties—may be completely wrong! Robust optimization accounts
for this uncertainty during the optimization process, thus deriving solutions that are relatively insensitive to perturbations
in the model parameters. We summarize a methodology that solves robustness issues in simulation-optimization through
the use of a metamodel of the underlying simulation model; such a metamodel is used because simulation runs are often
computationally expensive. More details on our methodology are presented in Dellino, Kleijnen, and Meloni (2008) and
Dellino, Kleijnen, and Meloni (2009).

We organize this paper as follows. Section 2 details the main steps of the proposed methodology. Section 3 discusses
the results of an inventory example, namely the Economic Order Quantity (EOQ) model. Section 4 draws some conclusions
and proposes directions for future research.

2 PROPOSED METHODOLOGY

Strategic decision-making in an uncertain world may use Taguchi’s approach, originally developed to help Toyota design
‘robust’ cars; i.e., cars that perform reasonably well in many circumstances—see Beyer and Sendhoff (2007), Kleijnen (2008),
Park et al. (2006), Taguchi (1987), Wu and Hamada (2000).
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We combine Taguchi’s approach with either Response Surface Methodology (RSM) or Kriging metamodeling. Metamodels
treat the simulation model as a black box; i.e., only the Input/Output (I/O) of the simulation model is observed (metamodels
are also called response surfaces, surrogates, emulators, auxiliary models, repromodels, etc.). Metamodels run much faster
than the underlying—possibly computationally expensive—simulation models, enabling fast approximation. We use one
(univariate) metamodel per simulation output (response) combined with a nonlinear Mathematical Programming model; the
latter model selects one of the multiple simulation outputs as the goal variable, while the remaining outputs must satisfy
given constraints (thresholds). Changing the thresholds (right-hand sides) in the Mathematical Programming solver to the
metamodels gives an estimate of the Pareto frontier, enabling the selection of a robust solution of the simulation model, as
we shall show in Section 2.3.

We therefore derive a methodology that combines: 1. Taguchi’s worldview; 2. Design Of Experiments (DOE) and
Metamodeling; 3. Mathematical Programming. We detail each of the three scientific approaches in the next subsections.

2.1 Taguchi’s Worldview

Taguchi (1987) distinguishes between two types of input factors:

• Decision (or control) factors, denoted by (say) d j ( j = 1, . . . ,k)
• Environmental (or noise) factors, eg (g = 1, . . . ,c).

By definition, the decision factors are under the control of the users; e.g., in inventory management, the order quantity
(denoted by Q) is controllable. The environmental factors are not controlled by those users; e.g., in inventory management
the demand rate may not be controllable. Taguchi assumes a single output (say) w, and focuses on its mean E(w) = µw and
variance var(w) = σ2

w.
The Taguchian worldview has been very successful in production engineering. Nevertheless, statisticians have criticized

Taguchi’s statistical techniques; see Nair et al. (1992). We agree with this criticism. Moreover, Taguchi limits his work to
real-life experiments, whereas we focus on simulation experiments. The latter experiments enable the exploration of many
values per input and many combinations of these values; also see Kleijnen et al. (2005). To select these combinations,
risk and uncertainty analyses often use Latin Hypercube Sampling (LHS); see Kleijnen (2008) for a discussion including
references and websites. In our robust simulation-optimization, we use LHS to select the (say) ne combinations of the
environmental factor values; we use a space-filling design (e.g., a uniform grid if there only a few decision factors) to select
the nd combinations of the decision factors.

Moreover, we do not use Taguchi’s scalar loss function such as the signal-to-noise or mean-to-variance ratio; for a
further discussion of these loss functions we refer to Park et al. (2006), and Wu and Hamada (2000). Instead, we assume a
single random simulation output w, and formulate the problem as a constrained minimization problem where we minimize
the mean simulation output, under the constraint of a fixed threshold for the standard deviation. To solve this problem, we
apply Mathematical Programming to a metamodel for this mean and a metamodel for this standard deviation. Then, we
change the upper bound for the standard deviation, which gives the Pareto-optimal efficiency frontier—briefly called the
Pareto frontier—where we consider the mean and standard deviation as criteria to be balanced. This is a classical approach
to solve optimization problems with multiple criteria (see Miettinen 1999).

2.2 DOE and Metamodeling

ORMS and engineering often use expensive computer simulation models to optimize complex systems. To reduce the high
computational costs of running such simulation models, metamodels are used. However, integrating metamodels in a classical,
evolutionary or meta-heuristic optimization scheme is not straightforward; i.e., various issues emerge in their construction
and management in order to coordinate optimization strategies and approximation efforts, pursuing the overall quality of
the process (Dellino et al. 2009). In this paper we consider two types of metamodels; namely, regression and Kriging. We
derive and manage such approximations through the three alternative approaches summarized in Figure 1 and detailed in
what follows.

In our first approach, we use RSM. Myers and Montgomery (2002) combine Taguchi’s worldview with RSM. RSM
proceeds stepwise (multi-stage); i.e., it consists of a sequence of first-order polynomial metamodels to search for the minimum,
using steepest descent; it ends with a second-order polynomial to estimate the minimum (or saddle point). Originally, Box
and Wilson (1951) developed RSM for ‘classic’ optimization of real-life systems; i.e., they ignored environmental uncertainty.
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Robust Optimization combining Taguchi & Metamodels

Input: design matrix D in the decision-by-environmental space (d,e);
probability distribution of environmental factors;

begin
for each design point (d j,e j) in D, j = 1, . . . ,nd×ne

1. Run the simulation model f : w j = f (d j,e j)
switch sel approach

case Approach 1
2. Fit a regression metamodel for the output, y
3. Validate the metamodel, using leave-one-out cross validation
4. From the fitted metamodel derive a metamodel for the mean of the response, y, and one for its standard deviation, s(y)

case Approach 2
2. Fit one Kriging metamodel for the average response, y, and one for its standard deviation, s(y)
3. Validate the metamodels, using leave-one-out cross validation

case Approach 3
2. Fit a Kriging metamodel for the output, y
3. Validate the metamodel, using leave-one-out cross validation
4. Generate a new bigger design in the decision-by-environmental space
5. Fit one Kriging metamodel for the mean of the predicted response, ŷ, and one for its standard deviation, s(ŷ)
6. Validate the metamodels, using leave-one-out cross validation

7. Estimate the Pareto frontier, solving constrained optimization problems with varying threshold values
switch sel approach

case Approach 1
8. Apply parametric bootstrap to the regression coefficients, B times

case Approach 2, 3
8. Apply distribution-free bootstrap to the simulation output data w, B times

9. Derive confidence regions using the bootstrapped metamodels end

Figure 1: Robust optimization through metamodels: three approaches

This type of RSM has already built a track record; see Myers, Khuri, and Carter (1989) and again Myers and Montgomery
(2002).

We adapt Myers and Montgomery’s robust variant of RSM, and account for the particularities of simulation as described
in Section 2.1, whereas they use the classic Central Composite Design (CCD). Like Myers and Montgomery, we assume

• a second-order polynomial with first-order effects βββ and second-order effects B for the decision factors d;
• a first-order polynomial with effects γγγ for the environmental factors e;
• decision-by-environmental two-factor interactions ∆∆∆,

which results in the low-order polynomial metamodel (which is a regression model that is linear in its parameters)

y = β0 +βββ
′d+d′Bd+ γγγ

′e+d′∆∆∆e+ ε (1)

where y denotes the metamodel’s estimator (predictor) of the simulation output w, ε denotes the residual with E(ε) = 0 and
constant variance σ2

ε , βββ = (β1, . . . ,βk)′, d = (d1, . . . ,dk)′, B denotes the k×k symmetric matrix with main-diagonal elements
β j; j and off-diagonal elements β j; j′/2, γγγ = (γ1, . . . ,γc)′, e = (e1, . . . ,ec)′, and ∆∆∆ = (δ j;g). (The constant-variance assumption
is unrealistic in many simulation applications. Relaxation of this assumption is discussed by Kleijnen 2008, pp. 87–93. Its
consequences for our RSM approach deserve more research.)

This metamodel implies the regression predictor for the true mean E(w)

E(y) = β0 +βββ
′d+d′Bd+ γγγ

′E(e)+d′∆∆∆E(e) . (2)
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and the regression predictor for the true variance var(w)

var(y) = (γγγ ′+d′∆∆∆)ΩΩΩe(γγγ +∆∆∆
′d)+σ

2
ε = l′ΩΩΩel+σ

2
ε (3)

where l = (γγγ +∆∆∆
′d) = (∂y/∂e1, . . . ,∂y/∂ec)′; i.e., l is the gradient with respect to the environmental factors. So, the larger the

gradient’s components are, the larger the predicted variance of the simulation output is. Furthermore, if ∆∆∆ = 0 (no decision-
by-environmental interactions), then var(y) cannot be controlled through the decision variables d. Notice the difference

between the predicted variance, v̂ar(y), and the variance of the predictor, var(ŷ) with ŷ = β̂0 + β̂ββ
′
d+d′B̂d+ γ̂γγ

′e+d′∆̂∆∆e.
To estimate the regression parameters in the RSM metamodel (1) (which implies (2) and (3)), we rewrite (1) as

y = ζζζ
′x+ ε (4)

with ζζζ = (β0,βββ ,b,γγγ,δδδ )′ where its components were defined below (1). Note that (4) is linear in the regression parameters
ζζζ , whereas (1) is not linear in the decision variables d. Then (4) gives the Least Squares (LS) estimator

ζ̂ζζ = (X′X)−1X′w , (5)

where X is the n×q matrix of explanatory variables with n denoting the number of scenarios (combinations of decision and
environmental factors) that are actually simulated, and q denoting the number of parameters collected in ζζζ ; w consists of
the n simulation outputs. The covariance matrix of ζ̂ζζ is

cov(ζ̂ζζ ) = (X′X)−1
σ

2
w . (6)

The RSM metamodel (1) implies that σ2
w equals σ2

ε . This variance is estimated by the Mean Squared Residuals (MSR)

MSR =
(ŷ−w)′(ŷ−w)

n−q
(7)

where ŷ = ζ̂ζζ
′
x; also see Kleijnen 2008, p. 23.

In our second approach, we replace the polynomial metamodel by a Kriging metamodel. Kriging provides more flexible
metamodels than a low-order polynomial does; i.e., Kriging is better suited to global instead of local fitting (del Castillo 2007,
Kleijnen 2008). The simple metamodel (1) implies the mean and variance predictors (2) and (3); the Kriging metamodel,
however, has no such analogue. We therefore estimate the response mean µw and variance σ2

w from the crossed design
(which is popular in the Taguchian approach), which combines the (say) nd combinations of the decision variables and the
ne combinations of the environmental variables and gives the simulation outputs wi; j so the mean and variance estimators
become

wi =
∑

ne
j=1 wi; j

ne
i = 1, . . . ,nd , (8)

s2(wi) =
∑

ne
j=1(wi; j−wi)2

ne−1
i = 1, . . . ,nd . (9)

To the nd estimates in (8), we fit a Kriging metamodel for the mean; to the estimates in (9) we fit a Kriging metamodel
for the standard deviation. To analyze these two metamodels, we use bootstrapping (see Section 2.3 below). We cross the
following specific designs for the selection of the nd and ne combinations: a space-filling for the decision factors and LHS
accounting for the distribution of the environmental factors .

We also implement a third approach still based on Kriging. First, we fit a Kriging metamodel for the simulation output,
w. At this stage, however, the procedure does not distinguish between decision and environmental factors yet, and no
assumption is made for the distribution of the environmental factors; i.e., we select a space-filling design for the nd + ne
factors. Next, we build a larger design by crossing a uniform space-filling design for the decision factors, and a LHS design
for the environmental factors, this time accounting for their distribution. For this large input set we do not run expensive
simulations but compute the Kriging predictions of the simulation output w and use these data to derive the conditional
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means and standard deviations (w.r.t. the environmental variables); i.e., in the right-hand sides of (8) and (9) we replace
ne and nd by Ne and Nd—the large-sample analogues of the small-sample ne and nd—and w by ŷ where the ‘hat’ denotes
Kriging prediction.

In our three approaches we validate all the metamodels by applying the leave-one-out cross validation; see Kleijnen
(2008).

2.3 Mathematical Programming and Bootstrapping

To solve the compromise between mean and variance, we use a Mathematical Programming formulation minimizing the
mean subject to the constraint that the standard deviation remain below a given threshold (say) T . By using an appropriate
Mathematical Programming solver, we estimate the robust optimal decision variables (say) d̂+ and the corresponding predicted
mean ŷ and standard deviation σ̂y. Next, we vary the threshold value T (say) S times (e.g., S = 100) to obtain different

solutions d̂+
t with corresponding ŷt and σ̂y;t , (t = 1, . . . ,S). The S pairs (ŷt , σ̂y;t ) give the estimated Pareto frontier; see Figure

4, to be discussed later.
Figure 2(a) displays the average cost versus the order quantity in the upper part, and the estimated standard deviation

versus the order quantity in the lower part, for the EOQ example (detailed in the next section). The upper part resembles the
classic EOQ with a known demand rate; the lower part illustrates that the standard deviation decreases as the order quantity
increases. The lower part also displays two threshold values for the standard deviation, called T1 and T2. If the threshold is
high (T1), the forbidden area (displayed in red) is small and the permitted area is large (not displayed explicitly); we may
then select the order quantity that minimizes the cost, ignoring this constraint: see Q1 in the upper part. If the threshold is
small (T2), the permitted area (displayed in green), is smaller and the forbidden area is larger (not displayed); the optimal
order size must be higher than Q1, namely Q2; the constraint is binding (active).

The two threshold values T1 and T2 in Figure 2(a) give two points on the Pareto curve; see Figure 2(b). The point
corresponding with the low threshold T2 is a binding constraint, which we denote in Figure 2(b) by displaying the symbol T2
in the color red; the point corresponding with the high threshold T1 is not binding, which we denote by green. The binding
constraint implies that the standard deviation equals the threshold T2; the nonbinding constraint implies that the standard
deviation is lower than the threshold T1.

We let management make a choice based on the best estimate we have of the Pareto curve (namely, the ‘original’ curve,
not the bootstrapped curves; see Figure 3). Management makes such a choice based on its risk attitude; e.g., if they are risk
averse, then they impose the low threshold T2 for the standard deviation of the cost. Hence they should select the solution
that corresponds with T2 in Figure 2(b); i.e., they are prepared to accept a relative high expected cost, because this choice
implies a relative low standard deviation.

Finally, we warn management that their choice may turn out to result in a mean and standard deviation that differs from
the values displayed in Figure 2(b). The cause is that the Pareto curve in Figure 2(b) is not known with certainty; i.e., this
curve is estimated from a simulation with sampled values for the environmental factors (namely, the demand rate in the EOQ
example). We can quantify this uncertainty through a confidence region for the mean cost and the standard deviation of the
cost, given the order quantity Q2 (Q2 was displayed in Figure 2(a)). Technically, we derive such a confidence region through
bootstrapping; see Efron and Tibshirani (1993), Kleijnen (2008). We use parametric bootstrapping for our RSM approach
and nonparametric distribution-free bootstrapping for our two Kriging approaches. For further details on bootstrapping, we
refer to Efron and Tibshirani (1993) and Chernick (2008).

In our RSM approach, we apply parametric bootstrapping of the estimated regression parameters ζ̂ζζ , in order to estimate
the variability of the RSM metamodel. More specifically, we sample—via the Monte Carlo method, using pseudo-random

numbers—(say) B times from a multivariate normal distribution with mean vector ζ̂ζζ and covariance matrix ĉov(ζ̂ζζ ) defined
in Eqs. (5-7). This sampling gives ζ̂ζζ

∗
b = (β̂0

∗
b, β̂ββ

∗
b, b̂∗b, γ̂γγ

∗
b, δ̂δδ
∗
b)
′ (b = 1, . . . ,B), from which we derive ŷ∗b; see (2) with β0, βββ , B,

γγγ , and ∆∆∆ replaced by their bootstrapped estimates. It also gives σ̂y∗b
; see (3) where σ2

ε is replaced by the estimate computed
from the bootstrapped parameters using 7.

In our second approach we use Kriging metamodels instead of linear regression RSM models, and we apply nonparametric
bootstrapping to the output data wi; j (i = 1, . . . ,nd ; j = 1, . . . ,ne); i.e., we resample—with replacement—the ne vectors w j,
which gives w∗j (this bootstrapping is analogous to the bootstrapping in case of Common Random Numbers; see Kleijnen,
van Beers, and van Nieuwenhuyse (2009)). Analogous to (8) and (9) we compute the nd bootstrapped averages and variances:

wi
∗ =

∑
ne
j=1 w∗i j

ne
i = 1, . . . ,nd , (10)
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Figure 2: (a) The average and the standard deviation of cost versus the order quantity, and the role of the threshold. (b)
Two points on the Pareto curve.

s2(w∗i ) =
∑

ne
j=1

(
w∗i j−wi

∗
)2

ne−1
i = 1, . . . ,nd . (11)

Then we fit two Kriging metamodels to these bootstrapped output data and their corresponding input data, di. To reduce the
sampling error, we repeat this sampling B times, which gives the bootstrapped averages and variances wi;b

∗ and s2(w∗i;b) and
their Kriging metamodels (b = 1, . . . ,B). Figure 3 gives results for the EOQ example, discussed in the following section. In
this figure we select the B points for the predicted mean that correspond with Q2; see left part of this figure. We do the same
for the standard deviation in the right part of this figure. More precisely, we derive a conservative confidence interval using
Bonferroni’s inequality and the classic bootstrap confidence interval per output. This interval is [ŵ

+∗
(bB(α/2)/2c), ŵ

+∗
(dB(1−(α/2))/2e)]

where the subscript () denotes the order statistic (i.e., the observations are ranked or sorted from smallest to largest), bc
denotes the floor function (which gives the integer part), de denotes the ceiling function (rounding upwards), α/2 gives a
two-sided confidence interval, Bonferroni’s inequality implies that the type-I error rate for the interval per output is divided
by the number of outputs (which is two, namely, the mean and standard deviation). For the EOQ example, this gives Figure 5,
discussed below.

In Approach 3, we replace the simulation output values wi; j by the corresponding Kriging predictions ŷi; j, and bootstrap
these observations as described before.

Note that our bootstrap procedure is a fast alternative to macroreplicates, which can be obtained as follows. Repeat the
LHS sampling (say) L times; i.e., sample new values for the environmental factors from their distribution, while keeping the
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Figure 3: Bootstrapped metamodel predictions of the mean and standard deviation of the cost for Approach 2 (i.e., Kriging
variant 1)

values of the decision variables fixed. Then, apply RSM or Kriging to the simulation I/O data corresponding with each of
the L designs.

3 EXAMPLE: THE ECONOMIC ORDER QUANTITY MODEL

We illustrate our three robust simulation-optimization approaches through a deterministic EOQ model (Zipkin 2000). Starting
from the classic model assumptions, we add the assumption that the demand rate is uncertain. Now the goal is to estimate
an optimal order quantity, which minimizes the total cost while satisfying a given constraint (threshold) for the standard
deviation of those costs.

More specifically, we keep the focus on a single-period inventory model; i.e., we have to select the order quantity value
such that it faces the demand before the process begins, and keep it constant throughout the observed period. Note that such
a model is useful to describe several service and manufacturing applications; e.g., ordering of fashion items (Chase, Jacobs,
and Aquilano 2006).

In Taguchian terminology, we consider the order quantity Q as the decision factor, while the demand rate a is the
environmental factor; all the other parameters—shown in column 1 of Table 1—are supposed to be fixed and known constants.
To select these parameters, we use a famous textbook, namely Hillier and Lieberman (2001); see the column denoted by
EOQ HL in Table 1. Because this ratio of the setup cost and the unit holding cost is very large in this column, we also
consider a different ratio, denoted by EOQ CJA, taken from Chase et al. (2006).

Table 1: Nominal values of the parameters in the EOQ example

Parameter Symbol EOQ HL EOQ CJA
demand rate a 8000 1040
setup cost K 12000 10
unit ordering cost c 10 15
unit holding cost h 0.30 2.50
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Figure 4: Pareto frontiers based on three approaches, and analytical solution: (a) EOQ HL in Table 1; (b) EOQ CJA in
Table 1.

We assume—without loss of generality—that the demand rate a follows a Normal (Gaussian) distribution with mean µa
and standard deviation σa:

a∼N (µa,σa) , (12)

where µa denotes the nominal value used in the classic EOQ model without uncertainty (see Table 1) and σa quantifies the
uncertainty about the true input parameter. We experiment with three alternative environmental settings, each representing a
different degree of volatility: σa = kaµa, where ka ∈ {0.50;0.10;0.01}. Because the qualitative results turn out to be very
similar, we will focus on the intermediate case, ka = 0.10.

We apply the steps sketched in Figure 1 for our three approaches to both EOQ HL and EOQ CJA. After deriving the
metamodels for the mean of the costs C and the cost’s standard deviation s(C), we solve the following optimization problem
using the Matlab solver fmincon:

minC

s.t. s(C)≤ T
(13)

where the threshold T is given. Next we change it S times within a range of values properly chosen to avoid infeasible
problems (in practice, management would give the T values). The set of S optimal solutions provides an estimate of the
Pareto frontier; see Figure 4.

We compare the optimal solution estimated through the three metamodels with the optimal solution found through
mathematical analysis, given the same threshold value T ; namely, T = 8600 for EOQ HL and T = 1580 for EOQ CJA
(such an analysis is possible, because the EOQ model is so simple; the analytical solution is given in Dellino et al. 2008).
The comparison concerns the decision variable Q+, the objective function C+ and constrained s+(C), using the Average
Absolute Relative Error (AARE); see Table 2. This table implies that in our EOQ example Approach 1 gives the minimum
errors—except for the objective function C+ in the EOQ CJA case.

Table 2: AARE of estimated optimal solutions based on three approaches for EOQ HL and EOQ CJA

EOQ HL EOQ CJA
Approach 1 Approach 2 Approach 3 Approach 1 Approach 2 Approach 3

AARE(Q+) 0.6426 0.6805 0.6660 AARE(Q+) 0.9921 0.9940 0.9933
AARE(C+) 0.0010 0.0025 0.0025 AARE(C+) 0.0011 1.73e-7 0.0001
AARE(s+(C)) 0.9050 0.9052 0.9066 AARE(s+(C)) 0.9009 0.9012 0.9016

Finally, we apply bootstrapping to derive confidence regions, as we discussed in Section 2.3; see Figure 5. This figure
which demonstrates that the bigger sample in Approach 3 gives smaller regions than Approach 2; of course, this approach
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Figure 5: Confidence regions for s(C) (on x-axis) and C (on y-axis) based on bootstrapped metamodels for (a) EOQ HL, at
T = 8600 (see the vertical line) and (b) EOQ CJA at T = 1580 (see the vertical line).

assumes that the Kriging model does not give biased predictions. From the figure, we conclude that RSM (approach 1)
gives much smaller variability than Kriging (approaches 2 and 3). We think that the reason is that the RSM metamodel
imposes a specific type of model, namely, the low-order polynomial defined by equation (1); so the spread arises only from
perturbations of the estimated parameters in (1). Kriging gives a better metamodel when (1) does not give a valid metamodel.

4 CONCLUSIONS AND FURTHER RESEARCH

Whereas optimization is a ‘hot’ topic in the simulation literature, robust optimization is neglected in that literature—except
for a few publications; see the five references in Kleijnen 2008, p. 131, which in turn reference several more simulation
studies using Taguchi’s methods.

To solve this problem, we integrate the following scientific approaches:

• Taguchi’s view of the uncertain world; i.e., we assume that the inputs of the simulation model that represent the
environmental factors do not have fixed values but have a distribution.

• DOE and metamodeling; i.e., we replace Taguchi’s statistical techniques by techniques that have become popular in
simulation; e.g., LHS for the environmental factors and either RSM’s low-order polynomial metamodels or Kriging
metamodels.

• Mathematical Programming; i.e., we replace Taguchi’s scalar loss function by a Mathematical Programming model
that minimizes the expected simulation output such that the standard deviation of the simulation output does not
exceed a given threshold. Varying this threshold gives the Pareto frontier, which enables management to select a
solution (combination of decision factors) that accounts for their risk attitude.

• Bootstrapping; i.e., we derive a (conservative, rectangular)) confidence region for the estimated mean and standard
deviation of the simulation output, given management’s choice of a particular combination of decision factors. The
corresponding confidence interval for the standard deviation quantifies the probability of exceeding the threshold.

We illustrated our new methodology through the well-known EOQ model. The following topics deserve further research.

• Is RSM’s simple low-order polynomial metamodel an adequate approximation, or is more flexible Kriging needed?
Which Kriging variant is better? Which designs are best; e.g., the crossed design is popular among Taguchians, but
split plot designs are proposed by Dehlendorff, Kulahci, and Andersen (2008).

• The Mathematical Programming model may need revision; e.g., the uncertainty of the simulation output may
be quantified through a specific quantile (instead of the mean and standard deviation). Kleijnen, Pierreval, and
Zhang (2009) use a lower bound for the 5% quantile of the simulation output. Instead of a single simulation
output (characterized through its mean, standard deviation, quantiles) practical simulations have multiple simulation
outputs; e.g., cost and service rate in inventory simulations.
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• Besides the simple EOQ example, more examples and case studies are needed to derive general conclusion about
our robust simulation-optimization methodology.

• Besides deterministic simulation with uncertain inputs (like the EOQ simulation), we are investigating discrete-event
simulation (like the (s,S) inventory and the M/M/1 queueing simulations). By definition, the latter simulation
type has aleatory uncertainty (e.g., random demand per day, exponential interarrival and service times) besides the
epistemic uncertainty (e.g., unknown mean demand per day, and unknown arrival and service rates).
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