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ABSTRACT

We develop rare event simulation methodology for the tail of a perpetuity driven by a continuous time Markov chain. We
present a state-dependent importance sampling estimator in continuous time that can be shown to be asymptotically optimal
in the context of small interest rates.

1 INTRODUCTION

We concentrate on developing an efficient rare event simulation estimator for the tail distribution of a perpetuity (also known
as infinite horizon discounted reward) in which both the discount rate and the reward rate are stochastic and driven by a
continuous time Markov chain.

The distribution of a perpetuity arises in many applied settings including risk theory, mathematical finance, communication
networks, number theory and computer science (see, for example, Vervaat (1979), Embrechts and Goldie (1994), Goldie
and Grubel (1996) and Maulik and Zwart (2006)). In the setting of risk theory and finance it is natural to study perpetuities
that evolve in a stochastic economic environment. Such has been the topic of a substantial number papers in the literature.
The article of Paulsen (1998) surveys the literature on the analysis of perpetuities in the context of risk theory and finance.
Most of the results focus on the development of asymptotic approximations for the tail distribution of a perpetuity or closed
formulae in some classes of models. More recent articles on this type of analysis include Nyrhinen (2001) and Kluppelberg
and Kostadinova (2008). The text of Asmussen (2001) also includes a section on the analysis of perpetuities and their role
in risk theory.

Most of the simulation work on perpetuities concentrate on the design of algorithms to generate unbiased samples and
this is primarily in the discrete case and in the context of independent and identically distributed (i.i.d.) rewards and discounts
(see, for instance, Devroye, Fill, and Neininger (2000) and Devroye, and Neininger, (2002)). Rare event simulation for
perpetuities, on the other hand has been studied in Asmussen and Nielsen (1995) in the context of deterministic interest
rates and Blanchet and Zwart (2007) in some discrete settings involving i.i.d. discount rates. In contrast, we concentrate on
perpetuities in continuous time driven by Markov chains.

Our analysis here concerns an environment involving small discount rates, which is motivated by the situation that
governs “safe instruments” such as the treasury bonds these days. These types of asymptotic environments have not been
well studied in the literature in the context of risk theory and simulation (see Blanchet (2004) for a related type of analysis).
Since insurance companies tend to invest (because of regulation) in safe instruments we consider that our considerations
here are of significant relevance.

We assume that the discount rate (γ (x) : x ∈ S) is positive and the reward rate (λ (x) : x ∈ S) are governed by an irreducible
continuous time Markov chain (X (t) : t ≥ 0) taking values on a finite state-space S. We concentrate on the finite state-space
case for simplicity, but the analysis in the context of more general processes will appear elsewhere and is similar to that of
Blanchet and Glynn (2009); see also Blanchet (2004).
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The perpetuity D(δ ) then takes the form

D(δ ) =
∫

∞

0
exp
(
−δ

∫ t

0
γ (X (s))ds

)
λ (X (t))dt.

For notational convenience we introduce the cumulative discount and reward processes Γ(t) =
∫ t

0 γ (X (s))ds and Λ(t) =∫ t
0 λ (X (s))ds respectively, so that D(δ ) =

∫
∞

0 exp(−δΓ(t))dΛ(t). Moreover, note that ergodic theory guarantees the existence
of constants γ > 0 and λ such that Γ(t) = γt + o(t) and Λ(t) = λ t + o(t) as t ↗ ∞ (where o(t)/t −→ 0 almost surely as
t↗ ∞). In addition, it follows easily from the previous asymptotic relation for Γ(·) that Γ−1 (t) = t/γ +o(t) almost surely
as t↗ ∞.

Now, integrating by parts yields that

D(δ ) =
∫

∞

0
exp(−δΓ(t))dΛ(t)

= δ

∫
∞

0
Λ(t)exp(−δΓ(t))dΓ(t) .

Making the change-of-variable δΓ(t) = u we obtain

D(δ ) =
∫

∞

0
exp(−u)Λ

(
Γ
−1 (u/δ )

)
du. (1)

Taking advantage of the asymptotic relations explained in the previous paragraph it follows immediately that δD(δ )−→ λ/γ

almost surely as δ ↘ 0. Our interest is in large deviations from the “typical” value λ/(δγ) of D(δ ), so we concentrated
on estimating

α (δ ) = P(δD(δ ) > η)

for η ∈
(

λ/γ,d∗
)

, where d∗ = maxx∈S |λ (x)|/minx∈S γ (x) < ∞ (i.e. d∗ is the supremum of the support of δD(δ )). Our
goal is then to construct an importance sampling estimator whose relative mean squared error can be shown to be well
controlled as δ ↘ 0. In particular, we will exhibit an unbiased estimator whose coefficient of variation grows at most at a
rate o

(
α (δ )−ε

)
for any ε > 0 as δ ↘ 0. (We use the notation f (x) = o(x) if f (x)/x−→ 0 as x↗ ∞). An estimator that

satisfies such a mean squared error criterion is said to be asymptotically optimal (see Asmussen and Glynn (2007) p. 159).
Section 2 presents the large deviations analysis for the perpetuity of interest. The construction of our importance sampling

estimator and the efficiency analysis is given in Section 3.

2 PRELIMINARIES ON MARKOV PROCESSES AND LARGE DEVIATIONS FOR PERPETUITIES

Equation (1) represents δD(δ ) as a linear functional of the process δZ (·/δ ) , δΛ
(
Γ−1 (·/δ )

)
; namely

δD(δ ) = F (δZ (·)/δ ) ,
∫

∞

0
exp(−u)δZ (u/δ )du. (2)

In turn, sample paths large deviations for δZ (·/δ ) can be developed under a suitable topology under which F (·) is continuous.
This approach, which provides a representation for the rate function of δD(δ ) is studied in detail in Blanchet (2004) (see
also Blanchet and Glynn (2009)). Here we concentrate instead on obtaining, from first principles, the asymptotic log-moment
generating function of D(δ ). This will allow us to understand the nature of the importance sampling strategy that we shall
implement.

Large deviations estimates for Markov additive processes, such as Γ(·) and Λ(·), require the specification of suitable
eigenvalue and eigen-functions. Given the connection described in the previous paragraph it is not surprising that such types
of quantities are also required to obtain the asymptotic log-moment generating function of D(δ ). We shall work directly
with the process Z (·) = Λ

(
Γ−1 (·)

)
. We note that Γ−1 (·) induces a random time change and that the process Y (·) defined
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via Y (t) = X
(
Γ−1 (t)

)
is also a continuous time Markov chain with intensity matrix (or generator) AY defined via

(
AY v
)
(y) =

(Av)(x)
γ (x)

. (3)

We use v(·) to denote a generic vector, v(x) is the entry corresponding to state x. The validity of (3) can be easily verified
from first principles. In turn,

Z (t) = Λ
(
Γ
−1 (t)

)
=
∫

Γ−1(t)

0
λ (X (s))ds

=
∫ t

0

λ
(
X
(
Γ−1 (u)

))
γ (X (Γ−1 (u)))

du ,
∫ t

0
β (Y (u))du,

where λ (y)/γ (y) = β (y) is also a Markov additive process with respect to Y . The Perron-Frobenius theory (see Asmussen
(2003) p. 25) implies that for each θ ∈ (−∞,∞) there exists a positive eigenvalue ψ (θ) and a positive eigenvector u(·,θ)
such that

(AY u)(y,θ) = (ψ (θ)−β (y))u(y,θ) . (4)

Now, given r > 0, consider the space-time Markov chain W (·) defined via

W (t) = (Y (t) ,r + t) .

It is easy to verify that the generator ofW (·) can formally be written as AW = AY +∂t . More precisely, given (g(y, t) : y ∈ S, t ≥ 0)
we have that (AW g)(y,r + t) = (AY g)(y,r + t)+∂tg(y,r + t). The matrix AY is applied to the vector g(·,r + t) and ∂t represent
the derivative with respect to t applied to the function g(y,r + ·). We hereafter use the notation (AY +∂t)g(y,r + t) to describe
(AW g)(y,r + t).

The following result is very useful to construct simulation algorithms for Markov processes (cf. Skorokhod, Hoppensteadt,
and Salehi (2002) p. 82)

Lemma 1. Given a positive function (h(y, t) : y ∈ S, t ≥ 0) which belongs to the generator of AW we have that the process

Mh (t) = h(Y (t) , t + r)exp
(∫ t

0

(
(AY +∂s)h(Y (s) ,r + s)

h(Y (s) ,r + s)

)
ds
)

is a martingale.

Proof. The expression for Mh (t) is equivalent to

Mh (t) = h(W (t))exp
(
−
∫ t

0

(
(AW h)(W (s))

h(W (s))

)
ds
)

.

Recall that if h(·) is in the domain of AW then N (·) defined via

Nh (t) = h(W (t))−
∫ t

0
(AW h)(W (s))ds
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is a martingale (in fact it is known as the Dynkin martingale). We then apply the product rule of differentiation of standard
calculus to Mh (t) (everything here is of bounded variation) to obtain

dMh (t) = −Mh (t)
(AW h)(W (t))

h(W (t))
dt

+
Mh (t)

h(W (t))
d
(

Nh (t)+
∫ t

0
(AW h)(W (s))ds

)
=

Mh (t)
h(W (t))

dNh (t) .

Since Nh (·) is a martingale and the integrand is bounded we conclude that Mh (·) is a martingale.

The previous lemma indicates that Mh (·) is a positive martingale, therefore, Mh (·)/h(W (0)) induces a change-of-measure
whose associated probability in the path space of W (·) will be denoted by P(h). It follows from Lemma 3 in p. 82 of
Skorokhod, Hoppensteadt, and Salehi (2002) that under P(h) the process W (·) is also a Markovian with infinitesimal generator
A(h)

W given by (
A(h)

W g
)

(w) =
(AW g⊗h)(w)−g(w)(AW h)(w)

h(w)
. (5)

The notation g⊗h represents a tensor product. In other words (g⊗h)(w) = g(w)h(w) = g(y, t)h(w, t).

We now are ready to obtain an expression for the asymptotic log-moment generating function of D(δ ). The idea is to
judiciously select the function h(·) in order to construct a martingale such as Mh (·). We define

h(y, t) = u(y,θ exp(−δ t)) , (6)

where u(·) is selected so that u(y,0) = 1. Observe, using (4), that

(AW h)(y, t) = (AY u)(y,θ exp(−t))
+θδ∂θ u(y,θ exp(−δ t))exp(−δ t)
= (ψ (θ exp(−δ t))−θ exp(−δ t)β (y))u(y,θ exp(−δ t))
+θδ∂θ u(y,θ exp(−δ t))exp(−δ t) .

Consequently,

Mh (t) = u(Y (t) ,θ exp(−t))

× exp
(

θ

∫ t

0
exp(−δ s)β (Y (s))ds−

∫ t

0
ψ (θ exp(−δ s))ds

)
× exp

(
θδ

∫ t

0

∂θ u(Y (s) ,θ exp(−δ s))
u(Y (s) ,θ exp(−δ s))

exp(−δ s)ds
)

.

Clearly (Mh (t) : t ≥ 0) is uniformly bounded and therefore uniformly integrable. Therefore, we can send t ↗ ∞ obtaining
convergence almost surely and in L1 to

Mh (∞) = exp
(

θ

∫
∞

0
exp(−δ s)β (Y (s))ds−

∫
∞

0
ψ (θ exp(−δ s))ds

)
× exp

(
θδ

∫
∞

0

∂θ u(Y (s) ,θ exp(−δ s))
u(Y (s) ,θ exp(−δ s))

exp(−δ s)ds
)

.
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Finally, observe (given that the function ∂θ u(y, ·) is continuous by results of Kontoyiannis and Meyn (2003)) that there exists
a constant κ ∈ (0,∞) independent of δ such that

κ
−1 ≤ δ

∫
∞

0

∂θ u(Y (s) ,θ exp(−δ s))
u(Y (s) ,θ exp(−δ s))

exp(−δ s)ds

=
∫

∞

0

∂θ u(Y (u/δ ) ,θ exp(−u))
u(Y (u/δ ) ,θ exp(−u))

exp(−u)du≤ κ.

Therefore, κ ∈ (0,∞) such that

exp
(
κ
−1)E exp

(
θ

∫
∞

0
exp(−δ s)β (Y (s))ds

)
≤ exp

(∫
∞

0
ψ (θ exp(−δ s))ds

)
EMh (∞)

≤ exp(κ)E exp
(

θ

∫
∞

0
exp(−δ s)β (Y (s))ds

)
. (7)

On the other hand, using the definition of Z (s), integration by parts and equation (2) we obtain that

D(δ ) =
∫

∞

0
exp(−δ s)β (Y (s))ds. (8)

Consequently, we obtain the following result.

Theorem 1. Given that Y (0) = x

lim
δ↘0

δ logEx (exp(θD(δ ))) =
∫

∞

0
ψ (θ exp(−t))dt.

Proof. Since Mh (t) converges to Mh (∞) almost surely and in L1 we have that Ex (Mh (∞)) = u(x,θ). The result follows
directly from (7) and equation inequality (8).

As a consequence of the previous result we obtain the following Theorem (see also Blanchet (2004) and Blanchet and
Glynn (2009)).

Theorem 2. Given η ∈
(

λ/γ,d∗
)

we have that

α (δ ) = exp(−I (η)/δ +o(1/δ ))

as δ ↘ 0 where

I (η) = ψ (θ ∗)−
∫

θ∗

0

ψ (r)
r

dr

and θ ∗ , θ ∗ (η) satisfies

ηθ
∗ (η) = ψ (θ ∗ (η)) .

Proof. The result follows by a direct application of the Gartner-Ellis theorem (see for instance Dembo and Zeitouni
(1998) p. 43). To verify the validity of the expression for I (η) note that for θ > 0

∫
∞

0
ψ (θ exp(−t))dt =

∫
θ

0

ψ (r)
r

dr.
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Therefore, the associated Legendre transform of the asymptotic log-moment generating function of D(δ ) evaluated at
η ∈

(
λ/γ,d∗

)
, namely, I (η) satisfies

I (η) = max
θ≥0

(
ηθ −

∫
θ

0

ψ (r)
r

dr
)

.

Optimality conditions then yield that the optimum value θ ∗ (η) satisfies ηθ ∗ (η) = ψ (θ ∗ (η)), thereby obtaining the indicated
expression for I (η).

3 IMPORTANCE SAMPLING ESTIMATOR AND EFFICIENCY

As is often the case in rare-event simulation, specially in the context of light-tailed systems such as the ones that we
consider here, the techniques behind the large deviations asymptotics provide useful guidance for the construction of efficient
importance sampling estimators. Not surprisingly then, we will take advantage of the ideas and notions developed in the
previous section to construct our estimator.

The construction of the estimator is a direct translation of the change-of-measure induced by the choice of h(·) indicated
in (6) using θ = θ ∗. More precisely, after having computed ψ (θ), we evaluate θ ∗ = θ ∗ (η) satisfying the root equation
indicated in Theorem 2. Then we write

h∗ (y, t) = u(y,θ ∗ exp(−δ t)) .

We shall assume the initial condition Y (0) = y0 (the sampler is explained in terms of the generator AY ). We compute the
rate matrix of the process Y under P(h∗)

y0 using equation (5) with our specific choice of h∗ (·) in place of h(·). In particular,
we obtain that the rate matrix A(h∗)

Y of Y under P(h∗)
y0 is time in-homogeneous given by

(
A(h∗)

Y f
)

(y, t) =
AY ( f ⊗h∗)(y, t)− f (y)(AY h∗)(y, t)

h∗ (y, t)
. (9)

To obtain the column corresponding to state y in the matrix A(h∗)
Y at a particular time t we evaluate the right hand side of

(9) selecting f (·) = ey (·), where ey (·) = 1 if y = x and 0 otherwise. This gives

A(h∗)
Y (x,y) = AY (x,y)− ex (y)

(AY h∗)(x, t)
h∗ (x, t)

.

Simulation of time in-homogeneous Markov chains is standard and can be done using thinning (see Asmussen and Glynn
(2007) p. 61).

After simulating the process Y under the time in-homogeneous generator A(h∗)
Y we then compute the likelihood ratio

L(δ ) , u(y0,θ
∗)M−1

h∗ (∞)

= u(y0,θ
∗)exp(−θ

∗ (D(δ )−η/δ )− I (η)/δ )

× exp
(
−θ∗δ

∫
∞

0

∂θ u(Y (s) ,θ∗ exp(−δ s))
u(Y (s) ,θ∗ exp(−δ s))

exp(−δ s)ds
)

. (10)

The previous expression will certainly have to be truncated for implementation purposes thereby inducing a bias. Nevertheless,
it is not difficult to convince oneself that such bias can be controlled by truncating at a level of order Ω

(
1/δ 3/2

)
. We say

that f (x) = Ω(x) if there exists κ ∈ (0,∞) such that κ−1x≤ f (x)≤ κx for all x larger than some x0 ∈ (0,∞).
We conclude with a summary of the efficiency properties of our estimator.

Theorem 3. The importance sampling estimator, L(δ ) I (D(δ ) > η/δ ), is asymptotically optimal as δ ↘ 0.
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Proof. The mean squared error of the estimator is bounded by the square of its second moment (under the probability
measure P(h∗)

y0 , of course). So, using the inequality (7) and the expression for L(δ ) defined in (10) we obtain that

E(h∗)
y0

(
L(δ )2 I (D(δ ) > η/δ )

)
/α (δ )2

≤ exp(2κ)exp(−2I (η))u(y0,θ
∗)/α (δ )2

×E(h∗)
y0 (exp(−2θ

∗ (D(δ )−η/δ )) I (D(δ ) > η/δ ))
≤ exp(2κ)u(y0,θ

∗)exp(o(1/δ )) .

The previous line follows from Theorem 2, which also yields that the last expression in the previous display is o
(
α (δ )−ε

)
for any ε > 0, thereby achieving asymptotic optimality.
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their Applications. 116: 156-177.
Nyrhinen, H. 2001. Finite and infinite time ruin probabilities in a stochastic economic environment. Stochastic Processes

and their Applications. 92: 265-285.
Paulsen, J. 1998. Ruin theory with compounding assets – a survey. Insurance: Mathematics and Economics. 22: 3–16.
Skorokhod, A., F. Hoppensteadt, and H. Salehi. 2002. Random Perturbation Methods with Applications to Science and

Engineering. Springer-Verlag, New York.
Vervaat, W. 1979. On a stochastic difference equation and a representation of non-negative infinitely divisible random

variables. Advances in Applied Probability. 11: 750-783.

450



Blanchet and Glynn

AUTHOR BIOGRAPHIES

JOSE BLANCHET is Assistant Professor of IEOR at Columbia University. Jose holds a M.Sc. in Operations Research and
a Ph.D. in Management Science and Engineering, both from Stanford University. Prior to joining Columbia he was a faculty
member in the Statistics Department at Harvard University. Jose worked for two years as an analyst in Protego Financial
Advisors, a leading investment bank in Mexico. He has research interests in applied probability, computational finance,
performance engineering, queueing theory, risk management, rare-event analysis, statistical inference, stochastic modeling,
and simulation. He serves or has served in the editorial board of the Applied Probability Journals, TOMACS and Statistica
Sinica. His email is <jose.blanchet@columbia.edu>

PETER W. GLYNN received his Ph.D. in Operations Research from Stanford University in 1982. He then joined the
faculty of the University of Wisconsin at Madison, where he held a joint appointment between the Industrial Engineering
Department and Mathematics Research Center, and courtesy appointments in Computer Science and Mathematics. In 1987,
he returned to Stanford, where he is now the Thomas Ford Professor of Engineering in the Department of Management
Science and Engineering. He also has a courtesy appointment in the Department of Electrical Engineering and serves as
Director of the Stanford Institute of Computational and Mathematical Engineering. He is a member of INFORMS and a
fellow of the Institute of Mathematical Statistics and his research interests in computational probability, simulation, queueing
theory, statistical inference for stochastic processes, and stochastic modeling. His email is <glynn@stanford.edu>

451


