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ABSTRACT

We consider the problem of estimating the probability that a stochastic process observed at discrete time intervals exceeds
a specified threshold. We further assume that the value of this process at any time, along any realization, is a conditional
expectation which is not known analytically but can be estimated via simulation. This leads to a nested simulation procedure.
One application of this arises in risk management where our interest may be in the probability that a portfolio exceeds a
threshold of losses at specified times. Here, if the portfolio consists of sophisticated derivatives, then as a function of the
underlying security prices, the portfolio value at any time is a conditional expectation that may be evaluated via simulation.
In our analysis, we note that conditional on the outer loop of simulation, our estimation problem is related to the large
deviations based ordinal optimization framework, so that similar analysis may be used to efficiently allocate computational
budget in portfolio evaluations at different times. We also propose a resource allocation methodology based on statistical
hypothesis testing.

1 INTRODUCTION

In risk management applications in finance, tail risk measures such as value-at-risk (VaR) and conditional value-at-risk (cVaR)
are extremely important performance evaluation measures. These depend upon and are closely related to the probability
of large losses in a portfolio. In particular, the techniques that efficiently compute the latter provide direct insights into
techniques that efficiently compute VaR or cVaR ( Lan, Nelson, and Staum 2007; Gordy and Juneja 2009). In this article,
we focus on estimating this probability of large losses in a portfolio of risk instruments.

The analysis in the existing literature typically focuses on evaluating the distribution of portfolio losses at a single time
instant, for instance, one month or one year in future. Here we consider the problem of evaluating the probability that the
maximum of the loss over multiple time periods exceeds a specified threshold. This is more relevant in many settings. For
instance, a large bank may like to hold sufficient reserves so that with high probability it is protected against large losses
within a specified time horizon, say one year. The losses may be compiled and computed periodically, say on a weekly or a
monthly basis. The probability of large losses over multiple time horizons may also be thought of as a discrete approximation
to the probability that the maximum loss within a given time horizon takes large values.

We consider a portfolio that includes sophisticated derivative instruments, whose price is a conditional expectation that
depends on the value of the underlying securities. The loss from a portfolio at any time can therefore also be represented
as a conditional expectation. Mathematically, our problem can be represented as follows: Suppose Y = (Yi : i≤ K) denotes
the process of underlying securities at times (ti : i≤ K). The loss amount at time interval ti is a conditional expectation

Li = E[Xi|Fi],
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where Fi denotes the information or the σ algebra associated with random variables (Y1, . . . ,Yi) and the expectation is
typically under the risk-neutral measure. We consider the problem of estimating

P
(

max
i≤K

Li > u
)

.

Here, each Li is not known in a closed form, but samples of Xi can be generated. To keep the analysis simple, in this
article for the most part we assume that conditional on Y, each Xi has a Gaussian distribution. This may be approximately
achieved by batching of samples when necessary. Our large deviations analysis (discussed below) allows general distributions.
The evaluation of the portfolio value in our framework is a nested simulation. In the outer loop the sample paths of the
underlying securities Y are generated. Then, in the inner loop each portfolio value Li is estimated via simulation.

One issue of interest is the division of computational budget between the outer loop and the inner loop. This issue has
been addressed in a related settings by Lee (1998) and by Gordy and Juneja (2009). Another issue of interest is the allocation
of computational budget to estimate different Li in each inner loop. Clearly, it makes sense to allocate more resources to
time periods i, where estimate of Li is close in a probabilistic sense to the loss threshold u. We address this in a general
framework by modeling it as a problem of ascertaining whether there exists a population in a finite collection, whose mean
exceeds a given threshold. We assume that while the means from each population are unknown, we can generate independent
samples from each population via simulation.

This problem is addressed using two separate approaches. One approach is based on large deviations based ordinal
optimization ideas developed by Glynn and Juneja (2004) (also see Chen, He and Fu (2006)). Using these ideas, we come up
with an asymptotically optimal budget allocation that maximizes the probability of making a correct decision via simulation,
when the distributional information of each population is known.

Szechtman and Yucesan (2008) tackle a related problem also using large deviations based ideas. They identify for each
population in a finite collection whether its mean exceeds a given threshold. Our problem differs somewhat from theirs
and our results differ in that we observe degenerate asymptotically optimal allocations. Specifically, we see that in certain
settings it is asymptotically optimal to allocate all computer budget to a single population. It is noteworthy that in practice
the distribution information of each population has to be estimated from generated samples leading to certain performance
degradation due to estimation errors.

We also introduce another hypothesis testing based heuristic for efficiently allocating computational budget to different
populations to control the probability of making a false decision. In this setting we assume that each population sample has
a Gaussian distribution. This of course is almost always true if batching of samples is allowed. The idea here is to continue
to allocate computational effort to those time periods, where there is a statistically significant chance of making an erroneous
conclusion. We test the efficacy of the proposed procedures on a small numerical example.

The outline of this article is as follows: Section 2 evaluates the bias and the mean squared error of the nested simulation.
The large deviations based allocation of the samples in the inner loop is studied in section 3. Section 4 proposes an alternative
sequential algorithm for the inner loop, using the hypothesis testing framework from Statistics and finally section 5 discusses
the results of a simulation experiment.

2 BUDGET ALLOCATION IN NESTED SIMULATION

In this section we first discuss the bias involved in estimating P(maxi≤K Li > u). Since u is not a parameter that is varied in
our analysis, without loss of generality, we set it to zero and consider P(maxi≤K Li > 0), which we denote by α . Then we
discuss how the computation effort may be allocated between the inner and the outer loop to minimize the resultant mean
square error.

2.1 Bias Evaluation

Suppose that each Li is estimated by the average X̄i(m) of m samples Xi(m) = (Xi(1), . . . ,Xi(m)). We generate these samples
so that conditional on Yi = (Yj : 1≤ j≤ i), the samples Xi( j) are all mutually independent. Let σ2

i (Yi) denote the conditional
variance of Xi conditioned on Yi. In this section, conditioned on Yi, each Xi is assumed to have a Gaussian distribution
with mean Li = E(Xi|Yi) and variance σ2

i (Yi).
We estimate α by estimating

α̂(m) = P
(

max
i≤K

X̄i(m) > 0
)

.
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via simulation.
Our first result is that the bias

|α̂(m)−α|= K2O(m−1). (1)

We argue this heuristically giving the flavor of the steps involved without spelling out all the technical assumptions
needed. Let

Ai j =
{

Li > max
k 6=i

Lk, X̄ j(m) > max
k 6= j

X̄k(m)
}

.

We assume that (Li : i≤ K) have a joint multi-variate probability density function, so that ∪i, jAi, j is a probability 1 event.
Then the bias |α̂(m)−α| equals,

∑
i, j

∣∣∣∣E [I(Ai, j)
(

I(max
i≤K

Li > 0)− I(max
i≤K

X̄i(m) > 0)
)]∣∣∣∣ ,

where I(B) is an indicator of event B.
This is decomposed into two terms

∑
i= j

∣∣∣∣E [I(Ai, j)
(

I(max
i≤K

Li > 0)− I(max
i≤K

X̄i(m) > 0)
)]∣∣∣∣ (2)

and

∑
i6= j

∣∣∣∣E [I(Ai, j)
(

I(max
i≤K

Li > 0)− I(max
i≤K

X̄i(m) > 0)
)]∣∣∣∣ . (3)

The terms in (2) can be re-expressed as

∑
i≤K

∣∣∣E [I(Ai,i)
(

I(Li > 0)− I(X̄i(m) > 0)
)]∣∣∣

and this is bounded from above by

∑
i≤K

∣∣∣E [I(Li > 0)− I(X̄i(m) > 0)
]∣∣∣ .

Let L̃i =
Li

σi(Yi)
and let fL̃i

denote its pdf and f (1)
L̃i

denote its derivative. Then, from Lee (1998),

E
(

I(Li > 0)− I(X̄i(m) > 0)
)

=−
f (1)
L̃i

(0)

2m
+o(m−1).

Therefore, (2) is bounded from above by term KO(m−1).
Now consider the term ∣∣∣∣E [I(Ai, j)

(
I(max

i≤K
Li > 0)− I(max

i≤K
X̄i(m) > 0)

)]∣∣∣∣
for i 6= j. We will show that this term is bounded from above by an O(m−1) term. First rewrite the above term as,∣∣∣ E

[
I(Ai, j)

(
I(Li > 0)− I(X̄ j(m) > 0)

)]∣∣∣ .
This is bounded from above by

EI(Ai, j)I(Li > 0, X̄ j(m) < 0) (4)
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plus

EI(Ai, j)I(Li < 0, X̄ j(m) > 0). (5)

The term (4) can be bounded from above by

E [I(Li > 0,Li > L j, X̄i(m) < X̄ j(m) < 0)] .

Similarly, (5) is bounded from above by

E [I(X̄ j(m) > 0, X̄ j(m) > X̄i(m),L j < Li < 0)] .

We now show that (4) can be bounded from above by an O(m−1) term. The fact that (5) is O(m−1) can then be similarly
argued, and then the bias result (1) follows.

To see that (4) is O(m−1), note that it is bounded from above by

E [I(Li > 0, X̄i(m) < X̄ j(m) < 0)] . (6)

We now argue that this is asymptotically similar to

1
4m

fLi,L j(0,0)E[σ2
i (Yi)|Li = 0,L j = 0]+O(m−3/2),

where fLi,L j denotes the joint pdf of (Li,L j).
We may express X̄i(m) as Li +Wi/

√
m, where conditioned on Yi, Wi has a Gaussian distribution with mean zero and

variance σi(yi)2, and its distribution is independent of m. Let fLi,Wi,X̄ j(m) denote the joint pdf of (Li,Wi, X̄ j(m)). Then, (6)
equals ∫ 0

−∞

∫ −wi/
√

m

0

∫ 0

li+wi/
√

m
fLi,Wi,X̄ j(m)(li,wi,x)dxdlidwi.

Under mild conditions, using Taylor series expansion of fLi,Wi,X̄ j(m)(li,wi,x) at point fLi,Wi,X̄ j(m)(0,wi,0), this can be seen to
equal

(1+O(m−1/2))
∫ 0

−∞

fLi,Wi,X̄ j(m)(0,wi,0)
∫ −wi/m

0

∫ 0

li+wi/
√

m
dxdlidwi.

This in turn equals ∫ 0

−∞

fLi,Wi,X̄ j(m)(0,wi,0)
w2

i
2m

dwi +O(m−3/2). (7)

Recall that X̄ j(m) = L j +Wj/
√

m and we will now show

fLi,Wi,X̄ j(m)(0,wi,0) = fLi,Wi,L j(0,wi,0)+O(m−1). (8)

This is because,

fLi,Wi,L j+W j/
√

m(0,wi,0) =
∫

ℜ

fLi,Wi,L j |W j=w(0,wi,−w j/
√

m) fW j(w)dw (9)

where fLi,Wi,L j |W j=w(li,wi, l j) denotes the conditional pdf of (Li,Wi,L j) conditioned on Wj = w, and fW j denotes the pdf of
Wj. Then, using the Taylor series expansion of the integrand in (9), and noting the EWj|Yj = 0, under mild conditions, (8)
follows.

Then, (7) equals

fLi,L j(0,0)
1

2m
E[W 2

i I(Wi ≤ 0)|Li = 0,L j = 0]+O(m−3/2).
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This in turn equals

fLi,L j(0,0)
1

4m
E[σ2

i (Yi)|Li = 0,L j = 0]+O(m−3/2),

since

E[W 2
i I(Wi ≤ 0)|Li = 0,L j = 0] = E[W 2

i I(Wi ≤ 0)|Yi|Li = 0,L j = 0] =
1
2

E[σ2
i (Yi)|Li = 0,L j = 0].

2.2 Minimizing Mean Square Error

Recall that our aim is to estimate α = P(maxi≤K Li > 0). We estimate this by estimating α̂(m) = P(maxi≤K X̄i(m) > 0) via
simulation.

The nested procedure for estimating α̂(m) is as follows:

1. In the outer loop we generate n independent samples of the process Y.
2. For each run of the outer loop, in the inner loop we generate samples of X̄i(m) for i ≤ K and set our output to

I(maxi≤K X̄i(m) > 0).
3. The simulation output is the average of the independent outputs from each inner loop.

It is clear that the variance of the simulation output equals

1
n

α̂(m)(1− α̂(m)).

In the analysis in the previous subsection we established that for a fixed K, the bias

|α̂(m)−α|= O(m−1).

A more refined analysis can show that the RHS is asymptotically similar to c/m where c is a constant independent of m.
Then, as in Lee (1998) and Gordy and Juneja (2008), we can look for optimal n and m that minimize the mean square error
of the resulting simulation estimator.

This mean square error equals the variance plus the squared bias, that is,

1
n

α̂(m)(1− α̂(m))+(α̂(m)−α)2.

This in turn equals

1
n

α(1−α)+ c2/m2 +O(m−1)/n+o(m−2).

If we assume that the average computational effort in the outer loop is a constant γ and the average computational effort
in the inner loop is mβ , then for large values of n, the overall computational effort is close to n(γ + mβ ). A reasonable
optimization problem is to look for m and n that minimize the mean square error assuming that that the total computational
budget Γ = n(γ +mβ ) is large but fixed.

Then, it can be seen that optimal number of outer loops is

n∗ =
(

α(1−α)
2β 2c2

)1/3

Γ
2/3 +o(Γ2/3),

and optimal size for the inner loop is

m∗ =
(

2c2

α(1−α)β

)1/3

Γ
1/3 +o(Γ1/3).
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3 LARGE DEVIATIONS BASED ALLOCATION

In this section, we focus on the computational effort allocation problem in the inner loop of the nested simulation, where
the allocation is made to minimize the probability of making a false identification. The problem in this section is analyzed
more generally. We consider the setting where there are K populations. Each population is characterized by its probability
distribution which is not explicitly known, but from which i.i.d. samples can be generated. These samples are mutually
independent across populations. Our aim is to correctly identify if any of the populations has a mean greater than zero.

We first conduct the analysis assuming that each population has a general distribution, using the large deviations framework.
We determine the allocations that minimize the asymptotic probability of false identification, under the assumption that the
distributions associated with each population are known. This corresponds to maximizing the large deviations rate function
associated with the probability of false identification. We then briefly discuss issues related to the fact that population
distribution is not known but is estimated from the generated samples.

3.1 Mathematical Framework and Analysis

Let Fi(·) denote the distribution function of population i, µi the associated mean, Λi(·) the log-moment generating function
and Λ∗i (·) its Fenchel-Legendre transform, i.e.,

Λ
∗
i (x) = sup

θ

(θx−Λi(θ)).

We suppose that total m simulation samples are available to us to allocate to different populations and we want to allocate
to minimize the probability of false identification. Specifically, suppose that we assign pim samples to population i (assume
that pim is an integer to avoid undue technicalities), pi > 0, ∑

K
i=1 pi = 1. We look to identify the set of p = (p1, . . . , pK) that

minimize the asymptotic probability of false identification. Let (Xi1,Xi2, . . .) denote i.i.d. samples from population i and let
X̄i(n) = 1

n ∑
n
i=1 Xik denote the associated sample mean. Two separate cases need to be considered.

3.1.1 All µi are Negative

In this setting, the probability of false identification equals

P(max
i≤K

X̄i(pim) > 0).

We need to identify its large deviations rate function. To this end, using Boole’s inequality we have,

max
i≤K

P(X̄i(pim) > 0)≤ P(max
i≤K

X̄i(pim) > 0)≤ K max
i≤K

P(X̄i(pim) > 0). (10)

From Cramer’s Theorem (see for e.g. Dembo and Zeitouni (1998)), it follows that

lim
m→∞

1
m

logP(X̄i(pim) > 0) =−piΛ
∗
i (0).

From this and (10), it follows that

lim
m→∞

1
m

logP(max
i≤K

X̄i(pim) > 0) =−min
i≤K

piΛ
∗
i (0).

Thus, asymptotically our problem becomes

max
pi>0,∑K

i=1 pi=1
min
i≤K

piΛ
∗
i (0).

The solution to this is,

p∗i =
1/Λ∗i (0)

∑
K
j=1 1/Λ∗j(0)

for i = 1, . . . ,K,.
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Therefore the populations that are most likely to cross the zero threshold are given more computational budget. When each
population is Gaussian distributed with mean µi and variance σ2

i , then

Λ
∗
i (x) =

(x−µi)2

σ2
i

and p∗i =
σ2

i /µ2
i

∑
K
j=1 σ2

j /µ2
j
.

3.1.2 Some µi are Positive

In this case the probability of false identification corresponds to

P(max
i≤K

X̄i(pim)≤ 0) =
K

∏
i=1

P(X̄i(pim)≤ 0).

In general

lim
m→∞

1
m

logP(X̄i(pim)≤ 0) =−piΛ
∗
i (0),

if µi > 0 and

lim
m→∞

1
m

logP(X̄i(pim)≤ 0),= 0

if µi ≤ 0. Let B denote the set of populations for which µi > 0. Therefore,

lim
m→∞

1
m

logP(max
i≤K

X̄i(pim)≤ 0) =−∑
i∈B

piΛ
∗
i (0).

In particular, if in the set B there is a unique i with the largest value of Λ∗i (0), then the asymptotically optimal allocation
corresponds to giving full computational budget to that population. In the Gaussian settings, the population with µi > 0 and
the highest µ2

i /σ2
i gets all the computational budget.

The bias result from section 2 can be extended to this optimal allocation design and one can show that the same
convergence rate for the mean squared error is applicable here.

3.1.3 Implementation Issues

In practice, the distribution and the log-moment generating function of each population is not known and is estimated from
data. Thus, the allocation derived above is subject to estimation errors. One may consider an iterative procedure, where there
is a pilot phase where each population gets equal number of samples. From this, the associated distributions are estimated
and optimal allocations ascertained. In the next phase, a small fraction of the budget is allocated to each population even
if that is not suggested by the optimal allocation (to compensate for errors in distribution estimation) but apart from this
correction, the allocations are based on the optimal calculations in the previous phase. This process is repeated till the
computational budget gets exhausted.

It is easy to show that as long as every population gets sufficient computation budget, the resulting allocations, using
empirical log moment generating functions as proxies for the true log moment generating functions in our calculations,
converge to the optimal allocations (this is shown in a related setting by Glynn and Juneja (2004)). Szechtman and Yucesan
(2008) develop a provably convergent stochastic approximation algorithm that can also be adapted to our settings.

It is interesting to note in our settings that the allocations derived form the above scheme appear to be directionally
correct even when the estimate of the underlying distribution may be wrong. This is easy to see in the Gaussian setting.
Consider the case where after running simulations for each population, mean and variance for population i are estimated
as µ̂i and σ̂2

i . Further suppose that all µ̂i are negative. Then, based on the proposed scheme, greater budget is given to
population i with larger σ̂i

2/µ̂i
2 as any reasonable scheme should, to correctly resolve whether this true population mean is

below 0 or above it.
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Similarly, if any of the µ̂i is positive, then it is reasonable to give most of the computational budget in a given phase to
a population with positive sample mean and highest value of µ̂2

i /σ̂2
i , as again it is important to resolve quickly whether the

true mean of this population is positive.

4 HYPOTHESIS TESTING BASED ALLOCATION SCHEME

In this section we propose a hypothesis testing based algorithm for making a correct identification of existence of a population
with mean greater than 0. Here we assume that each population has a Gaussian distribution. As is well known, this can be
approximately achieved by sample batching.

The essential idea is to fix a bias or the error level ε that we are willing to tolerate in our identification procedure. Then
suppose that initially a pilot run is conducted where equal number m0 samples are allocated to each population. Let µ̂i and
σ̂2

i denote the estimated mean and variance for population i. Two cases can occur:

All µ̂i ≤ 0: In this case suppose as a null hypothesis that there exists a design with true mean greater than zero. We test to
see if this can be rejected at significance level ε . Conservatively, we test the null hypothesis that each mean µi = 0 versus
the alternate hypothesis that µi < 0 for each i at level ε/K. That is, for each population i we test whether

µ̂i

σ̂i
<

1
√

m0
tm0−1,ε/K , (11)

where, tm0−1,ε/K satisfies the equation

P(T < tm0−1,ε/K) = ε/K

and T is a rv with t-distribution with m0−1 degrees of freedom. All i for which inequality (11) does not hold are allocated
more samples. The new sample amount m1−m0 is chosen for such a population i so that

µ̂i

σ̂i
=

1
√

m1
tm1−1,ε/K .

In particular, m1 is roughly proportional to
(

µ̂i
σ̂i

)2
as in the large deviations based algorithm. On the other hand, if all

populations satisfy (11), then we stop with the deduction that no population mean exceeds 0.

There exists non-empty set B: µ̂i > 0, for i ∈ B:
Here we consider the null hypothesis that all µi ≤ 0. Again, conservatively we test the null hypothesis that µi = 0 for all

i, with the alternate hypothesis that there exists a population with a positive mean. If there exist a population i ∈ B so that

µ̂i

σ̂i
>

1
√

m0
tm0−1,ε , (12)

then we can reject the null hypothesis at the ε significance level and the simulation stops with the decision that there exists
a population with mean exceeding zero. If not then we assign additional samples m1−m0 to the population i ∈ B with the
largest µ̂i

σ̂i
so that

µ̂i

σ̂i
=

1
√

m1
tm1−1,ε .

Note again the similarity to the large deviations based algorithm.

After the additional samples are allocated, then the estimated sample means and variances can be updated and iteratively
this procedure can be repeated until one of the two stopping rules is met. In the case where some of the true means are
very close to zero, we may observe that this procedure takes a long time to terminate. in that case overall limit on the
computational budget may be imposed so that once that limit is met, the decision is made based on current sample averages.
Thus, if there exists a sample average that exceeds zero, our output for this experiment is that the true mean is greater than
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zero, else we decide otherwise. A more detailed analysis of the proposed scheme will be provided in an expanded version
of this paper.

5 NUMERICAL RESULTS

We now illustrate the need for a better algorithm than the naive equal allocation scheme through a simple numerical example,
taken from Lan and Nelson and Staum (2007). Consider the following situation: At time 0, we sell a put option with strike
$110 and maturity 3 months on a stock, whose initial price is $100. We assume the Black Scholes model for the stock price
with volatility = 15% and the risk free rate = 6%. We sell the put option at the Black Scholes price and look at the riskiness
of the portfolio, evaluated every week till the expiry of the option. Thus the portfolio is simply the short put option and the
proceeds of the sale invested at the risk free interest rate.

Since our goal is to arrive at better allocation strategies compared to the equal allocation scheme, for the inner loop, we
make the following numerical comparisons: for a fixed path in the outer loop, the portfolio values are computed at the end
of every week using Black Scholes formula, for 3 months (i.e., 12 weeks). This way we arrive at the indicator whether the
minimum portfolio value (equivalent of maximum loss) over these 12 time points is above or below a fixed threshold. This
indicator value is now estimated using Monte Carlo simulations at each of the 12 time points using simulation to estimate
the price of a put instead of using the Black Scholes formula. Finally, the frequency of correct identification using 10,000
trials is compared for equal and optimal allocation schemes.

In particular, we chose an outer path such that only one of the 12 portfolio losses was slightly above the threshold and
others were below. So the true indicator value was 1, but equal allocation could correctly identify only 60% of the cases,
which leaves a lot of room for improvement. Figure 1 shows the probabilities of correct identification as we increase the
computing budget for the inner loop from 480 to 4800. The results show a marked improvement for the optimal allocation
scheme over the naive equal allocation scheme.

Figure 1: Probability of correct identification (y axis) versus computing budget (x axis) for equal and optimal allocation
procedures

The optimal allocation scheme used here was based on the large deviation heuristics, where a initial sample of 20
was taken at each time point. The optimal allocation of the remaining budget was decided based on this sample using the
Gaussian assumption, as detailed in section 3. We haven’t implemented the sequential algorithm in this paper and we hope
to present it at the conference. These results indicate that there is still room for significant improvements over the naive
equal allocation scheme.
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