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ABSTRACT

In Bayesian non-parametric statistics, the extended gamma process can be used to model the class of monotonic hazard
functions. However, numerical evaluations of the posterior process are very difficult to compute for realistic sample sizes.
To overcome this, we use Monte Carlo methods introduced by Laud, Smith, and Damien (1996) to simulate from the
posterior process. We show how these methods can be used to approximate the increasing failure rate of an item, given
observed failures and censored times. We then use the results to compute the optimal maintenance schedule under a specified
maintenance policy.

1 INTRODUCTION

The classical failure rate model typically assumes a parametric distribution of failure times, such as the Weibull distribution.
Given a set of observations, researchers using these models estimate the values of the parameters of the assumed distribution
(for example, using maximum likelihood estimators). Generally, in Bayesian parametric approaches, researchers assume a
particular failure distribution with random parameters, assume prior distributions on these parameters, collect observations,
and use Bayes’ theorem to compute the posterior distributions (Bernardo and Smith 1994).

One disadvantage of the Bayesian parametric approach can be the assumption of the distribution governing failure times.
If the true underlying distribution of failure times is significantly different from the assumed distribution, then the results of
analysis may be misleading. In general, it may not be reasonable to assume that an item has a failure distribution that is
well-known. For example, Popova et al. (2006) analyze fitting a Weibull distribution to component failure times and show
that for many components, the Weibull distribution is not a good fit by the Kolmogorov-Smirnov goodness-of-fit test.

Bayesian non-parametric models attempt to counter this by dropping the assumption on a specific distribution. In the
case of estimating the failure rate of an item, a general non-parametric model considers the failure rate to be a random
function, takes a continuum of some class of distributions (possibly all distributions) as the state space, and uses Bayesian
updates to select a distribution to serve as a model for the failure rate. Dykstra and Laud (1981) discuss using the extended
gamma (EG) process as a prior on either monotonically increasing or monotonically decreasing functions. In the case of an
increasing failure rate, this means taking the continuum of monotonically increasing functions as the state space. However,
it is difficult to analytically compute the posterior process unless the sample size is small, because the posterior process is
a complicated expression of multi-dimensional variables.

Laud, Smith, and Damien (1996) propose a Monte Carlo method to simulate from the posterior of the EG process. It is
a Gibbs sampler (see Roberts and Polson 1994) that provides a Bayesian solution to non-parametric modeling and analysis
of the failure rate using the EG process. This paper will illustrate using this algorithm to effectively model and analyze the
increasing failure rate of an item, and show how the results can be applied.

2 EXTENDED GAMMA PROCESS

The density of the Gamma distribution, given parameters α > 0 and β > 0 is
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Gamma(x|α,β ) = xα−1 e−βx

Γ(α)β α
. (1)

Now, let α(t), t ≥ 0, be a non-decreasing, left-continuous function such that α(0) = 0 (which implies non-negativity).
Let β (t), t ≥ 0, be a positive, right-continuous function with left-hand limits existing and bounded away from 0 and ∞ (see
Laud, Smith, and Damien 1996). Define Z(t), t ≥ 0, to be a gamma process with parameter α(·). In other words,

• Z(0) = 0,
• Z(t) has independent increments,
• for t > s, Z(t)−Z(s)∼ Gamma(α(t)−α(s),1) (increments may be non-stationary).

Then, the EG process is the process h(t), t ≥ 0, where

h(t) =
∫

[0,t]
[β (s)]−1dZ(s). (2)

Dykstra and Laud (1981) use the distribution of this process as a non-parametric prior for increasing functions; specifically,
they use it as a prior for an increasing failure rate r(t).

2.1 Prior and Posterior Processes

Let 0≤ s0 < s1 < ... < sM denote a finite partition of the time axis, dividing the time axis into M intervals of length s0,s1, ...,sM .
Let δi be the increment of the hazard rate over the ith interval (si−1,si], for i = 1,2, ...,M; i.e. h(s j) = ∑

i= j
i=1 δi. Dykstra and

Laud (1981) show that the prior distribution for each δi is defined by the parameters of the EG process; i.e.

δi ∼ Gamma(α(i),β (i)). (3)

To make notation easier, we will refer to this prior density of δi, for i = 1,2, ...,M, as f ∗
δi

; in other words,

δi ∼ f ∗
δi
.

From reliability theory, the failure rate r(t) corresponds to the cumulative failure distribution function F(t) such that

F(t) = 1− exp
[
−
∫

[0,t]
r(u)du

]
= 1− exp

[
−
∫

[0,t]
h(u)du

]
≈ 1− exp

[
− ∑

j∈[0,t]
δ j(s j− s j−1)

]
.

Let di be the number of exact observations (failures) in the ith interval (si−1,si], for i = 1,2, ...,M. Using Bayes’ theorem,
Dykstra and Laud (1981) show that the posterior of ∆ = (δ1,δ2, ...,δM) can be expressed as follows:

[∆|observations] ∝

M

∏
i=1

exp

[
−di

i−1

∑
j=1

δ j(si−1− s j−1)

](
1− exp

[
−(si− si−1)

i

∑
j=1

δ j

])di

f ∗
δ j

. (4)

Some items may still be operating by the time one stops observations (i.e. they did not fail during the observed time horizon).
We account for these items by using them as observations recorded at the time when we stop observing the items. These
observations, known in reliability theory literature as right-censored observations (see, for example, Rausand and Høyland
2004), provide additional information that is useful in modeling the failure rate. Right-censored data is accounted for by
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updating the parameter β (si) for every i. Consider n right-censored items, and let xc
1,x

c
2, ...,x

c
n be the censored times. Then,

β (si) is updated as follows:

β (si) = β (si)+ ∑
j∈[1,...,n],xc

j≥si

(xc
j− si). (5)

2.2 Gibbs Sampler

The posterior distribution described in (4) is difficult if not impossible to explicitly compute or numerically estimate, for a
reasonably sized sample and a moderately dense grid. Laud, Smith, and Damien (1996) tackle this issue by proposing a
Markov Chain Monte Carlo algorithm that samples from the posterior distribution. They re-write the posterior distribution
(4) as:

[∆|observations] ∝

M

∏
j=1

(
1− e−Tj(∆)

)d j M

∏
j=1

f ∗
δ j

e−a jδ j , (6)

where

• a j = ∑
M
i= j+1 di(si−1− s j−1), and

• Tj(∆) = (s j− s j−1).

Then, they introduce random variables

• mj = (m j1,m j2, ...,m j j) - independent multinomials, where each mj is a j-cell multinomial of d j independent trials,
with probability of kth cell being pk = δk

∑
j
i=1 δi

, and

• gj = (g j1,g j2, ...,g jd j), a collection of independent exponential random variables, with mean 1
Tj(∆) , and truncated at

1.

The posterior distribution (6) is then expressed as:

[∆|observations,g,m] ∝

M

∏
j=1

δ
∑

M
i= j mi j

j exp

[
−

(
a j +

M

∑
i= j

(si− si−1)
d j

∑
k=1

gik

)
δ j

]
f ∗
δ j

. (7)

Laud, Smith, and Damien (1996) then show that we can sample from the posterior of ∆ using the following Gibbs sampling
algorithm:

• [g|observations,∆,m] ∝ truncated exponentials,
• [m|observations,∆,g] ∝ multinomials,
• [∆|observations,m,g] ∝ Gamma with a rejection algorithm using f ∗

δ j
as the importance sampling function.

For more detailed derivations, see Laud, Smith, and Damien (1996), Dykstra and Laud (1981).

3 SIMULATION

We implemented this algorithm on a Xeon(TM) 3.00 GHz CPU with 2 Gb of RAM, using Microsoft Visual C++ .Net
(Microsoft Development Environment 2003). We used this algorithm to simulate from hazard rates of real data from physical
components, as well as simulated data generated from a pre-defined failure distribution for a more in-depth analysis. This
algorithm runs fairly efficiently, although this may require a careful set-up of the rejection algorithm when simulating from ∆

(see Laud, Smith, and Damien 1996), and depends on the size of ∆. Table 1 shows how long the algorithm took to generate
certain quantities of ∆. The algorithm also seems to converge fairly quickly. Figure 1 shows an example of convergence
for the mean of the simulated variates of a particular δ ; typically, the mean converges after a couple of hundred iterations.
Nevertheless, we use a much larger ”burn-in” period of 1000 or more. Figure 2 shows the distribution of that particular δ .
Not surprisingly, this distribution (as well as the distribution for other δ ) look like a Gamma. We explored approximating
the Gamma/rejection algorithm simulation step with a simple Gamma, using the same parameter values. The algorithm
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Table 1: Times required to generate quantities of ∆

Quantity of ∆ Size of ∆ Time (Seconds)
1000 11 168
1000 22 562
5000 11 780
5000 22 1561

10000 11 1859
10000 22 3259

Figure 1: Convergence of the simulated mean to the actual δ

does work faster without the rejection step; unfortunately, the resultant model doesn’t match the true failure rate as well as
the model with the rejection step. We suspect that there may be a way to do this successfully, perhaps with some slight
parameter manipulations. Figure 3 shows the simulated and actual hazard rates for a simulated data set. We see that the
Gamma approximation algorithm (at least in the mean) does not match the actual failure rate as well as the Gamma/rejection
algorithm. One doesn’t have to use the means of the components of ∆ to approximate the desired failure rate. Figure 4
shows the results of using the medians on a real data set. We do not know the actual failure rate of the data set, so we use
the empirical failure rate approximation as our benchmark. Also, one of the advantages of simulation is the ability to look
at certain percentiles of the failure rate, rather than only at the empirical failure rate. For real data, it is often the case that
we do not have many observations, and the empirical failure rate can differ from the actual failure rate. Simulation allows
us to consider various percentiles of the failure rate increments, and lets us use more conservative failure rate estimates in
our calculations.

3.1 Maintenance Optimization

We use the simulation of the failure rate to optimize maintenance scheduling for a single item. Consider the problem of
scheduling preventive maintenance (PM) for an item with a strictly increasing, stationary, and continuous failure rate between
times 0 and L, where L is the time horizon (i.e., we don’t care what happens to the item after time L). We assume that
the item is in a “new” state at time 0, and is again restored to a “new” state by PM. Should an item fail, it is restored to
its condition just before the failure (i.e., “good-as-old” state) by corrective maintenance (CM). During a failure, an item
may trigger a larger system failure or “trip” with probability Ptrip. Should this happen, instead of a simple CM we must
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Figure 2: Distribution of a single δ

Figure 3: Comparison of failure rate estimates using means

address the entire system “trip” and incur the cost of production loss, which is more expensive than CM. We also assume
that PM, CM, and restoration of a downed system are performed instantaneously. Let C = [PtripCtrip +(1−Ptrip)Cm], and let
E[N(t1, t2)] denote the expected number of failures observed between times t1 and t2. If we wish to minimize the expected
cost of a maintenance schedule for a general number of PM, we can formulate the problem as:

min
n≥1

(n−1)Cpm + min
T1,...,Tn,∑i Ti=L

n

∑
i=1

C̄E[N(0,Ti)].
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Figure 4: Simulated vs empirical failure rate using medians

Table 2: Estimated parameters of the supply pump

Parameter Value ($)
Cpm 18998
Ccm 97997
Ctrip 4349781
Ptrip 0.0073

Barlow and Hunter (1960) show that under these conditions, E[N(0,Ti)] =
∫ Ti

0 z(u)du. If we have a sufficiently simple
analytical form for the failure rate, we can explicitly evaluate this integral. However, if the failure rate does not have a good
analytical form, or is unknown, we solve this problem using numerical integration. Given failure data for a specific item,
we use the simulation to approximate the failure rate, and use the approximation in the numerical integration. This lets us
efficiently solve the minimization problem and derive the optimal schedule.

As an example, we show the use of this procedure on a real data set from the South Texas Nuclear Operating Company
(STPNOC) located in Bay City, Texas, USA. We analyze a hydraulic supply pump, a component of the Electro-Hydraulic
Control System (EHC) which is a part of the nuclear power generation reactor. Using 223 exact observations with a time
horizon of about 880 days, we model the failure rate using the means of the simulated δ s. We can also use the estimated
failure rate to simulate from other important functions, such as the survival function (see Rausand and Høyland 2004 for
key relationships between these functions). Figure 5 shows how the simulation model compares to the empirical estimated
survival function. Using parameters in Table 2, we arrive at the optimal schedule, where we will perform a single PM at
approximately 440 days (halfway through the time horizon). The expected cost of the optimal schedule is approximately
$84,290; the expected cost of not performing any PM during the time horizon is approximately $102,050. For more details
on the algorithm, see Belyi et al. (2009).

4 CONCLUSION

We use the Gibbs sampling algorithm proposed in Laud, Smith, and Damien (1996) to simulate from an increasing failure
rate. This algorithm considers failure observations as well as censored times, and seems to perform well and efficiently. The
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Figure 5: Simulated vs estimated empirical survival function of the supply pump, using means of simulated δ s

simulation also allows for a probabilistic approach to modeling the failure rate by allowing us to consider percentiles of the
simulated variates. This algorithm allows us to compute the estimated number of failures between preventive maintenances in
a maintenance schedule optimization problem. This technique enables us to solve this problem efficiently. In future research,
we will explore a similar algorithm for simulation from non-monotone functions. This will allow us to sample from failure
rates that aren’t strictly increasing, such as “bathtub” failure rates. This will allow us to solve maintenance optimization
problems for items with such failure rates efficiently.
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