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ABSTRACT

When one models dependence solely via correlations, portfolio allocation models can perform poorly. This motivates considering
dependence measures other than correlation. Cointegration is one such measure that captures long-term dependence. In this
paper we present a new method to simulate cointegrated sample paths using the vector auto-regressive-to-anything (VARTA)
algorithm. Our approach relies on new properties of cointegrated time series of financial asset prices and allows for marginal
distributions from the Johnson system. The method is illustrated on two data sets, one real and one artificial.

1 INTRODUCTION

The recent financial crisis and the collapse of the hedge fund Long Term Capital Management in 1998 have shown the
importance of correctly modeling the dependence between financial time series. When a large systematic shock affects the
entire financial system, correlation becomes an inferior tool for risk management. The standard approach used in financial
portfolio construction and management is based on the mean-variance methodology developed by Markowitz (1952). One
of its important inputs is the covariance matrix (and as a consequence, correlation) of the financial returns. There are a
variety of approaches designed to yield better estimates of these parameters. Another approach is based on maximizing the
investor’s utility function. Popova et al. (2007) used a combination of simulation and optimization to obtain solutions of
such a stochastic optimization model for a family of utility functions. One important step in their approach is simulation
of the possible future scenarios that are used in the optimization model. Given the current events in the financial markets,
this paper focuses on creating a model for scenario simulation that is rooted in preserving long-term trends in financial time
series.

A measure of long-term dependencies in financial time series is cointegration. Since the seminal work of Engle and
Granger (1987, 1991), a number of researchers in finance and economics have used cointegration to model dependencies
between security prices. Several statistical tests for cointegration have been developed (Engle and Granger 1991). Tsay (2005)
presented numerous examples and a detailed justification for using cointegration in modeling financial time series. Alexander
et al. (2002) used cointegration to construct an index-tracking portfolio. They showed that the optimal index-tracking
portfolio has stationary tracking errors, and that efficient long-short hedge strategies can be achieved with relatively few
stocks and less turnover. Alexander (2001) discussed in detail relevant published work in finance that used different properties
of cointegration for portfolio optimization or the construction of trading strategies. In summary, published work on the use
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of cointegration in portfolio construction—specifically on constructing time-dynamic trading strategies—is limited mainly
to those aforementioned.

To better understand the relationship between cointegration and asset allocation, we need to first describe two methods
for asset allocation. The process of selecting a target asset allocation or index is called strategic asset allocation. The
variation from the target is called tactical asset allocation. One can think of strategic asset allocation as a process of selecting
the appropriate benchmark for a portfolio. For example, pension plans regularly go through such a benchmark-selection
process in order to establish their investment policies. Tactical asset allocation is usually identified with active portfolio
management. For example, how one should maintain the allocation of sixty percent stocks and forty percent bonds over
time comes into question.

Available research investigating the relationship between cointegration and asset allocation shows that cointegration affects
strategic asset allocation. In other words, the decision about optimal portfolio mix (or setting the appropriate benchmark)
is influenced by the common stochastic trend between assets. Lucas (1997) presented a model where a portfolio manager
maximized expected utility of total earnings over a finite time period. The associated time-series model captured cointegrating
relations among the assets. He showed that cointegration affects strategic asset allocation while error-correction mainly
affects tactical asset allocation.

Using cointegration for portfolio allocation implies the existence of a long-term stochastic trend. In general, this
contradicts one of the commonly-used hypotheses in finance, i.e., that stock-price returns follow a random walk. Lo and
MacKinley (1988) tested the random-walk hypothesis with weekly stock market returns, by comparing variance estimators
derived from data sampled at different frequencies. If the stock returns followed a random walk, then the variance should
have grown with the square root of time. They rejected the random-walk hypothesis and showed that the rejection was due
largely to the behavior of small stocks. Additionally, they showed that the autocorrelations of individual securities were
generally negative, and the autocorrelations of equally and positively weighted CRSP (Center for Research in Security Prices)
indices were positive.

In this paper we create a special input for the vector autoregressive-to-anything (VARTA) model of Biller and Nelson
(2003), in order to simulate sample paths that preserve the cointegration property of financial time series. This new tool
can be used to construct optimal portfolios using a variety of utility functions as well as to design trading strategies for
index tracking. The focus of this paper is on simulating cointegrated time series via VARTA, and such applications will be
addressed in future research.

2 COINTEGRATED FINANCIAL TIME SERIES

Portfolio allocation models, like the mean-variance model introduced by Markowitz (1952), and models that use value-at-risk
introduced by Jorion (2001), include a measure of the risk associated with the set of assets being considered. The standard
measure is based on the corresponding covariance (or equivalently, the correlation) matrix. The covariance between two
random vectors X and Y is given by

Cov(X ,Y ) = E
{

(X−E[X ]) (Y −E[Y ])T
}

,

where E[X ] stands for the expected value of the random vector X , and T denotes the transpose operator. It is well documented
that the covariance (or correlation) is a measure of short-term linear dependencies; see, e.g., Theorem 4.5.7 in Casella and
Berger (2002).

In contrast to correlation, cointegration is a measure of long-term dependencies, see Engle and Granger (1991). We will
briefly outline the notion of cointegration. In order to do so, we need to first define stationary and integrated time series.

A stochastic process Yt is stationary if its first and second moments are time invariant: in particular if E[Yt ] = µ , ∀t
and E[(Yt −µ)(Yt−h−µ)T ] = ΓY (h) = ΓY (−h)T , ∀t,h = 0,1,2, . . ., where µ is a vector of finite mean terms, and ΓY (h) is a
matrix of finite covariances. Such a process is known as integrated of order 0 and denoted by I(0). A univariate process
is called integrated of order d, I(d), if in its original form it is non-stationary but becomes stationary after differencing d
times. If all elements of the vector Xt are I(1), and there exists a vector b such that bT Xt is I(0), then the vector process
Xt is said to be cointegrated, and b is called the cointegrating vector. For example, two univariate time series X and Y are
cointegrated if X ,Y are I(1), and there exists a scalar b such that Z = X−bY is I(0).

Assume that we have N ≥ 2 cointegrated financial assets, and their log-prices are I(1) (integrated of order 1) processes.
It is widely assumed that stock returns are integrated of order 0, whereas stock prices are integrated of order 1 (Alexander
et al. 2002).
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Denote the vector of the asset prices at time t by Pt = (P1
t , . . . ,PN

t ). Pi
t = Pi

0e∑
t
j=0 ri

j , i = 1, . . . ,N, where r = (r1
t , . . . ,r

N
t )

denotes the continuously compounded asset returns, and P1
0 , . . . ,PN

0 are the initial prices. Without loss of generality, we
assume that P1

0 = · · ·= PN
0 = 1 so that the log-prices can be written as lnPi

t = ∑
t
j=0 ri

j, i = 1, . . . ,N. Denote the corresponding
cointegrating vector b = (b1, . . . ,bN). By the definition of cointegration, the resulting time series Yt = ∑

N
i=1 bi lnPi

t is stationary
and integrated of order 0. Galenko (2008) proved the following results.

Proposition 1. Assume that the log prices of N ≥ 2 assets, lnPi, i = 1, . . . ,N, are cointegrated with cointegrating vector
b. Let Yt = ∑

N
i=1 bi lnPi

t be the corresponding stationary series, and (r1
t , . . . ,r

N
t ) be the continuously compounded asset

returns at time t > 0. Define Zt = Yt−Yt−1 = ∑
N
i=1 biri

t . If limp→∞ Cov[Yt ,Yt−p] = 0, then
∞

∑
p=1

pCov[Zt ,Zt−p] =−VarYt , where

Cov[Zt ,Zt−p] = ∑
N
i=1 ∑

N
j=1 bib jCov[ri

t ,r
j
t−p].

Proposition 2. Assume lnPi
t , i = 1, . . . ,N, are the log-prices of N assets, and (r1

t , . . . ,r
N
t ) denotes the continuously compounded

asset returns at time t > 0. For some finite vector b, the process Yt = ∑
N
i=1 bi lnPi

t , given lim
p→∞

Cov[Yt ,Yt−p] = 0, is stationary,

and therefore the time series of the assets’ log-prices are cointegrated, if and only if the process Zt = ∑
N
i=1 biri

t has the
following three properties:

(i) EZt = 0,
(ii) VarZt =−2∑

∞
p=1 Cov[Zt ,Zt−p], and

(iii) ∑
∞
p=1 pCov[Zt ,Zt−p] < ∞.

In what follows, we use the results of Propositions 1 and 2 to create special input for VARTA in order to form simulated
sample paths that preserve the cointegrated property of the underlying time series. We first give a brief introduction to the
VARTA algorithm.

3 VECTOR AUTOREGRESSIVE TO ANYTHING (VARTA)

VARTA simulates stationary multivariate time-series processes with marginal distributions from the Johnson translation
system (Johnson 1949) and a specified autocorrelation structure. Such a multivariate process can be simulated by generating
a base Gaussian vector autoregressive process whose autocorrelation structure is adjusted in such a way that after inverse
transformation of the base process we obtain a time series with the specified Johnson marginal distribution and the desired
autocorrelation structure.

In general, the Johnson translation system for a random variable Z is defined by a cumulative distribution function that
has the form

FZ(z) = Φ(γ +σ f [(z−ξ )/λ ]) , (1)

where γ and σ are shape parameters, ξ is a location parameter, λ is a scale parameter, Φ is the normal distribution function,
and f (·) is one of the following transformations:

f (y) =


log(y) for the lognormal family,

log(y+
√

y2 +1) for the unbounded family,
log( y

1−y ) for the bounded family,

y for the normal family.

In this paper we use the unbounded Johnson system family to model financial asset returns.
Below is the VARTA algorithm applied to our problem:

• step 1: Estimate the parameters of the Johnson distribution for each component of the original process lnPt and the
specified autocorrelation lag p.

• step 2: Estimate the parameters of the base Gaussian process Zt = ∑
p
j=1 α jZt− j + ut , where Zt is the vector of

observations at time t (lnPt in our case), α j, j = 1, . . . , p are the autoregressive coefficients, and ut is white noise.
• step 3: Simulate Zt .
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• step 4: Transform the generated base process into the original process with specified marginals by taking the inverse
Johnson cumulative distribution function of the simulated values.

In step 1, we estimate the Johnson system parameters, γ , σ , ξ and λ , via weighted least squares (Swain et al. 1988),
although there are several estimation methods that one can use; see Hill et al. (1976), Storer et al. (1988) and Slifker and
Shapiro (1980). Step 2 of the VARTA algorithm is equivalent to fitting a normal copula. The parameters of the estimated
copula form a system of linear equations. Its solution consists of the parameters of the base process Zt , for details see Biller
and Nelson (2003). Biller and Nelson (2005) show that combining step 1 and step 2 produce better estimators for both the
original and base processes. Steps 3 and 4 are straightforward.

4 SIMULATION OF COINTEGRATED TIME SERIES

Proposition 2 says that cointegration, under certain assumptions, can be mapped to a function of the first two moments of the
underlying time series. We then take the view that in simulating cointegrated time series one should employ an algorithm
that exploits this special property. Proposition 2 also shows that the cointegration effect spreads over an infinite number of
lags. However, VARTA can simulate time series preserving the given expected values and autocovariances up to a finite
lag. Hence, in order to make time series generated by VARTA cointegrated with cointegration vector b, we need to assure
that conditions (i) and (ii) of Proposition 2 are satisfied, and after prespecified lag K the simulated time series have zero
autocovariances. Based on this idea we formulate the following optimization model to adjust autocovariances. The model
finds an autocovariance matrix satisfying the conditions described above. Before formulating the model we summarize, and
present additional, notation.

Model Parameters:

• N - number of time series (assets)
• P - number of autocovariance lags in the underlying Gaussian base process
• K < P - number of autocovariance lags that can be changed
• b - cointegration vector of dimension N
• Σ̂p, p = 1, . . . ,P - estimated autocovariance matrix of lag p and dimension N×N
• Σ̂ - estimated “big” autocovariance matrix of dimension NP×NP and of a form

Σ̂ =



Σ̂0 Σ̂1 Σ̂2 Σ̂3 . . . Σ̂p−1 Σ̂p
Σ̂1 Σ̂0 Σ̂1 Σ̂2 . . . Σ̂p−2 Σ̂p−1
Σ̂2 Σ̂1 Σ̂0 Σ̂1 . . . Σ̂p−3 Σ̂p−2
...

...
...

...
...

...
...

Σ̂p−1 Σ̂p−2 . . . Σ̂2 Σ̂1 Σ̂0 Σ̂1
Σ̂p Σ̂p−1 . . . Σ̂3 Σ̂2 Σ̂1 Σ̂0


• χ - class of matrices that have the same block structure as Σ̂

Decision Variables:

• X - NP×NP matrix of decision variables associated with Σ̂

• Xp, p = 1, . . . ,P - N×N submatrix of X

We want to find a matrix X = Σ̃ with the following properties:

• Σ̃ is positive semidefinite (PSD)
• Blocks Σ̃0, Σ̃1, . . . , Σ̃p of Σ̃ satisfy bT [Σ̃0 +2∑

p
i=1 Σ̃i]b = 0 - condition (i) from Proposition 2

• After a given lag K, Σ̃p = 0 for ∀p > K - artificial way to force the autocovariances after lag p to be 0
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min
X

‖ X− Σ̂ ‖2 (2a)

s.t. X ∈ χ (2b)

bT [X0 +2
P

∑
p=1

Xp]b = 0 (2c)

Xp = 0, p = K +1, . . . ,P (2d)
X � 0. (2e)

The objective function (2a) minimizes the distance, in the sense of the two-norm, between the selected autocovariance
matrix, X = Σ̃, and the estimated covariance matrix, Σ̂. Constraints (2b)-(2d) can all be captured via finite linear constraints,
but constraint (2e) cannot, as it requires X to be PSD. Constraint (2e) may be expressed as an infinite number of linear
constraints, i.e., qT Xq≥ 0,∀q. As a result, model (2) is a semidefinite program (SDP). We note that an SDP naturally arises
for different reasons (Ghosh and Henderson 2002) in the context of the normal-to-anything (NORTA) procedure of Cario
and Nelson (1997).

But for constraint (2e), model (2) is a standard linearly-constrained least-squares optimization model. Specialized
algorithms have been developed for the SDP that arises with the addition of (2e); see, for example, Boyd and Xiao (2005)
and Sivaramakrishnan (2002). We now show how constraint (2e) can be handled by solving a sequence of relaxations of
model (2) in which constraint (2e) is enforced at a finite set of q vectors. We call these linear-programming relaxations
master problems.

• step 0: Let the initial master problem be model (2) without constraint (2e).
• step 1: Solve the master problem and obtain candidate solution X̂ .
• step 2: Find the minimum eigenvalue λmin, and the corresponding eigenvector qmin, of X̂ . If λmin ≥ 0 then stop and

output X̂ .
• step 3: Add qT

minXqmin ≥ 0 to the master problem. Go to step 1.

The solution X̂ to the master problem is symmetric by construction and hence its eigenvalues are real. Step 2 allows us
to check whether X̂ violates constraint (2e). If λmin is negative, X̂ is not PSD, and we have qT

minX̂qmin < 0. So, we require
future solutions to the master problem satisfy qT

minXqmin ≥ 0.
The resulting algorithm for simulation of cointegrated time series is as follows:

• Estimate the autocovariances up to lag P, the parameters of Johnson distribution and the cointegration vector b.
• Using the estimated autocovariances and the cointegration vector solve the fitting model (2) to obtain the adjusted

autocovariances.
• Run VARTA using the estimated parameters of the Johnson distribution and the adjusted autocovariances as input.

5 SIMULATION RESULTS UNDER KNOWN COINTEGRATION VECTOR

Here we execute the described strategy for a bivariate time series for which we can compute the exact cointegration vector.
Consider the following bivariate model describing the log-returns of two assets r1

t and r2
t :

r1
t = r2

t + c+(γ−1)Yt−1 +ξ
1
t

r2
t = µ +ξ

2
t

Yt = c+ γYt−1 +ξ
1
t ,

where

• µ - real-valued constant
• (ξ 1

t ,ξ 2
t ) - bivariate normal random variable with mean vector of 0, variances σ2

1 , σ2
2 , and covariance ρ

• γ - parameter of AR(1) process Yt , a constant between 0 and 1
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• c - parameter of AR(1) process Yt , a constant.

Give their structure the log-prices of these two assets are cointegrated of order one with cointegration vector (1,−1).
We can now compute the moments:

E[r1
t ] = µ

E[r2
t ] = µ

Var[r1
t ] = σ

2
2 +2ρ +2σ

2
1 /(1+ γ)

Var[r2
t ] = σ

2
2

Cov[r1
t ,r

2
t ] = σ

2
2 +ρ

Cov[r1
t ,r

1
t−p] = −(1− γ)σ2

1 γ
p−1/(1+ γ)+(γ−1)ργ

p−1, p = 1,2, . . .

Cov[r1
t ,r

2
t−p] = (γ−1)ργ

p−1, p = 1,2, . . .

Cov[r2
t ,r

1
t−p] = 0, p = 1,2, . . .

Cov[r2
t ,r

2
t−p] = 0, p = 1,2, . . . .

To run our procedure we use the following specific values of these parameters: µ = 0, ρ = 0, γ = 0.75 and σ2
1 = σ2

2 = 0.25.
For p = 30 and k = 7, the population autocovariance matrices are:

Σ0 =
[

0.5357 0.25
0.25 0.25

]
, Σ1 =

[
−0.0357 0

0 0

]
,

Σ2 =
[
−0.0268 0

0 0

]
, Σ3 =

[
−0.0201 0

0 0

]

Σ4 =
[
−0.0151 0

0 0

]
, Σ5 =

[
−0.0113 0

0 0

]
,

Σ6 =
[
−0.0085 0

0 0

]
, Σ7 =

[
−0.0064 0

0 0

]

Σp =
[

0 0
0 0

]
, p = 8, . . . ,30.

The algorithm was coded in C++, the optimization was carried out by CPLEX, and the eigenvalue calculations by
LAPACK. The resulting adjusted autocovariance matrix after solving the adjusting model (2) is:

Σ̃0 =
[

0.5357 0.2506
0.2506 0.25

]
, Σ̃1 =

[
−0.0363 0.0006
0.0006 −0.0006

]
,

Σ̃2 =
[
−0.0274 0.0006
0.0006 −0.0006

]
, Σ̃3 =

[
−0.0207 0.0006
0.0006 −0.0006

]
,

Σ̃4 =
[
−0.0157 0.0007
0.0007 −0.0007

]
, Σ̃5 =

[
−0.012 0.0007
0.0007 −0.0007

]
,

Σ̃6 =
[
−0.00919 0.0007

0.0007 −0.0007

]
, Σ̃7 =

[
−0.0071 0.0007
0.0007 −0.0007

]
,
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Σ̃p =
[

0 0
0 0

]
, p = 8, . . . ,30.

We run VARTA first using the true autocovariance and second using the adjusted autocovariance. The length of the
generated time series is 6000. We performed the Johansen cointegration rank test using SAS for both simulations. The
cointegration test for time series when we used true autocovariance up to lag 7 failed. For the second case the same test
indicated that the time series generated by VARTA using adjusted autocovariance are cointegrated with probability 0.99
with cointegration vector (1,-1.06). The cointegration rank test results for the adjusted and true covariance matrices are in
Tables 1 and 2.

Table 1: Johansen cointegration rank test results for simulated time series using true autocovariance

Hypothesized order of cointegration Eigenvalue Trace Stat 99%CV 95% CV Max Stat 99% CV 95% CV
H(0) (no cointegration) 0.0015 8.7263 12.53 16.31 8.7254 11.44 15.69

H(1) (cointegration of order 1) 0 0.0009 3.84 6.51 0.0009 3.84 6.51

Table 2: Johansen cointegration rank test results for simulated time series using adjusted autocovariance

Hypothesized order of cointegration Eigenvalue Trace Stat 99%CV 95% CV Max Stat 99% CV 95% CV
H(0) (no cointegration) 0.0089 53.6002 12.53 16.31 53.5957 11.44 15.69

H(1) (cointegration of order 1) 0 0.0045 3.84 6.51 0.0045 3.84 6.51

The first row in both tables corresponds to a null hypothesis of no cointegration whereas the second row corresponds
to testing cointegration of order 1. There are two test statistics: Trace and Maximum. To decide whether to reject the
corresponding null hypothesis one needs to compare either test statistic to its critical value (coded as CV). We present 99%
and 95% critical values. If the test statistic is less than the critical value then we cannot reject the null hypothesis, if it is
greater then we reject it. Row 1 of Table 1 corresponds to the first situation since both the trace and maximum test statistics
are less than their critical values. Table 2 shows the second scenario, where we reject the no-cointegration null hypothesis
and conclude that the series are cointegrated of order 1. Figures 1 and 2 show the simulated time series using the original
and adjusted covariances.

Figure 1: Constructed example: simulated time series using VARTA with true autocovariance with p = 30 and k = 7
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Figure 2: Constructed example: simulated time series using VARTA with adjusted autocovariance with p = 30 and k = 7

6 SIMULATION RESULTS FOR REAL FINANCIAL TIME SERIES

We used historical data for four equity world indices: AEX (The best-known index of Euronext Amsterdam, the AEX index is
made up of the 25 most active securities in the Netherlands. This index provides a fair representation of the Dutch economy.),
DAX (Deutsche Aktien Xchange 30 is a blue chip stock market index consisting of the 30 major German companies trading
on the Frankfurt Stock Exchange.), CAC (The CAC 40, which takes its name from Paris Bourse’s early automation system
Cotation Assistée en Continu (Continuous Assisted Quotation), is a French stock market index. The index represents a
capitalization-weighted measure of the 40 most significant values among the 100 highest market caps on the Paris Bourse.),
and FTSE (The FTSE 100 Index is a share index of the 100 most highly capitalized companies listed on the London Stock
Exchange.) These time series are cointegrated (based on the Johansen cointegration test with 99% significance) and the
estimated cointegration vector can be found in Table 3.

Table 3: Real Example: estimated cointegration vector

AEX CAC DAX FTSE
Cointegration vector 3.685894 -4.65918 13.56943 -22.3922

Normalized coint. vector 1 -1.26406 3.681448 -6.0751

We ran the VARTA algorithm with p = 15 and k = 8. Increasing p much beyond this led to instability in VARTA. We
simulated 6000 data points.

Table 4: Real example: Johansen cointegration rank test results for simulated time series using nonadjusted autocovariances

Eigenvalue Trace Stat 95% CV 99%CV Max Stat 95% CV 99% CV
H(0)(no cointegration) 0.0034 40.7659 47.21 54.46 20.3613 27.07 32.24
H(1) (cointegration of order 1) 0.0026 20.4046 29.68 35.65 15.5304 20.97 25.52
H(2) (cointegration of order 2) 0.0008 4.8743 15.41 20.04 4.802 14.07 18.63
H(3) (cointegration of order 3) 0 0.0723 3.76 6.65 0.0723 3.76 6.65

Cointegration tests for adjusted and non-adjusted cases are presented in Tables 4 and 5. From Table 4 both trace and
maximum test statistics are less than the corresponding critical values and therefore the raw time series are not cointegrated.
However the adjusted ones are cointegrated of order 1 as shown in the first row of Table 5. Figures 3 and 4 show the
simulated time series using the original and adjusted autocovariances.
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Figure 3: Real example: simulated time series using VARTA with true autocovariance with p=15 and k=8

Figure 4: Real example: simulated time series using VARTA with adjusted autocovariance with p=15 and k=8

Table 5: Real example: Johansen cointegration rank test results for simulated time series using adjusted autocovariances

Eigenvalue Trace Stat 95% CV 99%CV Max Stat 95% CV 99% CV
H(0) (no cointegration) 0.0061 55.26 47.21 54.46 36.4144 27.07 32.24
H(1) (cointegration of order 1) 0.0021 18.8456 29.68 35.65 12.5605 20.97 25.52
H(2) (cointegration of order 2) 0.001 6.2851 15.41 20.04 6.2816 14.07 18.63
H(3) (cointegration of order 3) 0 0.0035 3.76 6.65 0.0035 3.76 6.65
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7 CONCLUSION

In this paper we have presented new theoretical results for cointegrated time series that allow us to simulate future cointegrated
sample paths using VARTA. Our approach creates specialized input for VARTA in terms of optimally truncated autocovariance
matrices that are obtained via solving a semidefinite optimization model. In future work, we will use the resulting sample
paths in a stochastic portfolio optimization problem.
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