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ABSTRACT

Many simulation output analysis procedures are derived based on the assumption that data are independent and identically
distributed (i.i.d.) normal; examples include ranking and selection procedures and multiple-comparison procedures. The
method of batch means is the technique of choice to “manufacture” data that are approximately i.i.d. normal when the raw
samples are not. Batch means are sample means of subsets of consecutive subsamples from a simulation output sequence.
We propose to incorporate the procedure of determining the batch size to obtain approximately i.i.d. normal batch means
into the selection procedures of comparing the performance of alternative system designs. We performed an empirical study
to evaluate the performance of the extended selection procedure.

1 INTRODUCTION

Many simulation output analysis procedures are derived based on the assumption that data are independent and identically
distributed (i.i.d.) normal; examples include ranking and selection procedures and multiple-comparison procedures. The goal
of selection is to find the design that has the smallest or largest mean among a finite number of alternatives. When the raw
samples are not i.i.d. normal, the method of batch means (BM) is the technique of choice to “manufacture” data that are
approximately i.i.d. normal. See Law and Kelton (2000) for more details on batch means. Nakayama (1995) and Goldsman
et al. (2000) have adapted ranking and selection procedures for steady-state simulation using batch means. However, they did
not address the issue of determining the batch size m. Chen and Kelton (2007) have developed a procedure to manufacture
batch means that appear to be i.i.d. normal, as determined by the von Neumann (1941) test of independence and the chi-square
test of normality. In the remainder of the paper, we will use “data that appear to be i.i.d. normal” to mean that “the data
has passed both tests of independence and normality.” In this paper, we incorporate the BM procedure with other simulation
analysis procedures, namely, the indifference-zone selection procedures.

A concern of simulation output analysis is to estimate the sampling error (or variance) of an estimator of some unknown
parameter, i.e., the error caused by the estimator’s randomness. This estimate provides information regarding the precision
with which the estimator reflects the true but unknown parameter. Because we assume the process is already in steady-state
and the underlying process is stationary, i.e., the joint distribution of the Xι ’s is insensitive to time shifts, the mean estimator
will be unbiased. Here {Xι : ι = 1,2, . . . ,n} is the simulation output sequence. On the other hand, the confidence interval
(c.i.) coverage’s closeness to the specified nominal value is dependent on the accuracy of the mean estimator and the c.i.
half width, which in turn is dependent on the variance estimator.

Chen (2004) shows that the precision of selection procedures is closely related to the c.i. construction. However, the
usual method of c.i. construction from classical statistics, which requires i.i.d. normal observations, is not directly applicable
since simulation output data are generally correlated and non-normal. The BM procedure of Chen and Kelton (2007)
determines batch sizes based entirely on data and does not require user intervention. The only required condition is that the
autocorrelations of the stochastic-process output sequence die off as the lag between observations increases, in the sense of
φ -mixing (see Billingsley 1999). Let µ be the expected value of the process and let X̄(n) = ∑

n
ι=1 Xι/n be the sample mean
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of n samples. These weakly dependent, stationary processes typically obey a central limit theorem of the form

√
n
[X̄(n)−µ]

Ω

D−→ N(0,1) as n→ ∞, (1)

where Ω2 is the steady-state variance constant (SSVC), N(µ,σ2) denotes the normal distribution with mean µ and variance
σ2, and D−→ denotes convergence in distribution.

For correlated sequences, the SSVC

Ω
2 ≡ lim

n→∞
nVar[X̄(n)] =

∞

∑
i=−∞

γi,

where γi = Cov(Xk,Xk+i) for any k is the lag-i covariance. For stationary processes, a sufficient condition for the SSVC to
exist is ∑

∞
−∞ |γi| < ∞. If the sequence is independent, then the SSVC is equal to the process variance σ2

x = Var[Xι ]. Our
procedures may fail when the underlying stochastic process does not satisfy the limiting result of (1).

The rest of this paper is organized as follows. In Section 2, we present some background on ranking and selection, and
the batch-means method of estimating the SSVC. In Section 3, we present the algorithm to estimate batch sizes such that the
batch means appear to be i.i.d. normal, and selection using batch means. In Section 4, we show some empirical-experimental
results. In Section 5, we give concluding remarks.

2 BACKGROUND

In this section, we review the basis of indifference-zone selection procedures, non-overlapping batch means, and the Von
Neumann test of independence.

2.1 Basis of Indifference-Zone Selection

Selection procedures are used to select the “best” design from among k competing designs, and these procedures often
are derived based on the assumption that the input data are i.i.d. normal. Let µil be the lth smallest of the µi’s, so that
µi1 ≤ µi2 ≤ . . . ≤ µik . The goal is to find a design with the smallest expected response µi1 . In practice, however, if µi1
and µi2 are very close together, we are indifferent if we mistakenly choose design i2, whose expected response is µi2 . The
“practically significant” difference d∗ (a positive real number) between the best and next-best design is called the indifference
zone in the statistical literature and represents the smallest difference about which we care. Therefore, we want a procedure
that avoids making a large number of replications or batches to resolve differences less than d∗. Let P(CS) denote the
probability of correct selection, i.e., the best design is selected. Then we want P(CS) ≥ P∗ provided that µi2 − µi1 ≥ d∗,
where the minimal correct selection probability P∗ and the “indifference” amount d∗ are both specified by the user. For a
comprehensive review of indifference-zone selection, please see Bechhofer et al. (1995).

In testing the null hypothesis H0 : µi ≤ µi1 , we reject the null hypothesis and conclude with confidence level 1−α that
µi > µi1 is the same as checking that the lower endpoint of the one-tailed 1−α c.i. is positive, i.e., µi−µi1 > µ̂i− µ̂i1−wi > 0,
where µ̂i = X̄i(ni) is the sample means of ni samples from process i, and wi denotes the one-tailed 1−α c.i. half width.

With independent sampling and ni = ni1 , wi = t1−α,ni−1

√
(S2

i (ni)+S2
i1
(ni1))/ni. Let Xiι denote the ι th sample from process

i. Here

S2
i (ni) =

1
ni−1

ni

∑
ι=1

(Xiι − µ̂i)2,

is the unbiased estimator of σ2
i and t1−α, fi is the 1−α quantile of the t distribution with fi degrees of freedom (df). For

additional details on duality of hypothesis test and c.i., please see Rice (1995). The half width wi depends on the sample
sizes and becomes smaller as the sample sizes become larger. This implies that the sample sizes (ni and ni1 ) should be
large enough so that wi < µ̂i− µ̂i1 . By symmetry of the normal distribution P{µ̂i− µ̂i1 > (µi−µi1)−wi} ≥ 1−α . To obtain
P{µ̂i− µ̂i1 > 0} ≥ 1−α , the sample size should be large enough so that wi < µi−µi1 .

Let dil = µil −µi1 and d̂il = µ̂il − µ̂i1 . Let CI1 denote the the one-tailed 1−α c.i. of dil obtained by procedures that are
developed based on the least favorable configuration (LFC) (i.e., assuming µi1 +d∗ = µi2 = · · ·= µik ). Let CI2 denote the one-
tailed 1−α c.i. of dil obtained by procedures that take into account sample means. The confidence interval CI1 = (d̂il −d∗,∞]
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since the procedures achieve wil < d∗. On the other hand, CI2 = (d̂il −dil ,∞]≈ (0,∞] since the procedures attempt to achieve
wil < dil . Hence, the allocated sample sizes are just large enough to conclude µi1 < µi (provided µi1 +d∗ ≤ µi) with a desired
confidence but not more than necessary. Note that the smaller the indifference amount d∗, the smaller the c.i. half width
needs to be and the larger the required sample sizes need to be.

2.2 Non-Overlapping Batch Means

The batch means method is a relatively simple idea that can be used to manufacture almost i.i.d. normal “samples” by
breaking the output sequences into a few large batches of many individual observations. In the non-overlapping batch-means
method, the simulation output sequence {Xι : ι = 1,2, . . . ,n} is divided into b adjacent non-overlapping batches, each of
size m. For simplicity, we assume that n is a multiple of m so that n = bm. The sample mean, X̄ j, for the jth batch is

X̄ j =
1
m

m j

∑
ι=m( j−1)+1

Xι for j = 1,2, . . . ,b.

Under the null hypothesis that the batch size m is large enough such that the batch means are independent, we have the
SSVC estimator Ω2(m)≡ mVar[X̄ j] = γ0 +2∑

m−1
i=1 (1− i/m)γi. The grand mean µ̂ of the individual BM, given by

µ̂ =
1
b

b

∑
j=1

X̄ j,

is used as a point estimator for µ . Here µ̂ = X̄(n), the sample mean of all n individual Xι ’s.
The method of BM is a well-known technique for estimating the variance of point estimators computed from simulation

experiments. The BM method tries to reduce autocorrelation by batching observations. The BM variance estimator (of
estimating the variance of sample means, i.e., Var[X̄ j]) is simply the sample variance of the mean estimator X̄ j computed
from the sample (batch) means of subsets of consecutive subsamples, i.e.,

S2(b) =
1

b−1

b

∑
j=1

(X̄ j− µ̂)2. (2)

The BM estimator for Ω2 is

Ω̂
2 ≡ mS2(b). (3)

The 1−α c.i. constructed by the BM method is

µ̂± t1−α/2,b−1S(b)/
√

b = µ̂± t1−α/2,b−1

√
mS2(b)/

√
mb = µ̂± t1−α/2,b−1Ω̂/

√
n.

Asymptotic validity of this c.i., i.e., that the coverage of the c.i. is close to the nominal coverage probability, often depends
on the assumption that the batch means are approximately i.i.d. normal. That is, for large batch size m the batch means
are approximately i.i.d. normal with unknown mean µ and unknown variance Ω2(m)/m. However, some BM methods (for
example, overlapping BM by Meketon and Schmeiser 1984 and ASAP3 by Steiger et al. 2005) construct a c.i. of the mean
by adjusting the c.i. half width based on the strength of the autocorrelations between BM. However, (3) may not hold since
the BM may be correlated. The key idea for ASAP3 is that the batch means may become approximately jointly normally
distributed before becoming approximately independent; thus, it adjusts the half width to counter any remaining dependence
between the batch means. Consequently, these procedures are able to deliver valid c.i. with relatively small sample sizes
(and relatively large half widths). Moreover, the BM manufactured by these procedures are likely to be correlated and cannot
be used as input data for procedures that require i.i.d. normal data.

There are a number of batch-size-determination procedures that aim to manufacture independent batch means. However,
these methods have focused on selecting a batch size large enough to achieve near independence of the batch means and
have ignored the question of normality based on one assumption. If the batch size is large enough for the batch means to be
approximately independent, then the batch size should be large enough for the batch means to be approximately normally
distributed as well. Evidently, this assumption is not true in general (see Chen and Kelton 2007). Our experimental results
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indicate that it is not as critical to ensure that the batch means are normally distributed as it is to ensure that the batch means
are independent in terms of c.i. coverage. However, some other procedures (e.g., ranking and selection) will require the data
to be i.i.d. normal.

2.3 The von Neumann Test of Independence

We briefly review the von Neumann test (Fishman 2001, von Neumann 1941) for the hypothesis H0: the batch means
X̄1, X̄2, . . . , X̄b are uncorrelated. The von Neumann ratio is

Cb = 1−
∑

b
j=2(X̄ j− X̄ j−1)2

2∑
b
j=1(X̄ j− µ̂)2

.

Note that Cb is an estimator of the lag-1 autocorrelation ω1 ≡ Corr[X̄ j, X̄ j+1], adjusted for end effects that diminish in
importance as the number of batches b increases. If {Xι : ι = 1,2, . . . ,n} has a monotone non-increasing autocorrelation
function, then ω1 is positive and decreases monotonically to zero as the batch size m increases. If for the given b and m,
H0 is true for X̄1, X̄2, . . . , X̄b, then ω1 = 0.

The von Neumann test statistic for H0 is

Z =

√
b2−1
b−2

Cb.

Let αind denote the acceptable level of committing a Type I error (i.e., rejecting the null hypothesis when it is true). Under
H0, Z ∼ N(0,1), so one rejects H0 at level 1−αind if Z > z1−αind

, where z1−αind
is the 1−αind quantile of the standard

normal distribution.

3 SELECTION USING BATCH MEANS

In this section, we discuss the strategy of estimating the required batch size such that the batch means appear to be i.i.d.
normal. While there are many BM procedures, most of them are not suitable to be used as a pre-processor of procedures
that require i.i.d. normal data; see Section 2.2. One of the BM procedures that is a good candidate for this purpose is the
quasi-independent-and-normal (QIN) procedure of Chen and Kelton (2007). The procedure is a data-based algorithm, i.e.,
the procedure can be embodied in a software package whose input is the data {Xι : ι = 1,2, . . . ,n} and whose output are
i.i.d. normal batch means. We briefly review the QIN procedure and subsequently incorporate the QIN procedure into a
selection procedure.

3.1 Validation of Normality

To determine whether the batch means appear to be normally distributed, we check the proportions of the values of batch
means in each interval bounded by -∞, µ̂ − 0.9674S, µ̂ − 0.4303S, µ̂ , µ̂ + 0.4303S, µ̂ + 0.9674S, ∞, where µ̂ and S are,
respectively, the grand sample mean of the n observations and the standard deviation of these b batch means. The constants
involved in these intervals are strategically chosen so that the proportions of the batch means in each interval are equal under
the null hypothesis that the batch means are normal. We apply the chi-square test of normality (see Law and Kelton 2000,
Rice 1995) to these batch means, using a confidence level of 0.9.

The probability of this chi-square test of normality to commit either Type I or Type II errors is high when the data are
highly correlated. Recall that a Type II error is accepting the null hypothesis when it is false. Since the QIN procedure
performs the normality test only on BM that passed the test of independence, this deficiency of the chi-square test of normality
will not cause difficulty for the QIN procedure. Our experimental results indicate that the residual correlation of BM that
passed the test of independence is weak, if any.

The powers of the independence and the normality tests increase as the number of batches used to perform the tests
increases. Based on our experimental results, we recommend that the sample size used for this normality test and the von
Neumann test be at least 180. There are other more sophisticated normality tests, for example, the Shapiro-Wilk test (Bratley
et al. 1987). We chose the chi-square test because it is easy to apply and serves our purpose well. Nonetheless, other
normality tests could be used in place of the chi-square test of normality if desired.
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For instance, the average batch size for U(0,1) (uniformly distributed between 0 and 1) observations to pass this
chi-square normality test is 1.85. It is known that the average of two U(0,1) random variates is a random variate having
a triang(0,1,0.5) distribution, where triang(a,b,c) denotes a triangular distribution on [a,b] with mode c. Even though the
triangular distribution is symmetric, it is certainly not nearly normal. This result indicates that the power of the chi-square
normality test with only 5 degrees of freedom (df) is weak. Nevertheless, if we mistakenly treat this kind of non-normal
data as being approximately normal, the c.i. coverage remains fairly accurate.

3.2 Manufacturing i.i.d. Normal Batch Means

The QIN procedure progressively increases the batch size m until the batch means appear to be i.i.d. normal, as determined
by the von Neumann and the chi-square tests. This procedure can be viewed as the initial step of the selection procedures
or other procedures that require i.i.d. normal data. We divide the entire output sequence into b = 180 batches. We allocate
a buffer with size 3b to keep primitive batches (PB), i.e., the average of l (a positive integer) observations. Batch means
are then computed from PB in the buffer. Initially each observation is treated as a PB; as the procedure proceeds, l (the
number of observations used to compute PB) will be doubled in every other iteration. The steps between collecting more
observations is considered an iteration.

To facilitate the description of the algorithm, we break each iteration into A and B sub-iterations so that the most
relevant quantities can be described in simpler forms. The procedure performs both independence and normality tests in
both sub-iterations and terminates when BM appear to be i.i.d. normal. Table 1 illustrates how sampling progresses from
iteration to iteration. The Iter row shows the index of the iteration. The n row lists the total number of observations to be
taken at a certain iteration. The pb row lists the total number of PB in the buffer at a certain iteration. The l row lists the
number of observations used to obtain the PB in the buffer. The m lists the batch size. There may be b, 2b, or 3b PB in
the buffer. We aggregate the available PB into b BM by averaging the adjacent PB.

Table 1: Properties of QIN at each iteration

Iter 0 1A 1B 2A 2B . . . qA qB

n b 2b 3b 4b 6b . . . 2qb 2q−13b
pb b 2b 3b 2b 3b . . . 2b 3b
l 1 1 1 2 2 . . . 2q−1 2q−1

m 1 2 3 4 6 . . . 2q 2q−13

The quasi-independent-and-normal algorithm:

The size of the buffer used to store the PB is 3b. l is the number of observations used to compute PB. δ is the incremental
sample size. q is the index of iterations. Each iteration q contains two sub-iterations qA and qB.

1. Initialization: Set b = 180, l = 1, δ = b, and q = 0.
2. Generate δ PB, where each PB is the average of l observations. Store these PB in the buffer.
3. If this is the initial iteration, set c = 1. If this is a qA iteration, set c = 2. If this is a qB iteration, set c = 3. Set the

value of the batch means to the average of c consecutive PB in the buffer (i.e., X̄ j = ∑
c j
c( j−1)+1 Vj/c for j = 1,2, . . . ,b,

where Vj is the value of the jth PB).
4. Carry out the von Neumann and the chi-square tests to determine whether these b batch means appear to be i.i.d.

normal.
5. If the batch means appear to be i.i.d. normal, go to step 10.
6. If this is the initial or a qB iteration, set q = q+1 and start a qA iteration. If this is a qA iteration, start a qB iteration.
7. If this is a qA iteration (q > 1), then re-calculate the PB in the buffer by taking the average of two consecutive PB,

and reindex the rest of the 3b/2 PB in the first half of the buffer. Set l = 2q−1 and δ = b/2.
8. If this is a qB iteration (q > 1), set δ = b.
9. Go to step 2.
10. Deliver the batch size m and the i.i.d. normal batch means.
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Since the BM manufactured by the QIN procedure appear to be i.i.d. normal, we can use these BM to construct a
classical c.i. without any adjustment and use these BM as input for other simulation procedures that require i.i.d. normal data.
The QIN procedure needs to process each observation only once and does not require storing the entire output sequence.
Furthermore, the derivation of the procedure is rather straightforward, which makes the QIN procedure easy to understand
and simple to implement as a practical procedure for manufacturing approximately i.i.d. normal data.

3.3 Selection via All Pairwise Comparisons

Selection procedures that are derived based on the LFC are conservative, i.e., they often allocate large sample sizes and
achieve higher than the specified precision. Chen and Kelton (2005) propose a sequential selection procedure that takes into
account the difference of sample means and is effective in terms of sample sizes. This selection procedure achieves P(CS)
≈ P∗, provided that the difference between the best and the second-best designs is at least d∗, and d∗ is at least 10% of the
standard error of the difference between the sample means of the best and the second best. It is our intention for the batch
means to play the role of the i.i.d. normal observations that the original version of the procedure requires. The batch sizes
are determined dynamically and are random variables. Moreover, the batch size is likely to be one when the raw data are
i.i.d. normal. The extension of the selection procedure is as follows:

The Sequential Selection Procedure via All Pairwise Comparisons:

1. Initialize the set I to include all k designs. Let X̄iι be the ι th batch mean of design i. Let bi,q be the number of
batches allocated for design i, and µ̂i,q be the sample mean (i.e., the average of batch means) of design i at the qth

iteration.
2. Run the QIN procedure to determine the batch size mi for each design i. Specify the initial number of batches b0,

the value of the indifference amount d∗, and the minimal required precision P∗. Set P = 1− (1−P∗)/(k−1), the
iteration index q = 0, and the current number of batches r = b1,q = b2,q = · · ·= bk,q = b0. Simulate b0 batches for
each design i ∈ I.

3. Perform all pairwise comparisons and delete inferior design i from I; i.e., µ̂i,q > µ̂ j,q +wi j, i, j ∈ I. Note that wi j is
the one-tailed P c.i. half width.

4. If wi j < d∗ and µ̂i,q > µ̂ j,q, remove design i from I.
5. If there is only one element (or the pre-determined number of best designs) in I, go to step 9.
6. Compute the critical value ht =

√
2tP,r−1, where tP, f denotes the P quantile of the t distribution with f df.

7. Let µ̂B,q = mini∈I µ̂i,q. For ∀i ∈ I, compute d̂i,q = max(d∗, µ̂i,q−U(µ̂B,q)), where U(µ̂B,q) is the upper one-tailed P∗

confidence limit of the unknown true mean µB at the qth iteration, and compute

δi,q+1 = d((htSi(r)/d̂i,q)2− r)+e.

Note that S2
i (r) is the variance of the batch means of design i.

8. Set q = q + 1. If δi,q = 0, set δi,q = 1. Set the incremental sample size at the qth iteration δq = mini∈I δi,q. For
∀i ∈ I, simulate additional δq batches, set r = r +δq. Go to step 3.

9. Let µ̂i = ∑
bi
ι=1 X̄iι/bi denote the final sample mean of the ith design. Return the values B and µ̂B, where µ̂B = min µ̂i,

1≤ i≤ k, and i was not eliminated by all pairwise comparisons.

The batch size of each design mi is determined independently, i.e., the batch sizes may be different among these designs
and can be different at different simulation runs. Hence, the procedure can perform selection among designs having different
families of distributions. A small initial number of batches b0 can reduce the P(CS) of the selection procedure because
a small b0 increases the frequency of incorrect eliminations of the best design at the initial comparisons. Since the QIN
procedure uses 180 batch means for the tests of independence and normality, we use all the samples that are available and
set b0 = 180. In some cases, doing so may result in allocating larger than necessary sample sizes and achieving higher than
required precision.

The required number of batches for design i is calculated by

bi = d(htSi(r)/d̂i,q)2e.
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Let µi be the expected performance measure of design i and µB = min µi. The basis for this sample size allocation strategy
is to ensure that the one-tailed P c.i. half width of µi−µB is less than di = max(d∗,µi−µB) (see Chen 2004). From (1), if
the sample size n is large enough, then the c.i. half width of the mean of correlated sequences can be computed by zPΩ/

√
n,

where zP is the P quantile of the standard normal distribution. Consequently, to achieve the same precision as an i.i.d. normal
sequence, the required number of unbatched raw samples of correlated sequence should be

ni = d(htΩ̂i/d̂i,q)2e,

where Ω̂i is the estimator of Ωi. Similarly, the SSVC estimate of design i Ω̂2
i = miS2

i (bi), where mi is the batch size, and bi
is the number of batches. Hence, the unbatched sample size is

ni = mibi

= mid(htSi(bi)/d̂i,q)2e
≈ d(htΩ̂i/d̂i,q)2e.

Consequently, any technique of estimating SSVC Ω2 can be used to estimate the required unbatched sample sizes, e.g.,
various standardized time series analysis (Healy et al. 2007) and spectrum analysis (Sullivan and Wilson 1989).

4 EMPIRICAL EXPERIMENTS

In this section, we present some empirical results from simulation experiments using the proposed procedure. We use 180
batch means for the von Neumann test of independence and the chi-square test of normality. We evaluate the performance of
using the approximately i.i.d. normal batch means manufactured by the QIN procedure as input for the selection procedure.
The basic characteristics of the BM manufactured by the QIN procedure are available in Chen and Kelton (2007). The
confidence level of the von Neumann tests and the chi-square tests is set to 0.9 in our experiments. Note that a lower
confidence level of these tests will increase the chance of committing a Type I error and will also increase the batch size
and the simulation run length.

There are k alternative designs in the selection subset. The least favorable configuration is used, in which µ1 has the
smallest value, while µ1 +d∗ = µ2 = µ3 = · · ·= µk. We did not perform any experiments with the non LFC, since it has been
shown that procedures that take into account the difference of sample means can significantly reduce the required sample
sizes. The number of systems (k) is set to either 2 or 5 and the number of initial samples or batch means (b0) is set to
either 20 or 180. Recall that the procedure has generated 180 batches for the test of normality and test of independence. We
want to select a design with the minimum mean: design 1. Furthermore, 1,000 independent experiments are performed to
estimate the actual P(CS) by P̂(CS): the proportion of the 1,000 experiments in which we obtained the correct selection.

4.1 Experiment 1

We test the procedure with the following three independent stochastic processes:

• Observations are i.i.d. normal. The best design has a N(0,1) distribution, while all other designs have a N(0.2,1)
distribution. The indifference amount d∗ is set to 0.2.

• Observations are i.i.d. uniform between a and b, denoted U(a,b). The best design has a U(0,1) distribution, while
all other designs have a U(0.1,1.1) distribution. The indifference amount d∗ is set to 0.1.

• Observations are i.i.d. exponential with mean µ , denoted expon(µ). The best design has an expon(1) distribution,
while all other designs have an expon(1.2) distribution. The indifference amount d∗ is set to 0.2.

Table 2 lists the experimental results. The P̂(CS) column lists the proportion of correct selection. The T column lists the
average of the number of total unbatched observations and batched observations (in parenthesis) used in each experimental
design. The stdv(T ) column lists the standard deviation of the number of total observations unbatched and batched (in
parenthesis) at each independent simulation run. The normal(20) row lists the results when the underlying distributions
are normally distributed and b0 = 20. All other rows are defined similarly. The observed P̂(CS)’s are around the specified
nominal value of 0.95. Since the procedure is derived based on the conservative Bonferroni Inequality, the P̂(CS)’s are
generally higher than the specified P∗ as the number of k increases. The obtained batch sizes are approximately 1.1, 2.0, and
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5.1, respectively, for normal, uniform, and exponential distributions. The procedure correctly increases the batch size as the
distributions depart farther away from the normal distribution. With α = 0.10 in the normality test, data that are normally
distributed will fail the test 10% of the time. The average batch sizes for normal distribution, 1.1, are close to the theoretical
value, i.e., ∑

∞
i=0 α i.

Table 2: Results of Experiment 1 - P̂(CS) of the independent processes with P∗ = 0.95

k = 2 k = 5
Distribution P̂(CS) T stdv(T ) P̂(CS) T stdv(T )
normal(20) 0.955 247 (220) 108 (101) 0.963 1148 (1016) 267 (260)
uniform(20) 0.946 96 (49) 30 (13) 0.975 405 (210) 86 (54)
expon(20) 0.954 323 (66) 149 (30) 0.971 1487 (308) 416 (98)
normal(180) 0.978 424 (360) 151 (0) 0.967 1252 (1074) 238 (127)
uniform(180) 1.000 732 (360) 257 (0) 1.000 1825 (900) 398 (0)
expon(180) 0.999 1911 (360) 944 (0) 0.995 4806 (900) 1566 (0)

In this setting, the required number of batches for each design is less than 180, except for k = 5 with normally distributed
samples. Hence, the procedure results in allocating a larger than necessary number of batches and achieving high precision
when the initial number of batches b0 is set to 180. With such a large initial number of batches, the procedure has selected
the best design at the initial iteration and no further simulation is required. Furthermore, many samples can be generated
simultaneously when deploying ranking and selection in a parallel and distributed environment (see Chen 2005).

4.2 Experiment 2

Goldsman et al. (2000) investigated the P(CS) and sample size with a series of pre-determined batch sizes. In order to
compare our results with theirs, we perform an experiment with a similar setting.

Suppose Xiι = µi + ϕ(Xiι−1− µi)+ εi, i = 1,2, . . . ,k, where εi ∼ N(0,1−ϕ2). We denote this sequence the AR1(ϕ)
processes, in which µ1 was set to 0, while µ2 = µ3 = · · · = µk = d∗. Note that the marginal variance of each system σ2

is 1. Let Ω2
1 be the steady-state variance constant of the best system. The indifference amount d∗ is set to

√
Ω2

1/70 and√
Ω2

1/1000, respectively, for ϕ = 0.3 and ϕ = 0.9. Note that for the AR1(ϕ) processes, the SSVC Ω2 = σ2(1+ϕ)/(1−ϕ).
Consequently, the indifference amounts are approximately 0.1629 and 0.1378, respectively, for ϕ = 0.3 and ϕ = 0.9.

Table 3 lists the experimental results. The b0 column lists the initial number of batches. The ϕ column lists the value
of the correlation coefficient. All other columns are as defined previously. The P̂(CS)’s are around the nominal value when
the auto-regressive sequences are pre-processed to become approximately i.i.d. normal batch means before used as input for
the selection procedure. The residual autocorrelations between BM may have caused the observed P(CS) to be lower than
desired when b0 = 20 and k = 2. If this is a concern, a lower confidence level for the test of independence can be used to
reduce the frequency of committing a Type II error.

Table 3: Results of Experiment 2 - P̂(CS) of the AR1(ϕ) processes with P∗ = 0.95

k = 2 k = 5
b0 ϕ P̂(CS) T stdv(T ) P̂(CS) T stdv(T )
20 0.3 0.939 629 (124) 319 (64) 0.953 2914 (581) 821 (171)

0.9 0.942 8684 (121) 4044 (62) 0.950 41767 (561) 11785 (161)
180 0.3 0.989 2121 (360) 1740 (0) 0.965 5198 (911) 2636 (29)

0.9 0.986 29016 (360) 17723 (0) 0.962 74892 (904) 27356 (14)

The observed average batch sizes are approximately 5 and 74, respectively, for ϕ = 0.3 and ϕ = 0.9. These results are
consistent with the results of Goldsman et al. (2000) because the batch sizes determined by the QIN procedure are close to
the pre-determined batch sizes with the allocated total unbatched observations and the observed P(CS).
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4.3 Experiment 3

In this experiment, the output data are not only correlated but also non-normal. Suppose Xiι = µi +ϕ(Xiι−1−µi)+εi−
√

1−ϕ2,
i = 1,2, . . . ,k, where εi ∼ expon(

√
1−ϕ2). We denote this sequence the EAR1(ϕ) (exponential AR1) processes, in which

µ1 was set to 0, while µ2 = µ3 = · · · = µk = d∗. The indifference amounts are set to approximately 0.1629 and 0.1378,
respectively, for ϕ = 0.3 and ϕ = 0.9.

Table 4 lists the experimental results. All Columns are as defined previously. The P̂(CS)’s are around the nominal value.
The observed average batch sizes are approximately 7 and 76, respectively, for ϕ = 0.3 and ϕ = 0.9. For a slightly correlated
sequence, i.e., ϕ = 0.3, the batch sizes for BM to appear to be i.i.d. normal are significantly different between the AR1 and
EAR1 processes. On the other hand, for a highly correlated sequence, i.e., ϕ = 0.9, the batch sizes for BM to appear to
be i.i.d. normal are approximately the same between the AR1 and EAR1 processes. It can be shown that the steady-state
distribution of the EAR1 process is a gamma distribution (see Lewis et al. 1989). As the correlation coefficient ϕ increases,
the shape parameter of the gamma distribution becomes larger, and the distribution has a higher degree of symmetry.

Table 4: Results of Experiment 3 - P̂(CS) of the EAR1(ϕ) processes with P∗ = 0.95

k = 2 k = 5
b0 ϕ P̂(CS) T stdv(T ) P̂(CS) T stdv(T )
20 0.3 0.947 671 (96) 305 (48) 0.956 3034 (433) 930 (132)

0.9 0.938 8990 (120) 4399 (61) 0.947 41820 (549) 10147 (159)
180 0.3 0.999 2842 (360) 1582 (0) 0.979 7382 (900) 3253 (2)

0.9 0.983 30824 (360) 17650 (0) 0.965 77072 (902) 27494 (9)

4.4 Experiment 4

Since batch means are often used to estimate the variance of sample means, we evaluate the accuracy of the c.i. constructed
by the QIN procedure. In these experiments, neither the relative precision nor the absolute precision are specified, so the
half width of the c.i. is the result of the default precision. In this experiment, we list the results of c.i. coverage when the
entire sequences are divided into 180 batches.

We test the procedure with the following three stochastic processes:

• The AR1(ϕ) processes are as defined in Section 4.2. We set µ to 2 in our experiments. We set X0 to a random
variate drawn from N(µ,1).

• The EAR1(ϕ) processes are as defined in Section 4.3. We set µ to 2 in our experiments. We set X0 to a random
variate drawn from gamma ((1+ϕ)/(1−ϕ),

√
(1−ϕ)/(1+ϕ)) plus µ−

√
(1+ϕ)/(1−ϕ), where gamma(a,b)

denotes a gamma distribution with shape parameter a and scale parameter b.
• Steady-state of the M/M/1 delay-in-queue processes has the arrival rate (λ ) and the service rate (µ = 1). This

process is denoted MM1(ρ), where ρ = λ/µ is the traffic intensity.

Table 5 lists the experimental results. The avg and stdv r rows list, respectively, the average relative precision and the
standard deviation of the relative precision of the estimator µ̂ . Here, the relative precision is defined as r = |µ̂−µ|/µ̂ . The T
and stdv(T ) rows list, respectively, the average sample size and the standard deviation of the sample size. The avg and stdv
bsize rows list, respectively, the average batch size and the standard deviation of the batch size obtained by the procedure.
The avg and stdv hw rows list, respectively, the average half width and the standard deviation of the half width obtained by
the procedure. The coverage row lists the percentage of the c.i.’s that cover the true mean. For these three tested processes,
the c.i. coverages are slightly below the specified 90% confidence level. Since the steady-state distribution of the AR1
process is normal, we believe that some of the batch means that passed the test of independence may be slightly correlated.
For the EAR1 and M/M/1-queuing processes, samples are not only highly correlated but also non-normal. Furthermore, the
steady-state distribution of the M/M/1-queuing processes is not only asymmetric but also discontinuous at x = 0. Hence,
the batch size for the M/M/1-queuing-processes BM to appear i.i.d. normal is significantly larger than the batch size for the
AR1 and EAR1 processes. In addition, some correlated batch means pass the test of independence and some non-normal
batch means pass the test of normality; thus, the coverage of the EAR1 and M/M/1-queuing processes is slightly lower than
that of the AR1 process.
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Table 5: Results of Experiment 4 - Coverage of 90% confidence intervals of correlated samples

Process AR1(0.9) EAR1(0.9) MM1(0.9)
µ 2.00 2.00 9.00

avg r 0.0160 0.0165 0.0121
stdv r 0.0134 0.0137 0.0103

T 14560 15250 3296931
stdv(T ) 12481 13028 2992981

avg bsize 80.9 84.7 18316
stdv bsize 69.3 72.4 16628

avg hw 0.0613 0.0607 0.202
stdv hw 0.0117 0.0121 0.0641
coverage 88.1% 85.4% 87.0%

We would like to point out that the average relative precisions of the mean estimator are within 2% and the average
half widths are around or within 3% of the mean. Hence, those c.i.’s that do not cover the true mean must have missed
it by only a small amount. Interested readers can see Chen and Kelton (2007) for some performance comparisons of QIN
against other batch-means procedures. Since the objective of the QIN procedure is to obtain approximately i.i.d. normal
batch means, it generally requires larger sample sizes and delivers tighter c.i.’s by default.

5 CONCLUSIONS

We have presented an algorithm for estimating the required batch size so that the batch means appear to be i.i.d. normal and
a strategy of incorporating the algorithm into selection procedures for comparing the means of several steady-state simulation
responses. The QIN algorithm works well in determining the required batch size for the batch means to become approximately
i.i.d. normal. Our approach has desirable properties; it is a sequential procedure and does not require users to have a priori
knowledge of values that the data might assume. Thus, the user can apply the ranking and selection procedures without
having to execute a separate pilot run to determine whether the raw samples appear to be i.i.d. normal. The experimental
evaluation reveals that the QIN procedure determines batch sizes that are sufficiently large for achieving approximately i.i.d.
normal batch means and adequate c.i. coverage.

The main advantage of the approach is its use of a straightforward test of independence and test of normality to obtain
approximately i.i.d. normal batch means. We can apply classical statistical techniques directly without more advanced
statistical theorems, thus making it easy to understand and simple to implement. The procedure estimates the required sample
size based entirely on data and does not require user intervention. Furthermore, it needs to process each observation only
once and does not require storing the entire output sequence. Clearly, we can increase the flexibility of selection procedures
by using the QIN procedure to pre-process the observations.

Some extensions of ranking and selection include selecting a (restricted) subset (Chen 2008, Chen 2009), comparison-
with-a-standard (control) and multiple comparisons (Chen 2006). Those procedures are also derived based on the assumption
that the input data are i.i.d. normal. Hence, the discussion in this paper can also be applied to those procedures. Instead of
selecting a single best design, the goal of subset selection is to select a subset of size m containing c of the v best from
k alternatives. In comparison with a standard (control), we compare a finite number of designs with respect to a single
standard (control). Multiple comparisons provide simultaneous c.i.’s on selected differences among the designs.
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