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ABSTRACT

We study the recently introduced Cross-Entropy (CE) method for optimization, an iterative random sampling approach that
is based on sampling and updating an underlying distribution function over the set of feasible solutions. In particular, we
propose a systematic approach to investigate the convergence and asymptotic convergence rate for the CE method through
a novel connection with the well-known stochastic approximation procedures. Extensions of the approach to stochastic
optimization will also be discussed.

1 INTRODUCTION

We consider the optimization problem

x∗ ∈ arg max
x∈X

H(x), X⊆ℜ
n, (1)

where X is the solution space, which can be either continuous or discrete, and H is a bounded, deterministic, real-valued
function. Note that in general, the objective function H itself may take the form of an expected value of a sample performance
h, H(x) = E[h(x,ψ)], where ψ is a random variable (possibly depending on x) representing the stochastic effects of the
system, and only estimates of noisy function h are available. This stochastic problem will be discussed in Section 5.

Numerous algorithms have been proposed for optimization of such systems. In deterministic settings, these include
simulated annealing (Kirkpatrick et al. 1983), genetic algorithms (Goldberg 1989), tabu search (Glover 1990), nested partitions
(Shi and Ólafsson 2000a), and pure adaptive search (Zabinsky 2003). Approaches that have proven effective for solving
problems in stochastic settings are stochastic approximation (SA) (Robbins and Monro 1951; Kushner and Clark 1978; Spall
1992; Kushner and Yin 1997), sample average approximation (Kleywegt et al. 2001), response surface methods (Barton and
Meckesheimer 2006), the low-dispersion point sets method (Yakowitz et al. 2000), and many other discrete optimization
algorithms based on random search, including stochastic ruler methods (Yan and Mukai 1992, Alrefaei and Andradòttir
2001), the random search methods (Andradòttir 1995, 2006), simulated annealing (Alrefaei and Andradòttir 1999), stochastic
nested partitions (Shi and Òlafsson 2000b), and the COMPASS algorithm of Hong and Nelson (2006).

The Cross-Entropy (CE) method (Rubinstein and Kroese 2004), when viewed in an optimization context, is typical of
a class of sampling-based algorithms known as model-based methods (Zolchin et al. 2004, Fu et al. 2006). The basic
idea of CE is to work with a parameterized probability distribution on the solution space and randomly generate at each
iteration a group of candidate solutions. These candidate solutions are then used to update the parameters associated with
the distribution so that the future search will be biased toward the region containing high quality solutions. Ever since its
introduction, the CE method has attracted a lot of attention from the optimization community due to its many successful
applications to hard optimization problems (e.g., Allon et al. 2005, Chepuri and Homem De Mello 2005).

A primary focus of this paper is to combine the robust features of CE encountered in practice with rigorous theoretical
convergence guarantees by exploiting its connections with the well-known stochastic approximation method. The underlying
idea is to show that the CE method implicitly interprets a deterministic optimization problem (which might be a discrete
combinatorial problem) in a continuous-parameter stochastic approximation framework in terms of the parameters of the
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probability distribution rather than the original decision variables. In effect, the noise caused by Monte-Carlo random
sampling in CE can be naturally transformed into the uncertainty in evaluating the objective function of the equivalent
stochastic optimization problem. Note that our analysis differs from existing approaches on the convergence of CE, which
have primarily focused on discrete optimization settings (Costa et al. 2007, Rubinstein and Kroese 2004). We restrict our
discussion on the CE method, however the ideas contained in this paper can be used to study the capability and potential
of some other model-based algorithms such as EDAs (Larrañaga and Lozano 2002) and MRAS (Hu et al. 2007) as well.
For a more comprehensive development of the approach and detailed proofs, the reader is referred to Hu et al. (2009).

The rest of the paper is structured as follows. In Section 2, we review the idealized CE method and derive its equivalent
gradient recursion form. In Section 3, we show almost sure convergence of the method in its Monte-Carlo version, followed
by asymptotic convergence rate results in Section 4. Extensions of the approach to stochastic optimization settings are
discussed in Section 5. In Section 6, we illustrative the performance of CE via four examples. Concluding remarks are given
in Section 7.

2 THE IDEALIZED CE AND ITS ASSOCIATED GRADIENT ITERATION

The CE method was originally introduced in Rubinstein (1997) for estimating rare event probabilities in stochastic networks.
Since then, the method together with its various extensions and adaptations have become useful tools for Monte Carlo
simulation and multi-extremal nonlinear optimization. Let { fθ (·),θ ∈ Θ} be a specified parameterized distribution family,
where Θ is the parameter space. The CE method for optimizing (1), in its idealized version, is summarized below:

Algorithm 1: Idealized CE Method

1. Choose an initial pdf/pmf fθ0(·) on X, θ0 ∈Θ. Specify parameters ρ ∈ (0,1], ε > 0, and a non-decreasing function
S(·) : ℜ→ℜ+. Set k = 0.

2. Calculate the (1−ρ)-quantile γk of H(X), where X is a random vector taking values in X with distribution fθk .
3. Compute the new parameter

θk+1 = arg max
θ∈Θ

Eθk

[
S(H(X))I(H(X),γk) ln fθ (X)

]
.

4. If a stopping rule is satisfied, then terminate; otherwise set k = k +1 and go to Step 2.

In Algorithm 1, Eθk [·] is the expectation taken with respect to fθk , the function S(·) is used to account for the cases where
the objective function H(x) is negative for some x, and

I(y,γ) :=

 1 if y≥ γ ,
(y− γ + ε)/ε if γ− ε < y < γ ,
0 if y≤ γ− ε .

Note that for pure technical reasons, we have made a slight modification of the CE method by replacing the original indicator
function with a “soft” threshold function I(·, ·) in the parameter updating step. Step 2 above is in the same spirit as the
selection scheme employed in many population-based approaches such as genetic algorithms. The step is particularly useful
in actual sampling-based version of the algorithm (see Section 3), and the motivation is to concentrate the computational
effort on the top ρ-percent of the selected “elite” solutions.

An alternative interpretation of the CE method was given in Hu et al. (2007). It has been shown that there exists a
sequence of intermediate distributions {gk} called the reference distributions implicit in CE, and Step 3 of Algorithm 1 is
equivalent to minimizing the Kullback-Leibler (KL) divergence between gk+1 and fθ , i.e.,

θk+1 = arg min
θ∈Θ

D(gk+1, fθ ) :=
∫

X
ln

gk+1(x)
fθ (x)

gk+1(dx), (2)

where

gk+1(x) =
S(H(x))I(H(x),γk) fθk(x)
Eθk [S(H(X))I(H(X),γk)]

. (3)
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We consider a slight generalization of the reference distributions given in (3)

gk+1(x) = αk
S(H(x))I(H(x),γk) fθk(x)
Eθk [S(H(X))I(H(X),γk)]

+(1−αk) fθk(x), (4)

where αk ∈ (0,1] is a smoothing parameter that ensures that the difference between the reference distribution gk+1 and fθk
is only incremental, so that the new distribution fθk+1 obtained via (2) does not deviate too much from the current sampling
distribution fθk .

When the parameterized family belongs to natural exponential families (NEFs), the optimization problem (2) can be
solved analytically in closed form for arbitrary gk+1, which makes the approach very convenient to implement in practice.

Definition: A parameterized family { fθ (·),θ ∈ Θ ⊆ ℜm} on X is called a natural exponential family if there exist
functions Γ : ℜn→ℜm and K : ℜm→ℜ such that fθ (x) = exp

(
θ T Γ(x)−K(θ)

)
, where K(θ) = ln

∫
X exp(θ T Γ(x))ν(dx), and ν is

the Lebesgue/discrete measure on X.

The function K(θ) plays an important role in the theory of natural exponential families. It is strictly convex with
∇K(θ) = Eθ [Γ(X)] and Hessian matrix Covθ [Γ(X)]. Therefore, the Jacobian of the mean vector function m(θ) := Eθ [Γ(X)] is
strictly positive definite and thus invertible. From the inverse function theorem, it follows that m(θ) is also invertible.

When gk+1 in (4) is used as the reference distribution in Algorithm 1, the following lemma states the explicit relationship
between the two successive mean vectors in the idealized CE method.

Lemma 2.1. If fθ belongs to NEFs and the new parameters θk+1 computed at step 3 of Algorithm 1 is an interior point of
Θ for all k, then

m(θk+1)−m(θk) = αk∇θ lnEθ [S(H(X))I(H(X),γk)]|θ=θk for all k = 0,1,2, . . . .

Proof. Follows from Lemma 2 in Hu et al. (2007).

Lemma 2.1 brings out explicitly the updating direction of the mean vectors at each step of the CE method, which is
in the direction of the gradient of the objective function for the maximization problem maxθ∈Θ lnEθ [S(H(X))I(H(X),γk)].
Note that the smoothing parameter sequence {αk} turns out to be the gain sequence for the gradient iteration, so that the
special case αk = 1 for all k corresponds to constant gain sequences. This implies that the original CE method can be viewed
as gradient search methods on the parameter space with constant gain 1. This observation suggests that the CE method is
essentially a gradient-based recursion for solving optimization problems on the parameter space (of the distribution model)
with smooth differential structures. This key insight, which is new to CE, is crucial to understanding why the algorithm
works well for hard optimization problems with little structure.

3 STRONG CONVERGENCE OF MONTE-CARLO VERSION OF CE

Algorithm 1 describes the idealized setting where quantile values and expectations can be evaluated exactly whenever needed.
In practice, only a finite number of candidate solutions are generated at each iteration, expected values are replaced with
their corresponding sample averages, and true quantiles are estimated by sample quantiles. This results in the following
Monte-Carlo version of the CE method.

Algorithm 2: The Monte-Carlo Version of CE

1. Choose an initial pdf/pmf f
θ̂0

(·) on X, θ̂0 ∈ Θ. Specify the parameter ρ ∈ (0,1], a small constant ε > 0, the gain
sequence {αk}, and a non-decreasing function S(·) : ℜ→ℜ+. Set k = 0.

2. Randomly sample Nk candidate solutions Λk = {X1, . . . ,XNk} from the distribution f
θ̂k

.
3. Calculate the sample (1−ρ)-quantile γ̂k = H(d(1−ρ)Nke), where dae is the smallest integer greater than a, and H(i)

is the ith order statistic of the sequence {H(Xi), i = 1, . . . ,Nk}.
4. Compute the new parameter

θ̂k+1 = arg max
θ∈Θ

D(ĝk+1, fθ ),
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where ĝk+1(x) = αk
S(H(x))I(H(x),γ̂k) f

θ̂k
(x)

1
Nk

∑x∈Λk
S(H(x))I(H(x),γ̂k)

+(1−αk) f
θ̂k

(x), x ∈Λk is the sample average approximation of (4) based

on the sampled solutions in Λk.
5. If a stopping rule is satisfied, then terminate; otherwise set k = k +1 and go to Step 2.

We make the following assumption on the parameter θ̂k+1 computed at step 4 of the algorithm:

Assumption A1. The parameter θ̂k+1 computed at step 4 of Algorithm 2 is an interior point of Θ for all k.

Lemma 3.1. If A1 holds, then the mean vector m(θ̂k+1) in Algorithm 2 satisfies

m(θ̂k+1) = αk

1
Nk

∑x∈Λk
S(H(x))I(H(x), γ̂k)Γ(x)

1
Nk

∑x∈Λk
S(H(x))I(H(x), γ̂k)

+(1−αk)
1

Nk
∑

x∈Λx

Γ(x), ∀k. (5)

Define terms

L(m(θ̂k)) =
E

θ̂k
[S(H(X))I(H(X),γk)Γ(X)]

E
θ̂k

[S(H(X))I(H(X),γk)]
−m(θ̂k) = ∇θ lnEθ [S(H(X))I(H(X),γk)]|θ=θ̂k

,

bk(θ̂k) =
1

Nk
∑x∈Λk

S(H(x))I(H(x), γ̂k)Γ(x)
1

Nk
∑x∈Λk

S(H(x))I(H(x), γ̂k)
−

E
θ̂k

[S(H(X))I(H(X),γk)Γ(X)]

E
θ̂k

[S(H(X))I(H(X),γk)]
,

ξk(θ̂k) =
1−αk

αk

( 1
Nk

∑
x∈Λk

Γ(x)−m(θ̂k)
)
,

where with a slight abuse of notation, we use γk to represent the true (1−ρ)-quantile of H(X) under f
θ̂k

.
We can rewrite (5) in the form of a generalized Robbins-Monro algorithm in terms of the true gradient L, the combined

effect of bias and Monte-Carlo random sampling bk, and an error term due to sample average approximation ξk.

m(θ̂k+1) = m(θ̂k)+αk
[
L(m(θ̂k))+bk(θ̂k)+ξk(θ̂k)

]
. (6)

Before presenting the main convergence result of this section, we begin with some regularity conditions, some of which
are standard in stochastic approximation literatures (cf. e.g., Kushner and Clark 1978; Kushner and Yin 1997).

Assumptions:

A2. The gain αk > 0 ∀k, αk→ 0 as k→ ∞, and ∑
∞
k=1 αk = ∞. The sample size Nk = O(kβ ), where β > 1.

A3. For given ρ ∈ (0,1) and a distribution family { fθ ,θ ∈Θ}, the (1−ρ)-quantile of {H(X),X ∼ fθ (x)} is unique for
all θ ∈Θ.

A4. There exists a compact set Π so that the level sets {x : H(x) ≥ γk}∩X ⊆ Π and {x : H(x) ≥ γ̂k}∩X ⊆ Π almost
surely for k sufficiently large.

A5. Let {Fk} be the sequence of increasing σ -fields generated by {Λ0,Λ1, . . .}. There exist constants σ2 > 0 and ` > 0
such that max1≤i≤m Var

θ̂k
[|Γi(X)|2+`|Fk−1] ≤ σ2 for all θ̂k ∈ Θ and k, where Γi(X) is the ith component of the

vector Γ(X).
A6. (Kushner and Clark 1978) Let η∗ be a locally asymptotically stable (in the sense of Liapunov) solution to the

ODE dη(t)/dt = L(η) = ∇θ lnEθ [S(H(X))I(H(X),γ(m−1(η)))]|θ=m−1(η) with domain of attraction D(η∗), where
γ(m−1(η)) is the true (1−ρ)-quantile of H(X) under fm−1(η). L(η) is continuous in η . Moreover, there is a

compact set A⊆ D(η∗) such that m(θ̂k) ∈ A infinitely often for almost all sample paths generated by Algorithm 2.

The lemma below establishes the strong consistency of the bias term bk(θ̂k) as k→ ∞. The proof is based on large
deviations theory.
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Lemma 3.2. If assumptions A2 – A4 are satisfied, then

bk(θ̂k)→ 0 as k→ ∞ w.p.1.

The noise term ξk(θ̂k) has the following property.

Lemma 3.3. If A2 and A5 hold, then for any ε > 0,

lim
k→∞

P
(

sup
l≥k
‖

l

∑
i=k

αiξi‖ ≥ ε

)
= 0.

The strong convergence of the sequence of parameters {θ̂k} generated by Algorithm 2 follows from Lemma 3.2 and
Lemma 3.3 and then by applying Lemma 2.2.1 and Theorem 2.3.1 in Kushner and Clark (1978).

Theorem 1. Let ηk = m(θ̂k). Assume A1 − A6 hold, then

ηk→ η
∗ as k→ ∞ w.p.1.

Thus, by the invertibility of m(·), the sequence of sampling distributions { f
θ̂k
} in Algorithm 2 converges to a limiting

distribution.

4 ASYMPTOTIC NORMALITY

Let JL(η) be the Jacobian matrix of L(η). Note that since L(η) is the gradient of some underlying function F(η), JL turns
out to be the Hessian of F . Recursion (6) is a gradient-based algorithm for solving the maximization problem maxη F(η).
Consequently, by Assumption A6 and the strong convergence of the sequence {ηk} (i.e., the sequence {ηk} tracks the
solution to the ODE dη(t)/dt = L(η)), it is reasonable to expect that η∗ is a local maximizer of the objective function F(η)
in its neighborhood. The following assumption about JL is natural.

Assumption B1. JL(η) is continuous and symmetric negative definite in a small neighborhood of η∗.

In addition, we need the following regularity condition on the distribution function of the objective function. Let f H
k be the

probability density/mass function of H(X) when X is distributed according to f
θ̂k

.

Assumption B2. (i) (Continuous optimization) For a given ρ ∈ (0,1), there exist constants ζ̄ > 0 and δ̄ > 0 such that
f H
k (γ) > ζ̄ , ∀γ ∈ (γk− δ̄ ,γk + δ̄ ) almost surely for k sufficiently large. (ii) (Discrete finite optimization) For a given

ρ ∈ (0,1), there exists a constant ζ̄ > 0 such that P
θ̂k

(H(X)≥ γk)≥ ρ + ζ̄ and P
θ̂k

(H(X) > γk)≤ ρ− ζ̄ almost surely
for k sufficiently large.

We consider the standard gain sequence of the form αk = c/kα for some constants c > 0 and α ∈ (0,1). By using
a Taylor expansion of L(η) in a small neighborhood of η∗ and Assumption A6, it follows from (6) that the difference
δk := ηk−η∗ satisfies the recursion

δk+1 = δk + ck−α JL(η̃k)δk + ck−α bk + ck−α
ξk

where η̃k is on the line segment between ηk and η∗. In the notation of Fabian (1968), the above recursion can be recast in
the form

δk+1 = δk− k−α
ϒkδk + k−

α+τ
2 ΦkVk + k−α− τ

2 Tk,
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where τ > 0 is a constant,

ϒk =−cJL(η̄k), Φk = cIm×m,

Vk = k−
α
2 + τ

2 ξk(θ̂k), Tk = ck
τ
2 bk(θ̂k),

and Im×m denotes an m-by-m identity matrix.
The following is a strengthened version of Lemma 3.2, which indicates that the amplified bias term Tk vanishes to zero

asymptotically.

Lemma 4.1. For any constant τ > 0, if A3, A4, and B2 hold and β > 2τ , then

Tk→ 0 as k→ ∞ w.p.1.

Moreover, the amplified noise Vk satisfies the conditions below.

Lemma 4.2. Let αk = c/kα , α ∈ (0,1), and Nk = O(kβ ), β > 1. If A1, A3 – A6 hold and β ≥ α + τ , then there exists a
matrix Σ such that E

θ̂k
[Vk|Fk−1] = 0 and E

θ̂k
[VkV T

k |Fk−1]→ Σ as k→ ∞ w.p.1. Moreover, the sequence {Vk} is uniformly
square integrable in the sense that

lim
k→∞

E
[
I{‖Vk‖2≥rkα}‖Vk‖2]= 0 ∀r > 0,

where I{·} is the indicator function.

The asymptotic normality result of CE follows directly from lemmas 4.1 and 4.2 above, and Theorem 2.2 in Fabian
(1968).

Theorem 2. Let αk = c/kα , α ∈ (1/2,1). If A1, A3–A6, B1, and B2 hold, τ ∈ (1−α,α), and β ≥ α + τ , then

k
τ
2 (ηk−η

∗) dist−−−→N (0,QMQT ),

where Q is an orthogonal matrix such that QT (−JL(η∗))Q = Λ with Λ being a diagonal matrix, and the (i, j)th entry of M
is given by M(i, j) = (QT ΣQ)(i, j)(Λ(i,i) +Λ( j, j))−1,

Σ :=
{

Covm−1(η∗)(Γ(X)) if β = α + τ ,
0 if β > α + τ .

5 EXTENSIONS TO SIMULATION OPTIMIZATION

For ease of exposition, we write (6) in the abstract form

ηk+1 = ηk +αkL̂k(ηk),

where L̂k represents an estimate for the true gradient L based on the sampled Nk solutions at each iteration.
The simulation optimization setting, where h(x,ψ) is obtained in a simulation replication, requires an additional simulation

allocation rule {Mk}, which allocates Mk simulation observations to each of the Nk candidate solutions generated at the kth
iteration. Thus, in Algorithm 2, if the true performance at a sampled solution X is replaced by the sample average

H̄k(X) =
1

Mk

Mk

∑
j=1

h(X ,ψ j),
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then an estimator of the true gradient L(η) will take the form

L̄k(η) =
N−1

k ∑x∈Λk
S(H̄k(x))I(H̄k(x), γ̄k)Γ(x)

N−1
k ∑x∈Λk

S(H̄k(x))I(H̄k(x), γ̄k)
− 1

Nk
∑

x∈Λk

Γ(x),

where γ̄k is the sample (1−ρ)-quantile of H̄k(X) when X is distributed according to fm−1(η). Consequently, the associated
gradient iteration in the simulation setting can be expressed as

η̄k+1 = η̄k +αkL̂k(η̄k)+αk
(
L̄k(η̄k)− L̂k(η̄k)

)
, (7)

where {η̄k} is the sequence of mean vectors generated by Algorithm 2 when applied to simulation optimization. A large
deviations approach similar to that of Hu et al. (2008) can be used to determine the conditions on the allocation rule {Mk}
under which E[L̄k(η̄k)− L̂k(η̄k)|Fk−1]→ 0, where {Fk} is some appropriate σ -field. This implies that the simulation noise
effect L̄k(η̄k)− L̂k(η̄k) can in fact be treated as vanishing bias in gradient estimates. Consequently, the (possibly local)
convergence and convergence rate analysis of (7) can be carried out along the same line as described previously.

6 NUMERICAL EXAMPLES

In all previous numerical studies, the CE algorithm was implemented using a smoothed parameter updating procedure (cf.
e.g., Rubinstein and Kroese 2004, Hu et al. 2007):

θ̃k+1 := υθ̂
′
k+1 +(1−υ)θ̃k, with θ̃0 = θ̂0, (8)

where υ ∈ (0,1] is a constant smoothing parameter, and θ̂ ′k+1 is the new parameter calculated at Step 4 of Algorithm 2 with
αk = 1 ∀k in ĝk+1. Such a smoothed parameter updating procedure is primarily used to prevent premature convergence of
the algorithm and often works well in practice. Note that our proposed approach differs from this procedure in that the
reference distributions rather than the output parameters are smoothed (cf. equation (4) and Step 4 in Algorithm 2). Because
expectation is a linear operator, the solution to the optimization problem at Step 4 of Algorithm 2 can still be obtained in
analytical form when fθ belongs to NEFs. For example, in continuous optimization, if multivariate normal distributions
N (µ̂k, Σ̂k) are used in CE, the explicit parameter updating equations are given by

µ̂k+1 = αk
∑x∈Λk

S(H(x))I(H(x), γ̂k)x

∑x∈Λk
S(H(x))I(H(x), γ̂k)

+(1−αk)µ̂k and

Σ̂k+1 = αk
∑x∈Λk

S(H(x))I(H(x), γ̂k)(x− µ̂k+1)(x− µ̂k+1)T

∑x∈Λk
S(H(x))I(H(x), γ̂k)

+(1−αk)
(
Σ̂k +(µ̂k− µ̂k+1)(µ̂k− µ̂k+1)T ).

This is clearly different from the smoothed parameter updating procedure in that there is an extra term (µ̂k− µ̂k+1)(µ̂k− µ̂k+1)T

in updating the covariance matrix.
To illustrate the potential influence on practice of such a parameter updating procedure, which was derived using gradient

interpretation of CE, we consider four benchmark problems H1 to H4, where H1 is highly multimodal with a huge number
of local optima, whereas H2 to H4 are badly-scaled functions for which the original CE method has been reported to be not
very successful (cf. e.g., Hu et al. 2007).

(1) Trigonometric function (n = 20)

H1(x) =−1+
n

∑
i=1

8sin2 (7(xi−0.9)2)+6sin2 (14(xi−0.9)2)+(xi−0.9)2,

where H1(x∗) =−1.
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(2) Levy function (n = 20)

H2(x) =−10sin2(πx1)− (xn−1)2−1−
n−1

∑
i=1

100x2
i (1+ sin2(πxi+1)),

where H2(x∗) =−1.
(3) Powell badly scaled function (n = 20)

H3(x) =−
n/4

∑
i=1

[
(10000x2i+1x2i+2−1)2]−

n/4

∑
i=1

[(e−x2i−1 + e−x2i −1.0001)2
]
−1,

where H3(x∗) =−1.
(4) Pintér function (n = 20)

H4(x) =−1−
n

∑
i=1

ix2
i −

n

∑
i=1

20isin2 (xi−1 sinxi− xi + sinxi+1
)
−

n

∑
i=1

i log10
(
1+ i(x2

i−1−2xi +3xi+1− cosxi +1)2),
where x0 = xn, xn+1 = x1, and H4(x∗) =−1.

In Algorithm 2, we have used the multivariate normal distributions as the parameterized distribution family. The initial mean
is uniformly selected from [−50,50]n and the covariance matrix is initialized as an n-by-n diagonal matrix with diagonal
entries equal to 100. The input parameters are ρ = 0.1, αk = 2/(k +100)0.501, and Nk = max{400,k1.01}. The performance
of Algorithm 2 was also compared with those of CE with smoothed parameter updating procedures, referred to as CE
with dynamic parameter updating and CE with constant parameter updating. The difference between these two alternative
approaches is that in the former case the smoothing parameter is iteration dependent with υk = αk for all k, whereas in the
latter case we set υ = 0.2. All other parameters in the two alternative algorithms are taken to be the same as Algorithm 2.

For each test function, we performed 100 independent replication runs of all three algorithms. The performance of the
algorithms is shown in Figure 1, which plots the averaged objective function values at the estimated optimal solutions as a
function of the number of function evaluations used. The figure clearly indicates convergence of Algorithm 2 on all four test
functions as well as its superior performance over both versions of CE with smoothed parameter updating procedures. In
particular, for functions H2, H3, and H4, even with smoothed parameter updating, which was primarily designed to prevent
premature convergence, the original CE may still frequently stagnate at solutions that are far from optimal. These examples
support the proposed gradient interpretation of CE.

7 CONCLUSIONS

We have studied the convergence and convergence rate behavior of the recently proposed Cross-Entropy method by exploiting
its connections with the well-known stochastic approximation procedure. Our analysis also provided some guidance on the
implementation issues of CE. Preliminary numerical studies indicate that the proposed parameter updating procedure based
on gradient interpretation of CE significantly outperforms the original CE with smoothed parameter updating. We hope
that the ideas contained in this paper will open a new line of research and eventually lead to a systematic approach to
explore the capability and potential of some other sampling-based algorithms such as EDAs and MRAS, while broadening
the application scope of stochastic approximation by enabling its use for the analysis of a class of optimization tools for
general non-differentiable problems.
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Figure 1: Average Performance of CE with smoothed reference distributions vs. smoothed parameter updating on (a) a 20-D
Trigonometric function, (b) a 20-D Levy’s function, (c) a 20-D Powell’s function, and (d) a 20-D Pinter’s function.
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