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ABSTRACT

We consider a problem that trades off cost of system design with the risk of that design, where risk is measured by the
probability of a bad event, such as system failure. Our interest lies in the problem class where we cannot evaluate this risk
measure exactly, even for a given system design. We approach this problem via a bicriteria optimization model, replacing the
risk measure by an Monte Carlo estimator and solving a parametric family of optimization models to produce an approximate
efficient frontier. Optimizing system design with the risk estimator requires solution of a mixed integer program. We show
that we can minimize risk over a range of cost thresholds or minimize cost over a range of risk thresholds and we examine
associated asymptotics. The proximity of the approximate efficient frontier to the true efficient frontier is established via an
asymptotically valid confidence interval with minimal additional work. Our approach is illustrated computationally using a
facility-sizing problem.

1 INTRODUCTION

We consider an optimization model in which we must design a system under two conflicting objectives. One goal is to
minimize the risk associated with the design, and the other goal is to minimize the design’s cost. We cannot evaluate exactly
the risk of a design, even when that design is fixed, and constrained minimization of risk is no easier. So, we replace the
risk measure with an estimator and construct an approximate, i.e., estimated, efficient frontier, trading off risk and cost. Our
risk measure is the probability of a “bad” event such as system failure or failure to have enough capacity to meet demand.
Such models are often formulated as probabilistically-constrained stochastic programs, i.e., models in which we minimize
cost subject to the probability of the bad event being at most ε , e.g., ε = 0.05. Alternatively, one can minimize risk subject
to a constraint on system cost. There is a rich literature on models with probabilistic constraints and objectives; see Prékopa
(1995).

We take the view that such problems are naturally bicriteria optimization models. A decision maker may wish to
understand the tradeoff between risk and cost, instead of fixing a risk (or cost) threshold a priori, and minimizing cost (or
risk). This perspective also has a rich history including Markowitz (1952) trading off risk, as measured by variance of a
financial portfolio’s return, with that portfolio’s mean return. More recent bicriteria optimization in stochastic programming
includes that of Ruszczyński and Vanderbei (2003) and Schultz and Tiedemann (2003). In our setting, unless the probability
distribution governing the randomness, along with the functions associated with the bad event, have a special form, we
cannot expect to evaluate precisely the risk measure, particularly in the multivariate setting. In this paper we replace the
risk measure with a Monte Carlo estimator, and use this estimator in our bicriteria optimization model. Our focus is on
constructing an approximate efficient frontier using a sampling-based approximation, and assessing the closeness of that
frontier to the true efficient frontier.

One approach to assessing the quality of a sampling-based approximation to a stochastic program is to form a confidence
interval on the optimality gap of a candidate solution (Mak, Morton, and Wood 1999, Bayraksan and Morton 2006). This type
of approach has been applied when minimizing risk, as measured by probability of a bad event, subject to a cost constraint
(Morton and Wood 1998, Morton, Popova, and Popova 2006), but unfortunately it does not apply when minimizing cost
subject to a probabilistic constraint on risk. An issue in the latter setting is that the probabilistically-constrained program
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may be infeasible but its sampling-based approximation feasible or vice versa. So, an alternate approach has been developed
to deal with this subtlety (Pagnoncelli, Ahmed, and Shapiro 2008, Luedtke and Ahmed 2008). As we show in this paper, the
simpler approach of Bayraksan and Morton (2006) can be applied to our bicriteria model when assessing the closeness of
the approximate efficient frontier to the true frontier. Moreover, we can form the approximate efficient frontier by solving a
sequence of sampling-based problems in which: (i) we minimize risk over a range of cost thresholds or (ii) we minimize
cost over a range of risk thresholds. Even though analysis of the latter problem (for a fixed risk threshold) is more difficult,
we show that we can employ either sampling-based approximation when constructing, and assessing the quality of, the
approximate efficient frontier.

There is a large literature on bicriteria, and multicriteria, optimization that goes much beyond what we have cited above.
See, for example, the books of Ehrgott and Gandibleux (2002), Pardalos, Siskos, and Zopounidis (1995), Steuer (1986), Yu
(1985), Zeleny (1982). Central to bicriteria optimization is the well-studied notion of Pareto optimality: Let h(x) and p(x)
be two objective functions that we seek to minimize simultaneously, subject to x ∈ X . This vector-minimization problem is
written

vminx∈X [h(x), p(x)] . (1)

A Pareto optimal solution, x ∈ X , is one for which it is impossible to decrease the value of h(x) without increasing the
value of p(x) and vice versa. Solving model (1) amounts to finding a family of decision vectors x ∈ X with the property
that there does not exist a decision vector x′ ∈ X such that h(x′)≤ h(x), p(x′)≤ p(x) and at least one of these inequalities
is strict. Hence, the optimal solution to the problem is a set of Pareto optimal decision vectors. A Pareto optimal solution
is also referred to as an efficient solution and if x is efficient, the pair [h(x), p(x)] is said to be on the efficient frontier of
the bicriteria optimization model. Thus, solving a bicriteria model yields the associated efficient frontier. We denote the
efficient frontier for the objective functions h(·) and p(·) by EF(h, p). The notion of efficient solutions, and of the associated
efficient frontier, extends to models with more than two objectives as detailed in the references cited above. That said, the
focus of this paper is restricted to bicriteria optimization.

2 TOWARDS SOLVING A PROBABILISTIC BICRITERIA MODEL

Consider the following facility-sizing problem: There are m facilities at which nonnegative capacities xi, i = 1, . . . ,m, are to
be installed. The random demand at facility i is denoted ξi, and the joint distribution of the random vector ξ = (ξ1, . . . ,ξm)
is assumed to be known. A realization ξ = (ξ1, . . . ,ξm) of the demand is said to be satisfied by the decision vector x if
xi ≥ ξi, for all i = 1, . . . ,m. Our goal comprises two objectives: keeping the cost of installation as well as the probability of
violating demand low.

More generally, let X ⊂ Rd constrain system design, let Ξ ⊂ Rm denote ξ ’s support, and let h : X → R denote cost.
Let G : X×Ξ→R`, C ⊂R` and let p(x) = P(G(x,ξ ) /∈C) denote risk, i.e., the probability of a bad event. Throughout, we
assume h and p are lower semicontinuous. These constructs define model (1), whose solution we approach via parametric
families of single-objective optimization models.

By enforcing a risk threshold, we obtain the family of probabilistically-constrained programs:

z∗c(ε) = min
x∈X

h(x) (2a)

s.t. P(G(x,ξ ) /∈C)≤ ε, (2b)

where ε is a risk-level parameter lying in a range [ε ,ε ]⊂ [0,1] of interest. Under fairly mild conditions—lower semicontinuity
of h plus X ∩{x : P(G(x,ξ ) /∈C)≤ ε} being nonempty and compact—there exists an optimal solution to model (2) that is
efficient. Conversely, if x is efficient for model (1) then x is optimal for model (2) when ε = p(x). In general, there may be
optimal solutions to (2) that are not efficient. This can occur when (2) has multiple optimal solutions that have distinct values
of p(·). In such cases, an additional step is required to minimize p(x) subject to the cost being equal to z∗c(ε). However,
we assume the probabilistic constraint (2b) is tight at all optimal solutions for all ε ∈ [ε ,ε ], eliminating the need for such
postprocessing. So, in principle we can solve model (1) over the range of risk tolerances of interest by solving model (2)
for all ε ∈ [ε ,ε ].
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We can swap the objective function and constraint in the approach sketched above, and alternatively consider the
parametric family of cost-constrained programs:

z∗p(t) = min
x∈X

P(G(x,ξ ) /∈C) (3a)

s.t. h(x)≤ t. (3b)

Analogous to our initial approach, we assume here that a range, [ t , t ], of cost thresholds of interest is known. (For consistency
we should have z∗p(t) = ε and z∗p(t) = ε .) As above, ranging t ∈ [ t , t ] and solving model (3) yields efficient solutions, and
the efficient frontier, provided constraint (3b) is tight at all optimal solutions. Under the tightness assumption, an obvious
correspondence exists between the two models: If (h(x), p(x)) is on the efficient frontier, it can be obtained by solving either
model (2) when ε = p(x) or model (3) when t = h(x).

When ξ is multivariate, and the probability distribution and the event {G(x,ξ ) /∈C} lack special form, solving either
model (2) or (3) exactly is impossible. We therefore resort to Monte Carlo sampling to approximate the two models. In other
words, we draw n independent and identically distributed (i.i.d.) observations from the distribution of ξ , denoted ξ 1, . . . ,ξ n,
and approximate model (2) by

z∗c(n,ε) = min
x∈X

h(x) (4a)

s.t.
1
n

n

∑
j=1
I(G(x,ξ j) /∈C)≤ ε, (4b)

and model (3) by

z∗p(n, t) = min
x∈X

1
n

n

∑
j=1
I(G(x,ξ j) /∈C) (5a)

s.t. h(x)≤ t, (5b)

where the indicator function I(·) takes value one if its argument is true and zero otherwise. We assume G and C are such
that the function I(G(·,ξ ) /∈C) is lower semicontinuous on X , w.p.1. (See, e.g., Pagnoncelli, Ahmed, and Shapiro (2008)
for conditions under which lower semicontinuity is ensured. Moreover, under the hypotheses of Theorem 1 in the next
section, lower semicontinuity of p(x) is ensured.) With the measure thus discretized, models (4) and (5) can be reformulated
as mixed integer programs. This said, differences between the two models are evident. It is enough to solve model (4)
for the subset of values of ε ∈ [ε ,ε ] such that εn is an integer. In model (5) however, the values of t ∈ [ t , t ] for which
constraint (5b) will be tight at an optimal solution are not known a priori. On the other hand, the objective function of
model (5) can only take on values 0,1/n,2/n, . . . and that fact can be exploited in specifying the termination criterion for
a branch-and-bound algorithm. Both models allow for tightening their linear-programming relaxations by means of valid
inequalities and preprocessing and are amenable to solution via special-purpose branching schemes; see Luedtke, Ahmed,
and Nemhauser (2007), Nehme and Morton (2009).

Before proceeding, we briefly review other approaches to forming, or partially forming, the efficient frontier. Two such
commonly-used approaches involve a composite weighted objective function and goal programming. In the former approach,
we solve

min
x∈X

λh(x)+(1−λ )p(x), (6)

for λ ∈ (0,1). Any optimal solution to (6) is an efficient point, but the converse does not hold. There may be points on the
efficient frontier that cannot be identified by solving (6). In goal programming, a threshold value is imposed on one of the
objective functions. The violation is then penalized in the objective function of the proxy model as shown below

min
x∈X

λh(x)+(1−λ )(p(x)− ε)+, (7)

for λ ∈ (0,1), where (·)+ = max{·,0}. Thus, a deviation from the threshold of ε to higher values is penalized. When p(x)
measures risk in the probabilistic sense defined above and ε = 0, model (7) reduces to (6). In any case, the goal programming
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approach suffers from the same inability to identify all points on the efficient frontier. This same issue arises when the
deviation of h(x) from a threshold is penalized instead.

Greis, Wood, and Steuer (1983) use the so-called Tchebycheff approach to multiple criteria optimization. Their algorithm
uses a result due to Steuer and Choo (1983) that shows how to generate all points on the efficient frontier by varying the cost
coefficients of a model that minimizes a Tchebycheff metric. Actual implementation discretizes the space of cost coefficients
to obtain a sufficiently dense and representative subset of the efficient frontier. Our approach is similar in spirit, at least in
the sense that it is only possible to vary ε or t over a finite subset during implementation. We guarantee convergence of the
approximate efficient frontier to the true efficient frontier while the Tchebycheff approach instead aims to work interactively
with the decision maker.

The use of a probabilistically-constrained program to find the efficient frontier of a related bicriteria optimization model
is not new. Since probabilistically-constrained programs are relevant in a wide variety of applications, a sizeable volume
of work has appeared along these lines in areas ranging from supply-chain management (Mishra et al. 2008) to portfolio
allocation (Sharma, Jana, and Sharma 2008) to transportation (Yang and Feng 2007). In many such works, the probabilistic
constraint is sufficiently simple that the approximations of the type we consider are unnecessary. However, we are concerned
with the situation where the probabilistic constraint does not admit a closed form. Furthermore, our risk function p(x) is,
in general, nonconvex, and so standard nonlinear programming techniques will not ensure an optimal solution.

3 ESTIMATING THE EFFICIENT FRONTIER: AN EQUIVALENCE RESULT

If we could solve model (2) exactly for ε ∈ [ε ,ε ] we would obtain the corresponding points on the efficient frontier EF(h, p)
via the pairs (z∗c(ε),ε) for ε ∈ [ε ,ε ]. Alternatively, if we could solve model (3) for t ∈ [ t , t ] we would obtain EF(h, p) via
(t,z∗p(t)), t ∈ [ t , t ]. Figure 1 depicts such an efficient frontier for the facility-sizing problem sketched at the beginning of
Section 2.

0.03 

0.035 

0.04 

0.045 

0.05 

0.055 

0.06 

0.065 

0.07 

0.075 

486 488 490 492 494 496 498 

P
ro

ba
bi

lit
y 

of
 V

io
la

tio
n,

 p
(x

) 

Cost of Installation, h(x) 

Figure 1: Efficient Frontier for a Capacity Expansion Problem

Let ε ∈ (ε,ε), fix the i.i.d. sample ξ 1, . . . ,ξ n from the distribution of ξ and consider model (4), where we may assume
ε = r/n for some positive integer r. We assume that model (4) is feasible and that at any optimal solution, constraint (4b) is
tight. In general, there may not exist an optimal solution at which (4b) is tight. If this is the case, then we replace r by the
largest positive integer smaller than r such that there exists an optimal solution to model (4) with constraint (4b) being tight.
Our assumption that (4b) is tight at every optimal solution implies that every optimal solution is on the efficient frontier
EF(h, pn), where pn(x) = n−1

∑
n
j=1 I(G(x,ξ j) /∈C). In addition to z∗c(n,r/n) denoting the optimal value of model (4) with

ε = r/n, we use X∗c (n,r/n) to denote model (4)’s set of optimal solutions, i.e., X∗c (n,r/n) is the set of decisions x at which
h(x) = z∗c(n,r/n) and pn(x) = r/n.

Now, consider model (5) with t = z∗c(n,r/n) and for the same sample ξ 1, . . . ,ξ n used to define model (4). Every solution
in X∗c (n,r/n) is feasible for model (5) and has the same objective function value of r/n. If model (5) were to have a feasible
solution with an objective function value less than r/n this would contradict our tightness assumption. Similarly, if model
(5) has an optimal solution at which constraint (5b) is not tight, then the optimal objective function value for model (4) is
less than z∗c(n,r/n), a contradiction. It follows that X∗c (n,r/n) is the set of optimal solutions, and r/n is the optimal value,
for model (5).
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The above argument establishes the following notion of equivalence between models (4) and (5): Varying ε in the set
En = {bεnc/n,(bεnc+1)/n, . . . ,bεnc/n} and solving model (4) is equivalent to varying t in the set Tn = {z∗c(n,ε) | ε ∈ En}
and solving model (5). In what follows, we exploit this equivalence between models (4) and (5).

4 ASYMPTOTIC ANALYSIS AND CONSTRUCTION OF CONFIDENCE INTERVALS

4.1 Asymptotics

We cannot construct the efficient frontier EF(h, p) exactly. Instead, we employ Monte Carlo approximations and hence we
are interested in asymptotic results as the sample size n grows large for models (4) and (5). Both models are amenable to
such analyses, but the analysis of model (5) is arguably simpler, both in the nature of the results we achieve and in the
assumptions required to ensure those results. When randomness appears in the constraints we are unsure whether a solution
to a Monte Carlo approximation will be feasible to the original problem. In the models we consider, feasibility is ensured
for a solution from (5), and we can focus on whether such a solution is near-optimal. For these reasons, we restrict attention
to asymptotic results for model (5), and we point to Pagnoncelli, Ahmed, and Shapiro (2008) for asymptotic analysis of (4).

The notion of epiconvergence of the approximating objective function to the true objective function, denoted pn(x)
epi→ p(x)

in the context of models (3) and (5), is central to establishing such results. The following result is a special case of a theorem
due to Attouch and Wets (1991), adapted to our setting:

Theorem 1. Let ξ 1, . . . ,ξ n be i.i.d. from the distribution of ξ , assume {x ∈ X : h(x)≤ t} 6= /0, and assume I(G(·,ξ ) /∈C) is
lower semicontinuous on X for all ξ ∈ Ξ. Then,

pn(x)≡ n−1
n

∑
j=1
I(G(x,ξ j) /∈C)

epi→ P(G(x,ξ ) /∈C)≡ p(x),w.p.1.

Moreover, if x∗p(n, t) solves (5) then every limit point of {x∗p(n, t)} solves (3), w.p.1. Finally, if {x ∈ X : h(x)≤ t} is compact
then limn→∞ z∗p(n, t) = z∗p(t), w.p.1.

Theorem 1 asymptotically justifies approximating the efficient frontier via model (5) in two senses: (i) Solving (5) with
sample size n and budget t, for which constraint (5b) is tight (for all n) yields a solution x∗p(n, t). Theorem 1 shows that if
x̂p(t) is a limit point of {x∗p(n, t)} then x̂p(t) solves (3) and hence is efficient, i.e., (h(x̂p(t)), p(x̂p(t)) is on EF(h, p), with
h(x̂p(t)) = t, w.p.1; (ii) When solving (5) we obtain optimal value z∗p(n, t) and Theorem 1 states that z∗p(n, t) converges to
z∗p(t), w.p.1., where (t,z∗p(t)) is on the efficient frontier. Result (i) is of primary importance because of foremost concern is
the decision we implement, but we will see shortly the importance of (ii). Also, these results extend to the case where we
replace t with {tn} that converges to t, and this is of interest for reasons sketched at the end of Section 3, where t ∈ Tn.
When we solve model (5) for finite n and for a range of t ∈ Tn we obtain (h(x∗p(n, t)), p(x∗p(n, t)) and (t,z∗p(n, t)). We refer
to the former as the approximate efficient frontier and the latter as the pseudo efficient frontier. Next, we show how the
pseudo and approximate efficient frontiers allow us to form a confidence interval (CI) about EF(h, p). Finally, we know by
the equivalence result of Section 3 that when we speak of solving model (5) for t ∈ Tn, we can instead solve model (4) for
ε ∈ En.

4.2 Confidence Intervals

The asymptotic results of Theorem 1 justify approximating efficient solutions and the efficient frontier via our Monte Carlo
approach, at least in the limit as n grows to infinity. However, this result provides little insight regarding the proximity
of the approximate (and pseudo) efficient frontier to the true efficient frontier when we solve a family of Monte Carlo
approximations with n finite. For a fixed t and fixed n, if the optimality gap of model (3), p(x∗p(n, t))− z∗p(t), is small then
x∗p(n, t) is near efficient. To estimate this gap, we first estimate p(x∗p(n, t)) via the sample mean

pn′(x
∗
p(n, t)) = (n′)−1

n′

∑
j=1
I(G(x∗p(n, t),ξ j) /∈C).
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Here, the sample ξ 1, . . . ,ξ n′ is i.i.d. from the distribution of ξ and is independent of that used to find x∗p(n, t). Moreover, we
can choose n′� n because forming pn′(x∗p(n, t)), given x∗p(n, t), simply requires a function evaluation of G and the associated
feasibility check, i.e., it does not involve solving a mixed-integer program, as is required to form x∗p(n, t). We use z∗p(n, t) to
estimate z∗p(t). In addition to Theorem 1’s asymptotic result, we know Ez∗p(n, t)≤ z∗p(t) (Mak, Morton, and Wood 1999, Norkin,
Pflug, and Ruszczyński 1998). So, our point estimate of the optimality gap is [pn′(x∗p(n, t))−z∗p(n, t)]+ ≥ pn′(x∗p(n, t))−z∗p(n, t),
and Epn′(x∗p(n, t))−Ez∗p(n, t)≥ p(x∗p(n, t))− z∗p(t).

We use this estimator to construct a one-sided CI, providing an upper bound on the optimality gap. Towards this end,
we write x∗n for x∗p(n, t), z∗n for z∗p(n, t) and z∗ for z∗p(t) for ease of notation. We have from the standard central limit theorem
(CLT) for the sample mean of i.i.d. random variables that, as n′→ ∞,

√
n′ [pn′(x

∗
n)− p(x∗n)] ⇒ σN(0,1), (8)

where σ2 = p(x∗n)(1− p(x∗n)), N(0,1) is a standard normal random variable and “⇒” denotes convergence in distribution.
By the strong law of large numbers, limn′→∞ pn′(x∗n)→ p(x∗n), w.p.1, and so, by Slutsky’s theorem, we can estimate the
population variance and obtain

lim
n′→∞

P

p(x∗n)≤ pn′(x
∗
n)+ zα/2

[
pn′(x

∗
n)(1− pn′(x

∗
n))/n′

]1/2︸ ︷︷ ︸
εu

= 1− α

2
, (9)

where zα/2 is the 1−α/2 quantile of the standard normal distribution.
Next, consider the limiting distribution of n1/2 (z∗n− z∗). Let x∗ be an optimal solution to (3). Using the fact that x∗

is feasible, but suboptimal, for model (5), we have z∗n ≤ pn(x∗), where the same ξ 1, . . . ,ξ n are used to define these two
estimators. Hence,

P
(

z∗ ≥ z∗n− zα/2 [z∗n(1− z∗n)/n]1/2
)
≥ P

(
z∗ ≥ pn(x∗)− zα/2 [z∗n(1− z∗n)/n]1/2

)
. (10)

Under the hypotheses of Theorem 1, z∗n→ z∗, w.p.1, as n→ ∞. Again employing Slutsky’s theorem and the standard CLT
for the sample mean of i.i.d. random variables, coupled with (10), we have

lim
n→∞

P

z∗ ≥ z∗n− zα/2 [z∗n(1− z∗n)/n]1/2︸ ︷︷ ︸
ε`

≥ lim
n→∞

P
(

z∗ ≥ pn(x∗)− zα/2 [z∗n(1− z∗n)/n]1/2
)

= 1− α

2
. (11)

We write “= 1− α

2 ” in both (9) and (11) and this is correct, provided p(x∗n) ∈ (0,1) and z∗ ∈ (0,1). Otherwise, we can
replace “=” with “≥” and have a valid statement. In any case, using the Boole-Bonferroni inequality we can infer from (9)
and (11) that when n and n′ are sufficiently large

P
(

p(x∗n)− z∗ ≤ [pn′(x
∗
n)− z∗n]

+ + ε` + εu
)

' 1−α, (12)

where “'” is interpreted as “approximately greater than or equal to.”
Summarizing in unabridged notation our procedure for forming a CI about the efficient frontier for a fixed t we have:

Input: Cost budget t, value α (e.g., α = 0.10), sample size n for model (5) and sample size for upper bound n′.
Output: Solution x∗p(n, t) with approximate (1−α) CI on its optimality gap.
Step 1. Sample ξ 1, . . . ,ξ n i.i.d. from the distribution of ξ . Form and solve (5) to obtain x∗p(n, t) and z∗p(n, t).
Step 2. Sample ξ 1, . . . ,ξ n′ i.i.d. from the distribution of ξ , and independent of that in step 1. Form

pn′(x
∗
p(n, t)) = (n′)−1

n′

∑
j=1
I(G(x∗p(n, t),ξ j) /∈C) (13)
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and

ε` = zα/2
[
z∗p(n, t)(1− z∗p(n, t))/n

]1/2 (14a)

εu = zα/2
[
pn′(x

∗
p(n, t))(1− pn′(x

∗
p(n, t)))/n′

]1/2
, (14b)

and output x∗p(n, t) and a one-sided CI on its optimality gap

[pn′(x
∗
p(n, t))− z∗p(n, t)]+ + ε` + εu.

Restating our main confidence interval result (12), in our unabridged notation, we have

P
(

p(x∗p(n, t))− z∗p(t)≤ [pn′(x
∗
p(n, t))− z∗p(n, t)]+ + ε` + εu

)
' 1−α. (15)

We could use Student t quantiles in (14), but for the sample sizes we have in mind, they are practically identical to normal
quantiles. We employ the above procedure in our computations to derive approximate confidence bounds on the proximity
of our Monte Carlo approximation to the efficient frontier. Importantly, the effort to form the confidence interval, beyond
solving the Monte Carlo approximation itself, is minimal. Specifically, the additional work simply involves forming estimator
(13) and the sampling error estimates (14).

5 FACILITY-SIZING PROBLEM

We now return to the facility-sizing model sketched at the beginning of Section 2. The cost of installing capacities
x = (x1, . . . ,xm) is h(x) = ∑

m
i=1 cixi and the risk of failing to satisfy demand ξ = (ξ1, . . . ,ξm) is p(x) = P(ξ � x), and our

additional constraints on x are simply X = {x : x≥ 0}. We assume the unit costs coefficients ci, i = 1, . . . ,m, are positive.
So, our bicriteria model (1) specializes to

vminx≥0

[
m

∑
i=1

cixi, P(ξ � x)

]
. (16)

Models (2) and (3) specialize to

z∗c(ε) = min
x≥0

m

∑
i=1

cixi (17a)

s.t. P(ξ � x)≤ ε, (17b)

and

z∗p(t) = min
x≥0

P(ξ � x) (18a)

s.t.
m

∑
i=1

cixi ≤ t. (18b)

The sampling-based approximations, models (4) and (5), become the following mixed-integer programs

z∗c(n,ε) = min
x,y

m

∑
i=1

cixi (19a)

s.t.
1
n

n

∑
j=1

y j ≤ ε, (19b)

xi ≥ ξ
j

i (1− y j), i = 1, . . . ,m, j = 1, . . . ,n, (19c)
y j ∈ {0,1}, j = 1, . . . ,n, (19d)
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and

z∗p(n, t) = min
x,y

1
n

n

∑
j=1

y j (20a)

s.t.
m

∑
i=1

cixi ≤ t, (20b)

xi ≥ ξ
j

i (1− y j), i = 1, . . . ,m, j = 1, . . . ,n, (20c)
y j ∈ {0,1}, j = 1, . . . ,n, (20d)

where y j indicates whether we satisfy (y j = 0) or fail to satisfy (y j = 1) demand realization ξ j = (ξ j
1 , . . . ,ξ j

m) with facility
sizes x = (x1, . . . ,xm). Constraints (19c) and (20c) use the fact that demand is nonnegative and these constraints also absorb
x ≥ 0. We note that p(x) = 1−P(ξ ≤ x) is a continuous function if the random vector ξ has a continuous distribution.
In this case, when using model (20) to approximate EF(h, p), we have, in addition to the conclusions of Theorem 1,
limn→∞ p(x∗p(n, t)) = z∗p(t), w.p.1.

In Section 3, we showed that models (4) and (5) have the same set of optimal solutions for pairs of ε ∈ En and t ∈ Tn.
A key assumption in establishing this equivalence was that at any optimal solution solution to model (4), constraint (4b) is
tight. We now show that this holds for the facility-sizing model (19), provided ξ has a continuous distribution.

Theorem 2. Consider model (19) with t > 0, ci > 0, i = 1, . . . ,m, and demand realizations ξ j = (ξ 1
1 , . . . ,ξ j

m), j = 1, . . . ,n.
Assume that for each i, ξ

j
i , j = 1, . . . ,n, are distinct and positive. Let ε = r/n, where r ∈ {0,1, . . . ,n}. Then, constraint (19b)

is tight at every optimal solution of model (19).

Proof. The claim is immediate if r = 0 and so assume r ≥ 1. Let J = {1, . . . ,n} index the samples, and for x ≥ 0 let
J+(x) = { j : xi ≥ ξ

j
i , i = 1, . . . ,m} index the demand realizations that are satisfied by x and let J−(x) = J \J+(x) index those

x fails to satisfy. Let (x∗,y∗) be an optimal solution to (19). So, y∗j = 0 for j ∈ J+(x∗) and y∗j = 1 for j ∈ J−(x∗), and

|J−(x∗)| ≤ r. Solution x∗ satisfies x∗i = max j∈J+(x∗) ξ
j

i : We must have x∗i ≥ max j∈J+(x∗) ξ
j

i in order for realization j to be
satisfied, and x∗ is not optimal if for some i, x∗i > max j∈J+(x∗) ξ

j
i because we can reduce x∗i to max j∈J+(x∗) ξ

j
i , remain feasible

and decrease the objective function by ci

(
x∗i −max j∈J+(x∗) ξ

j
i

)
> 0.

Constraint (19b) being tight at x∗ means |J−(x∗)| = r. Suppose this does not hold, i.e., |J−(x∗)| < r. This implies
|J+(x∗)| > n− r. Let j(i) = argmax j∈J+(x∗)ξ

j
i . Note that for each i, j(i) is uniquely determined, given x∗, because ξ

j
i ,

j = 1, . . . ,n, are distinct. Now, we can select any i, say i = 1, and define

x′ =
(

max
j∈J+(x∗)\ j(1)

ξ
j

1 ,x∗2, . . . ,x
∗
m

)
,

where max j∈ /0(·) ≡ 0. Note J−(x′) = J−(x∗)∪{ j(1)} so that |J−(x′)| = |J−(x∗)|+ 1, again because ξ
j

1 , j = 1, . . . ,n are
distinct, So (x′,y′), where y′j = 0 for j ∈ J+(x′) and y∗j = 1 for j ∈ J−(x′) is feasible to (19) and decreases the objective
function by c1 (x∗1− x′1) > 0. This contradicts optimality of x∗ and proves the claim.

6 COMPUTATIONAL RESULTS

We consider the following instance of the facility-sizing model. There are m = 40 facilities with a per unit cost of installing
capacity of ci = 1 for each facility. The demand vector ξ is assumed to be multivariate normal with all components having
a mean 10, variance 1 and all pairwise correlation coefficients equal to 0.8. Formally, the demand vector is a truncated
normal so that it is nonnegative.

While model (20), which is the specialization of model (5), provides the framework for the asymptotic analysis of
Section 4, we observed computationally that model (19) solves more quickly than model (20), particularly for large values
of n. The results of Section 3 justify employing either model and so we took advantage of model (19) in our computations.
We use the tightened reformulation of this mixed integer program, along with valid inequalities, discussed in Nehme and
Morton (2009). Finally, we use a sample size of n′ = 200000 to estimate p(x∗p(n, t)). We run the procedure outlined in

501



Rengarajan and Morton

Section 4 for different values of cost, and use the same set of n observations and the same independent set of n′ observations
for each instance.

Table 1 and Figure 2 show the values of z∗p(n, t) and pn′(x∗p(n, t)) for varying values of t. For a given n, the pair
(t,z∗p(n, t)) lies on EF(h, pn), and the tradeoff between the two objectives is observable. For a fixed value of t, we see
that z∗p(n, t) increases with n in most cases. This trend is consistent with that suggested by Ez∗p(n, t)≤ Ez∗p(n+1, t) (Mak,
Morton, and Wood 1999, Norkin, Pflug, and Ruszczyński 1998). When n is small the point estimate of the optimality gap
estimate [pn′(x∗p(n, t))− z∗p(n, t)]+ is relatively large, and this difference shrinks as n grows. Putting aside sampling error for
a moment, two factors contribute to this: The suboptimality of solution x∗p(n, t) in model (18), p(x∗p(n, t))− z∗p(t), and the
bias of the lower-bound estimator z∗p(t)−Ez∗p(n, t). Of course, we do not know z∗p(t) but Figure 3 shows how pn′(x∗p(n, t))
tends to shrink and z∗p(n, t) tends to grow with n for a specific value of t. This plot suggests that z∗p(n, t) is growing at a faster
rate than pn′(x∗p(n, t)) is shrinking, and this indicates bias is likely the dominant contributor. This same effect can be seen
in Figure 2, where there tends to be a larger gap between the pseudo efficient frontier plots than those of the approximate
efficient frontier, as n grows. As indicated above, the pseudo efficient frontier tends to grow in n for fixed t, and because
the same sample is used when n is fixed, it necessarily shrinks in t for fixed n. While a similar tendency is present, this
type of monotonicity is not ensured for the approximate efficient frontier as this involves an “out-of-sample” assessment,
pn′(x∗p(n, t)).

Table 1: Values of z∗p(n, t) and pn′(x∗p(n, t)) for varying values of cost of installation t

t n = 500 n = 1000 n = 2000 n = 5000 n = 10000 n = 25000
z∗p(n, t) pn′ (x∗p(n, t)) z∗p(n, t) pn′ (x∗p(n, t)) z∗p(n, t) pn′ (x∗p(n, t)) z∗p(n, t) pn′ (x∗p(n, t)) z∗p(n, t) pn′ (x∗p(n, t)) z∗p(n, t) pn′ (x∗p(n, t))

486 0.062 0.111 0.072 0.108 0.081 0.106 0.089 0.102 0.095 0.1 0.096 0.098
488 0.052 0.101 0.063 0.1 0.072 0.095 0.081 0.094 0.086 0.092 0.089 0.091
490 0.044 0.095 0.056 0.090 0.064 0.087 0.073 0.085 0.078 0.083 0.082 0.083
492 0.038 0.086 0.050 0.082 0.057 0.079 0.065 0.077 0.069 0.075 0.073 0.074
494 0.034 0.082 0.044 0.078 0.051 0.074 0.058 0.070 0.062 0.068 0.066 0.067
496 0.028 0.075 0.038 0.070 0.045 0.068 0.051 0.063 0.055 0.062 0.059 0.060
498 0.024 0.070 0.033 0.063 0.040 0.059 0.046 0.058 0.050 0.056 0.053 0.055
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Figure 2: Approximate and Pseudo Efficient Frontiers for Varying Sample Sizes n

Approximate 90% confidence bounds are reported in Table 2 for n = 25000 and n′ = 200000. Sampling error associated
with pn′(x∗p(n, t)), εu, is about 0.001 while that for z∗p(n, t), ε` is between 0.002 and 0.003. For smaller values of n, the
confidence interval on the optimality gap is dominated by the point estimate of the gap, [pn′(x∗p(n, t))− z∗p(n, t)]+. However,
for n = 25000, i.e., for the values listed in Table 2 this point estimate of the optimality gap and the sampling error are of
comparable magnitude.
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Table 2: Confidence bounds for p(x∗p(n, t)), z∗p(t) and the optimality gap p(x∗p(n, t))− z∗p(t), when n = 25000

t z∗p(n, t)− ε` pn′ (x∗p(n, t))+ εu Optimality Gap

486 0.093 0.099 0.006
488 0.086 0.092 0.006
490 0.079 0.084 0.005
492 0.070 0.075 0.005
494 0.063 0.068 0.005
496 0.057 0.061 0.004
498 0.051 0.055 0.004
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Figure 3: Approximation of Efficient Frontier for t = 486: Lower Line is z∗p(n, t) and Upper Line is pn′(x∗p(n, t)) with
n′ = 200000

Figure 3 shows the upper and lower confidence bounds for varying sample sizes and for a fixed cost. The size of the
error term for the lower bound decreases proportional to 1/

√
n, with the growing sample size n. The size of the error term

for the upper bound is of course unaffected by increasing sample sizes and is much smaller than that for the lower bound
due to the large sample size n′ used to evaluate pn′(x∗p(n, t)).

7 CONCLUDING REMARKS

We have examined a class of bicriteria optimization problems that trade-off risk and cost of system design. Risk is measured
as the probability of a bad event, such as system failure or inability of the system to meet random demand. The paper has
focused on the situation where we cannot evaluate this risk measure exactly even for a specified system design. Optimization
of that risk measure is no easier. We estimated the risk measure via Monte Carlo sampling and proposed solving a parametric
family of optimization models to produce an approximate efficient frontier. In general, asymptotics, and solution-quality
assessment, associated with probabilistically-constrained models is more difficult than that for a model with a probabilistic
objective function and deterministic constraints. In the bicriteria setting, we show an equivalence result between minimizing
risk over a range of cost thresholds and minimizing cost over a range of risk thresholds. We establish the proximity of
the approximate efficient frontier to the true efficient frontier via an asymptotically valid confidence interval with minimal
additional work. We illustrated our approach using a facility-sizing problem.
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