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ABSTRACT

In specifying a multivariate discrete distribution via the the NORmal To Anything (NORTA) method, a problem of interest
is: given two discrete unbounded marginals and a target value r, find the correlation of the bivariate Gaussian copula that
induces rank correlation r between these marginals. By solving the analogous problem with the marginals replaced by
finite-support (truncated) counterparts, an approximate solution can be obtained. Our main contribution is an upper bound
on the absolute error, where error is defined as the difference between r and the resulting rank correlation between the
original unbounded marginals. Furthermore, we propose a simple method for truncating the support while controlling the
error via the bound, which is a sum of scaled squared tail probabilities. Examples where both marginals are discrete Pareto
demonstrate considerable work savings against an alternative simple-minded truncation.

1 INTRODUCTION

We consider a problem that arises in specifying a random vector via the NORmal To Anything (NORTA) approach (Cario and
Nelson 1996, Cario and Nelson 1997). In this approach, the marginal (univariate) distributions and pairwise correlations are
specified, and dependence between components is induced via the normal (Gaussian) copula. More precisely, in dimension
two, given marginal cumulative distributions F1 and F2, a random vector (X1,X2) is specified as follows:

(X1,X2) = (F−11 (Φ(Z1)),F−12 (Φ(Z2))),

where: (Z1,Z2) is bivariate normal with zero means, unit variances, and correlation ρ; Φ is the standard normal distribution
function (with mean 0 and variance 1); and F−1i is the quantile function corresponding to Fi (also known as the inverse
of Fi). The model is specified by solving a NORTA rank-correlation-matching problem: find ρ so that the rank correlation
between the X’s equals a given target. A related alternative specifies linear correlation instead of rank correlation. These
correlation-matching problems appear prominently in more general models, specifically in modeling random vectors whose
dimension is greater than two (Ghosh and Henderson 2003) and in modeling multivariate stationary time series with specified
correlation structure (Biller and Nelson 2003). The correlation-matching problems for discrete marginals are studied in
Avramidis et al. (2009).

In this paper, we focus on the NORTA rank-correlation matching problem for discrete marginals having unbounded
support. We address this problem by solving a corresponding problem associated to finite-support counterparts of the original
marginals. Assuming that the unbounded marginals are used in the final model, a potential error is introduced. The error is
the difference between the unbounded-marginals rank correlation and the target. The issue of how to truncate effectively in
this setting is loosely touched by Shin and Pasupathy (2008). While studying methods for fitting bivariate distributions with
Poisson marginals and given linear correlation, they use method NI3 of Avramidis et al. (2009) as a benchmark, choosing
the truncation points by exploiting the Chernoff bound on the Poisson tail probability. Over a large number of problems
sampled randomly, their implementation took up to 16 seconds. Poor truncation might have affected their timings, but we
are unable to assess this accurately.
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The main contribution of this paper is an upper bound on the absolute error due to truncation. Armed with the bound, one
can solve the NORTA rank-correlation-matching problem for unbounded marginals to any desired precision. We believe this
is the most important contribution; previously, solutions to any finite-support approximating problem had unknown accuracy
for the original problem. Beyond this, we also aim for economy of work subject to meeting a user’s need for precision. To
this end, we propose a simple heuristic that approximately minimizes the number of bivariate support points subject to the
bound being smaller than a user-specified error tolerance. We present a few examples in which the marginals are discrete
Pareto (so they are heavy-tailed). These examples show that compared to a method that truncates the supports heuristically,
our method can solve the problem much more efficiently, while maintaining the needed precision.

The remainder of this paper is organized as follows. In Section 2 we develop finite-support approximations to the
infinite-support target quantities and the bound. The algorithm for selecting the support is described in Section 3. Numerical
examples appear in Section 4.

2 APPROXIMATION AND ERROR BOUNDS

2.1 Preliminaries

Without loss of generality, the support of each marginal is the set of nonnegative integer numbers. Our results can be adapted
to two-sided infinite support in straightforward manner. Denote the probability mass of marginal � at i as p�,i, i= 1,2, . . .,
for � = 1,2. The cumulative probability mass is f�,i = ∑ik=0 p�,k. Let φρ be the bivariate normal density with zero means,
unit variances, and correlation ρ . The rank correlation between X1 and X2 is

rX (ρ) = Corr(F1(X1),F2(X2)) =
g(ρ)−μ1μ2

σ1σ2
,

where μ� = E[F�(X�)] = ∑∞
i=0 f�,i p�,i, σ2� = Var[F�(X�)] = ∑∞

i=0 f 2�,i p�,i − μ2� , and g(ρ) = Cov(F1(X1),F2(X2)). Based on
Avramidis et al. (2009), we have:

g(ρ) = Cov(F1(X1),F2(X2)) =
∞

∑
i=0
p1,i+1

∞

∑
j=0
p2, j+1Φ̄ρ(z1,i,z2, j), (1)

where z�,i = Φ−1( f�,i), where Φ−1 is the inverse of Φ; z�,0 = −∞; and Φ̄ρ(x,y) is the integral of φρ over the rectangle
[x,∞)× [y,∞). The NORTA rank-correlation matching problem is to find the ρ that satisfies

rX (ρ) = r

for r given. Barring degeneracy in the marginals, this equation has a unique solution for any r in [rX (−1),rX (1)].

2.2 Bounding the Truncation Error

We begin by approximating the mean and the variance of F(X), where X is a discrete non-degenerate random variable with
support on the nonnegative integers and F is the cumulative distribution of X . The probability masses are pi, i= 1,2, . . .,
and the cumulative probabilities are fi = ∑ij=0 p j. The mean is μ = ∑∞

i=0 fi pi and the variance is σ2 = ∑∞
i=0 f 2i pi−μ2. The

approximations work by truncating these sums at an integer n and adding the corresponding tail probability, i.e., the term

tn := 1− fn = ∑
i>n
pi.

More precisely, define

μ̃n :=
n

∑
i=0
fi pi+ tn

and

σ̃2n := μ̃(2)
n − μ̃2n ,
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where μ̃(2)
n := ∑ni=1 f 2i pi+ tn approximates the second moment about zero.

Bounds that will be used later are now obtained. Related properties are also stated.

Lemma 1 The sequence {μ̃n}, n= 1,2, . . . is non-increasing, has μ as its limit, and satisfies

|μ̃n−μ| ≤ t2n . (2)

We have

σ ≥ σn, (3)

where

σn =
√

σ̃2n − t2n (2−2μ̃n+ t2n ).

Furthermore,

|σ̃n−σ | ≤ cnt2n
σ̃n+σn

, (4)

where cn =max(2−2μ̃n+ t2n , |1−2μ̃n− t2n |).
Proof. We have

0< μ̃n−μ = ∑
i>n
pi−∑

i>n
fi pi

= ∑
i>n

(1− fi)pi

≤ (1− fn)∑
i>n
pi = t2n .

This completes the proof of the first statement.
To prove (3), we first obtain an upper bound on σ̃2n −σ2:

σ̃2n −σ2 = μ̃(2)
n −EF2(X)− (μ̃2n −μ2)

= ∑
i>n
pi−∑

i>n
f 2i pi− (μ̃n+ μ)∑

i>n
(1− fi)pi

= ∑
i>n
pi(1− fi)[1+ fi− μ̃n−μ] (5)

≤ ∑
i>n
pi(1− fi)[2−2μ̃n+ t2n ]

≤ t2n (2−2μ̃n+ t2n ), (6)

where we used μ ≥ μ̃− t2n in the first inequality. This completes the proof of (3).
To prove (4), write |σ̃n−σ |= |σ̃2n−σ2|

σ̃n+σ and use (3) to see that the denominator is at most the denominator in (4). Thus,
it suffices to show that

|σ̃2n −σ2| ≤ cnt2n . (7)

This bound will arise as the maximum absolute value of upper and lower bounds on σ̃2n −σ2. Using the equality (5) and
noting that 1+ fi− μ̃n−μ ≥ 1−2μ̃n− tn, we get

σ̃2n −σ2 ≥ ∑
i>n
pi(1− fi)(1−2μ̃n− t2n ). (8)
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This lower bound has absolute value
∣∣∣∣∣∑i>n

pi(1− fi)(1−2μ̃n− t2n )
∣∣∣∣∣≤

∣∣1−2μ̃n− t2n
∣∣ ∑
i>n
pi(1− fi)≤

∣∣1−2μ̃n− t2n
∣∣ t2n . (9)

Now (7) follows from (6), (8) and (9). �

Remark 1 There exists an integer n0 such that the sequence {σ̃2n }n≥n0 decreases to σ2 (and thus σ̃2n for n ≥ n0 is an
upper bound for σ2). (An analogous property for the sequence {μ̃n} was shown to hold with n0 = 1.) To see this, define
Δσ̃2n := σ̃2n − σ̃2n−1. A straightforward calculation gives Δσ̃2n = pntn[μ̃n+ μ̃n−1−1− fn]. Since μ < 1 and μ̃n→ μ as n→ ∞,
the term in square brackets is negative for all n sufficiently large, and so Δσ̃2n is also negative. The claim is proven.

Next we approximate the covariance in (1) and bound the error. Let g̃n,m(ρ) be the approximation obtained by truncating
the sum in (1) at i= n and j = m respectively.

Lemma 2

sup
ρ
|g(ρ)− g̃n,m(ρ)| ≤ t21,n+ t22,m. (10)

Proof. Since Φ̄ρ is nondecreasing in ρ , we have the bound

Φ̄ρ(x,y)≤ Φ̄1(x,y) = Φ̄(max(x,y)) for all ρ,

where Φ̄ = 1−Φ, the standard normal complementary c.d.f.. Thus

sup
ρ
|g(ρ)− g̃n,m(ρ)| ≤ ∑

i>n
p1,i+1

∞

∑
j=0
p2, j+1Φ̄ρ(z1,i,z2, j)+ ∑

j>m
p2, j+1

∞

∑
i=0
p1,i+1Φ̄ρ(z1,i,z2, j)

≤ ∑
i>n
p1,i+1

∞

∑
j=0
p2, j+1Φ̄(z1,i)+ ∑

j>m
p2, j+1

∞

∑
i=0
p1,i+1Φ̄(z2, j)

= ∑
i>n
p1,i+1t1,i+ ∑

j>m
p2, j+1t2, j

≤ t21,n+ t22,m.

(It holds by construction that Φ̄(z�,i) = t�,i for all i and �). �

As mentioned earlier, the solution we deliver is a zero of the function f̃n,m(ρ) := g̃n,m(·)− μ̃1,nμ̃2,m− rσ̃1,nσ̃2,m. Our
main result is a bound on the absolute difference between the retained unbounded-marginals rank correlation and the target
value r. For simplicity, we assume that the error made in approximating zeros of f̃n,m is negligible. This is reasonable
because the marginal cost of reducing this error is small (Avramidis et al. 2009). To state the result concisely, we introduce
the tail probabilities t�,n := ∑k>n p�,k for n integer and for � = 1,2.

Proposition 1 Let ρ∗n,m be a zero (root) of g̃n,m(·)− μ̃1,nμ̃2,m− rσ̃1,nσ̃2,m. Then
∣∣rX (ρ∗n,m)− r∣∣≤ κ1,n,mt21,n+κ2,n,mt22,m, (11)

where

κ1,n,m =
1+ μ̃2,m+ t22,m

σ̃1,nσ̃2,m
+

|r|c1,n
σ1,n(σ1,n+ σ̃1,n)

, κ2,n,m =
1+ μ̃1,n
σ̃1,nσ̃2,m

+
σ̃1,n
σ1,n

|r|c2,m
σ2,m(σ2,m+ σ̃2,m)

. (12)
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Proof. To lighten notation, we drop the truncation subscripts in the symbols ρ∗, μ̃l , σ̃l and g̃(·), although the result shows
these indices explicitly. We have

|rX (ρ∗)− r| =
∣∣∣∣
g(ρ∗)−μ1μ2− rσ1σ2

σ1σ2

∣∣∣∣

=
∣∣∣∣
g(ρ∗)− g̃(ρ∗)+ g̃(ρ∗)− μ̃1μ̃2− rσ̃1σ̃2+ μ̃1μ̃2−μ1μ2+ r(σ̃1σ̃2−σ1σ2)

σ1σ2

∣∣∣∣

≤ |g(ρ∗)− g̃(ρ∗)|+ |g̃(ρ∗)− μ̃1μ̃2− rσ̃1σ̃2|+ |μ̃1μ̃2−μ1μ2|
σ1σ2

+ |r|
∣∣∣∣
σ̃1σ̃2
σ1σ2

−1
∣∣∣∣ . (13)

In the above, there are four terms of the form “absolute value of a difference”, and each of these will now be bounded. The
first term is bounded as shown in (10). The second term is zero by assumption. The third term is

|μ̃1μ̃2−μ1μ2| ≤ μ̃1|μ̃2−μ2|+ μ2|μ̃1−μ1| ≤ μ̃1t22 +(μ̃2+ t22 )t21 ,

by using (2). The fourth term is
∣∣∣∣
σ̃1σ̃2
σ1σ2

−1
∣∣∣∣ ≤

σ̃1
σ1

∣∣∣∣
σ̃2
σ2
−1

∣∣∣∣+
∣∣∣∣
σ̃1
σ1
−1

∣∣∣∣

≤ σ̃1,n
σ1,n

c2,mt22,m
σ2,m(σ2,m+ σ̃2,m)

+
c1,nt21,n

σ1,n(σ1,n+ σ̃1,n)

by using (3) and (4). Plugging these bounds into (13), we obtain (11). �

Remark 2 To get an idea of the size of the constants multiplying the squared tails in (11), we consider the limit as the
maximum probability mass of each marginal goes to zero and the truncation indices n and m go to infinity. In this limit,
μ̃· and σ̃2· converge to the mean and variance of a Uniform(0,1) distribution, respectively (this is shown in the proof of
Proposition 5 of Avramidis et al. 2009). Thus, μ̃· → 1/2, σ̃2· → 1/12, c· → 1, and so κ· → 18+6|r|.
Remark 3 The bound in (7) is sharper than the alternative bound t2n (2+2μ̃n+ t2n ) (which follows immediately from (5)).
For comparison, in the same limit as in Remark 2, the looser bound gives c· → 3 and κ· → 18+18|r|.

3 CHOOSING THE TRUNCATION

We consider a user that specifies a maximum acceptable error (tolerance) δ in the retained rank correlation. Subject to
meeting this requirement, it is natural to want to minimize the work involved. Methods for solving the finite-support problem
are detailed in Avramidis et al. (2009). The work of these methods is very nearly linear in the number of bivariate support
points. Thus, we would like to minimize the number of bivariate support points subject to the requirement that the error
bound in the right side of (11) is at most δ .

Instead of seeking to solve this minimization problem exactly, we propose a simple heuristic that appears to be effective.
Start with a single-point bivariate support consisting of the pair of minima of the two supports. In the general iteration,
add one support point of that marginal whose contribution to the error bound is largest. Stop as soon as the bound is
under the tolerance. This is outlined as Algorithm 1, with details of the update in line 3 missing to keep the presentation
simple. These details are given next. One computes μ̃· and μ̃(2)

· from the respective values for the next-smallest integer as
follows: μ̃n = μ̃n−1− pn(1− fn) and μ̃(2)

n = μ̃(2)
n−1− pn(1− f 2n ), where fn = fn−1+ pn. Then κ· are computed as in (12), with

supporting formulæ given in Section 2.2.

4 EXAMPLES

The main purpose of this section is to demonstrate via examples that truncating supports via Algorithm 1 can reduce the
solution work relative to a simple-minded alternative that does not exploit error bounds.

In the examples, both marginals come from a one-parameter family of distributions of the power-law type, also known
as zeta and discrete Pareto. This is a family of discrete heavy-tailed distributions. The zeta(α) distribution with parameter
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Algorithm 1: Truncate
Input: Probability masses {p�,k}∞

k=1 for � = 1,2; tolerance δ > 0.
Output: Integers n and m, the truncation points for marginals 1 and 2, respectively.
n← 0; m← 01

repeat2

Update κ1,n,m, κ2,n,m, t1,n, and t2,m3

if κ1,n,mt21,n > κ2,n,mt22,m then /* majority of error is due to marginal 1 */4

n← n+15

else /* majority of error is due to marginal 2 */6

m← m+17

end8

until κ1,n,mt21,n+κ2,n,mt22,m < δ9

α > 1 has support on the positive integers and probability mass at k proportional to k−α for k = 1,2, . . .. The normalizing
constant is ζ (α) = ∑∞

k=1 k−α , Riemann’s zeta function. For small α , the quantile function grows very fast near 1. For
example, for α = 2, the quantile of order 1−10−2 is 61 whereas the quantile of order 1−10−6 is 607927.

The truncation alternatives we consider are as follows. Method C is casual: it truncates each support at the quantile of
order 1− p, where p is small and, for lack of better knowledge, chosen casually. Method B is bound-based: it truncates
according to Algorithm 1, where δ is a user-specified minimum solution accuracy. With either truncation method, the
resulting finite-support NORTA correlation-matching problem is solved via the most efficient method of those studied in
Avramidis et al. (2009), named NI3.

Table 1 summarizes results. Comparisons between the two truncation methods are made by solving the same problem
instances for two pairings: (δ = 10−2, p= 10−6) (panel one) and (δ = 10−4, p= 10−5) (panel two). We report the following:
parameters α1 and α2 specify the two marginals; nC is the number of bivariate support points by method C; nB is the number
of bivariate support points by method B; n∗ is the minimum number of bivariate support points such that the error bound
(the right side of (11)) be no larger than δ ; the solution (correlation parameter of the Gaussian copula) obtained under the
two truncations; the work of method C in CPU seconds; and the ratio of work (CPU time) of method C over method B. For
the pairings considered here, the bound-based truncation results in significant work reduction while guaranteeing (at least)
the specified solution accuracy. Furthermore, the proximity of nB to n∗ suggests that Algorithm 1 is effective in the sense
that the loss in efficiency compared to the optimum is very small.

Table 1: Comparison of methods B and C for selected zeta marginals. The target rank correlation is 0.5. CPU times were
measured in MATLAB. Bivariate normal integrals were evaluated by writing Φ̄ρ(x,y) =

∫ −x
−∞

∫ −y
−∞ φρ(z,w)dzdw and evaluating

the latter integral via MATLAB’s function mvncdf to tolerance 10−9.

δ p α1 α2 nC nB n∗ Solution Solution CPU of C CPU
via C via B ratio

10−2 10−6 5 5 484 25 25 0.8295 0.8323 2.7 8
5 4 1496 40 40 0.8279 0.8307 5.9 26
5 3 14190 88 88 0.8932 0.8987 52.2 104
4 4 4624 49 49 0.7802 0.7835 21.1 54
4 3 43860 102 102 0.7695 0.7735 197.6 264
3 3 416025 182 180 0.7055 0.7095 1637.1 1231

10−4 10−5 5 5 144 90 90 0.8295 0.8296 1.0 1.6
5 4 372 162 152 0.8279 0.8280 1.7 2.1
5 3 2448 528 528 0.8932 0.8933 10.7 4.1
4 4 961 240 240 0.7802 0.7802 5.4 3.4
4 3 6324 770 714 0.7695 0.7696 35.0 6.8
3 3 41616 1806 1804 0.7055 0.7055 206.9 17.4
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5 SUMMARY

In specifying a multivariate discrete distribution with unbounded marginals via the NORTA method, a problem that arises is
to find the bivariate Gaussian copula that induces a given rank correlation r between two specified marginals. An approximate
solution can be obtained by solving an analogous problem in which the marginals have been replaced by finite-support
(truncated) counterparts. Our main contribution is an upper bound on the absolute error, where error means the difference
between r and the resulting rank correlation between the original marginals. The bound involves tail probabilities of the
original marginals and was obtained by bounding differences (separately for the means, the variances, and the covariance
that enter the rank correlation formula) between the original and truncated marginals. We also developed a simple method
for choosing truncation points while controlling the error via the bound. Examples where marginals are discrete Pareto
demonstrated that this method yields considerable work savings against a simple-minded choice of truncation points.
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