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ABSTRACT

Reinforcement learning (RL) is a simulation-based technique to solve Markov decision problems or processes (MDPs). It
is especially useful if the transition probabilities in the MDP are hard to find or if the number of states in the problem is
too large. In this paper, we present a new model-based RL algorithm that builds the transition probability model without the
generation of the transition probabilities; the literature on model-based RL attempts to compute the transition probabilities.
We also present a variance-penalized Bellman equation and an RL algorithm that uses it to solve a variance-penalized MDP.
We conclude with some numerical experiments with these algorithms.

1 INTRODUCTION

For the Markov decision problem (MDP), Dynamic Programming (DP) can be used for solution purposes. The method of
Reinforcement Learning (RL) or approximate DP (ADP) has emerged from some seminal works that use value iteration
(Watkins 1989) or policy iteration (Witten 1977; Barto, Sutton, and Anderson 1983; Werbös 1987). RL (Bertsekas and
Tsitsiklis 1996, Sutton and Barto 1998, Gosavi 2003) is a simulation-based method that uses the Robbins-Monro algorithm.
It has attracted a great deal of interest recently because it generates near-optimal solutions to the MDP without the apriori
knowledge of its transition probability model. In this paper, (i) we develop a new type of model-building RL algorithm and
(ii) explore the use of RL for solving a variance-penalized MDP. Both algorithms use a two-time-scale framework developed
in Borkar (1997).

For model-based RL, we develop algorithms for discounted and average reward MDPs that indirectly build the transition
probability model without counting the number of visits to states or using the Bayesian networks — typically needed for
model-based RL (Tadepalli and Ok 1998). Our algorithms have two advantages: (i) They can be combined with artificial
neural networks (ANNs) (Werbös 1974), and (ii) they avoid the computation of an expectation in every iteration, which is
required in model-based RL and is computationally intensive for large state-spaces. Regarding function approximation, we
need to point out that effective function approximation lies at the heart of a successful application of RL, and this has been
recognized since the early days of RL (Werbös 1987). ANNs have been criticized in the literature as being unstable for
function approximation with RL (Baird 1995, Sutton 1996, Tsitsiklis and Roy 1997). Unfortunately, much of the literature
does not investigate the real causes for the instability of the ANN, although it is quite likely that there are many. One of
the reasons for the failure of ANNs in RL is the noise inherent in most RL algorithms like Q-Learning (Watkins 1989)
or SARSA (Rummery and Niranjan 1994) that are “model-free.” Interestingly, this has been highlighted some time back
in some insightful work by Werbös (1990) and Williams (1988). Our model-based algorithm seeks to eliminate from the
picture the noise of model-free algorithm that destabilizes the ANN.

For risk-sensitive control, we employ variance as a measure of risk, originally conceived of in Markowitz (1952), within
the MDP framework. We study variance because it is heavily used in the world of finance and is well-understood by real-world
managers seeking risk-sensitive solutions for strategic planning. Our model-free RL algorithm is developed for a problem
solvable via a quadratic program (see the seminal work of Filar, Kallenberg, and Lee (1989)), when the transition probability
model is known. We also present a semi-Markov extension of our algorithm. The problem we study has been studied via
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a policy gradient approach in Sato and Kobayashi (2001). Other approaches that use different metrics for modeling risk in
RL include Borkar (2002) and Geibel and Wysotzki (2005).

We have organized the remainder of this paper as follows. In Section 2, we describe the new algorithms for model
building, and in Section 3, we present algorithms for variance-penalized control. In Section 4, we present numerical examples
for our algorithms. Section 5 concludes the paper.

2 MODEL-BUILDING RL

We first present some notation and then present our model-building algorithms.

2.1 Notation

The goal in an MDP is to optimize a function of the immediate reward. Let S denote the finite set of states in the MDP, A (i)
the finite set of actions permitted in state i, and d(i) the action chosen in state i when policy d̂ is pursued, where ∪i∈S A (i) = A .
Further let r(., ., .) : S ×A ×S →ℜ denote the one-step immediate reward and p(., ., .) : S ×A ×S → [0,1] denote the
associated transition probability. Then the expected immediate reward earned in state i when action a is chosen in it can be
defined as: r̄(i,a) = ∑

|S |
j=1 p(i,a, j)r(i,a, j).

Definition 1 The long-run average (expected) reward of a policy d̂ starting at state i in an MDP is: ρd̂(i) ≡
limk→∞ Ed̂

[
∑

k
s=1 r̄(zs,d(zs))

∣∣z1 = i
]/

k, where zs is the state occupied before the sth transition and Ed̂ denotes the expectation
induced by d̂.

Definition 2 The long-run discounted reward of a policy d̂ starting at state i in an MDP is:
κd̂(i)≡ limk→∞ Ed̂

[
∑

k
s=1 γs−1r̄(zs,d(zs))

∣∣z1 = i
]/

k, where γ is the discount factor.
We note that the Bellman equations (in terms of Q-values), which our algorithms seek to solve, are as follows. For the

average reward MDP, it is:

Q(i,a) = ∑
j∈S

p(i,a, j)
[

r(i,a, j)+ max
b∈A ( j)

Q( j,b)−ρ
∗
]

∀(i,a), (1)

where ρ∗ is the optimal average reward, and for the discounted MDP, it is:

Q(i,a) = ∑
j∈S

p(i,a, j)
[

r(i,a, j)+ γ max
b∈A ( j)

Q( j,b)
]

∀(i,a). (2)

2.2 Model-Building Algorithms

As stated above, model-building may hold the key to solving the problem of instability of the ANN in combination with RL
(Werbös 1990, Williams 1988). It is also known that model-based algorithms are oftentimes more stable and require less
experimenting with learning rates to find a suitable one. In the literature, model-building RL either depends on straightforward
counting (Tadepalli and Ok 1998) or exploits a Bayesian network. We present an algorithm that does not need a counting
mechanism or a Bayesian net, and can be combined with function approximators like ANNs. We present an algorithm for
discounted reward MDPs, with γ as the discounting factor, (Alg. A-1), and then an algorithm for average reward MDPs
(Alg. A-2).

Steps in Algorithm A-1:
Step 1. Set for all (l,u), where l ∈S and u ∈ A (l), Q(l,u)← 0, r̃(l,u)← 0, and Q̃(l,u)← 0. Note that r̃(l,u) denotes
the estimate of the expected immediate reward in state l when action u is chosen, and Q̃(l,u) denote the estimate of the
maximum Q-value for the next state when action u is chosen in state l. Set k, the number of state changes, to 0. Set kmax,
which denotes the maximum number of iterations for which the algorithm is run, to a sufficiently large number; note that
the algorithm runs iteratively between Steps 2 and 6. Start system simulation at any arbitrary state.
Step 2. Let the current state be i. Select action a with a probability of 1/|A (i)| or with some other rule such as the Boltzmann
selection rule.
Step 3. Simulate action a. Let the next state be j. Let r(i,a, j) be the immediate reward earned in the transition to state j
from state i under the influence of action a. The quantity r(i,a, j) will be determined by the simulator. Increment k by 1.
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Step 4. Update Q(i,a) using the following equation:

Qk+1(i,a)← (1−µ)Qk(i,a)+ µ

[
r̃(i,a)+ γQ̃k(i,a)

]
.

Step 5. Update Q̃(i,a) and r̃(i,a) as follows:

Q̃k+1(i,a)← (1−ν)Q̃k(i,a)+ν max
b∈A ( j)

Qk( j,b); r̃(i,a)← (1−ν)r̃(i,a)+νr(i,a, j).

Step 6. If k < kmax, set i← j and then go to Step 2. Otherwise, go to Step 7.
Step 7. For each l ∈S , select d(l) ∈ argmaxb∈A (l) Q(l,b). The policy (solution) generated by the algorithm is d̂. Stop.

Note that the updates in Steps 4 and 5 do not use samples, but instead use estimates of both the immediate reward
function and the Q-value. As such, our algorithm is model-based; but unlike classical model-based algorithms it does not
estimate the transition probabilities directly. It thus avoids the noise of the model-free algorithm and at the same time can
be handily combined with ANNs without the need for Bayesian nets.

Steps in Algorithm A-2:
Algorithm A-2 will handle the average reward case; the steps are same as in A-1 with the following changes: Any one

state-action pair, to be denoted by (i∗,a∗), is selected in Step 1, and the update in Step 4 is changed to the following:

Qk+1(i,a)← (1−µ)Qk(i,a)+ µ

[
r̃(i,a)+ Q̃k(i,a)− Q̃(i∗,a∗)

]
.

3 VARIANCE-PENALIZED RL

We first present some relevant notation. Thereafter, we present two algorithms, B-1 and B-2.

3.1 Notation

The goal in a variance-penalized problem is to optimize a mean-variance function in which the variance of revenues is
penalized.

Definition 3 The long-run variance of the reward of a policy d̂ starting at state i in an MDP is: ψd̂(i) ≡
limk→∞ Ed̂

[
∑

k
s=1
[
r̄(zs,d(zs))−ρd̂

]2∣∣∣z1 = i
]/

k (Filar, Kallenberg, and Lee 1989).

It can be shown that both ρd̂(.) and ψd̂(.) are independent of the starting state for irreducible and recurrent Markov
chains. In our notation, ~x will denote a column vector whose ith element is x(i). A policy that maximizes

φ(i)≡ ρd̂(i)−θψd̂(i)

for every i ∈S is optimal in the variance-penalized framework (Filar, Kallenberg, and Lee 1989). The variance-penalized
score φ(i) can also be shown to be independent of i.

Let us consider the following equation from Gosavi (2007). For all (i,a) ∈S ×A (i),

Q(i,a) = ∑
j∈S

p(i,a, j)
[

r(i,a, j)−θ(r(i,a, j)−ρ)2−φ + max
b∈A ( j)

Q( j,b)
]
. (3)

We will assume that a solution to this equation exists, and that the Q-values that solve this equation define a policy whose
average reward is ρ and variance-penalized score is φ . We will refer to the above (i.e., (3)) as the variance-penalized Bellman
equation (Gosavi 2007). Whether a solution exists is still being investigated (Gosavi and Meyn 2009), but in practice solving
this equation via our algorithm invariably leads one to the optimal solution. That a deterministic optimal solution exists to
this problem has been proved in Filar, Kallenberg, and Lee (1989) via a quadratic program, and the optimal solution to the
problem can be determined via exhaustive enumeration of all deterministic policies or by solving the quadratic program.
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For the semi-Markov decision problem (SMDP), we need some more notation. Let t(i,a, j) denote the time taken for a
transition from i to j when action a is selected in i. Also, let t̄(i,a) = ∑

|S|
j=1 p(i,a, j)t(i,a, j). Then we define three quantities:

αd̂(i)≡ lim
k→∞

Ed̂

[
k

∑
s=1

r̄(zs,d(zs))|z1 = i

]/
k,

which is the first moment of the immediate reward,

βd̂(i)≡ lim
k→∞

Ed̂

[
k

∑
s=1

t̄(zs,d(zs))|z1 = i

]/
k,

which is the first moment of the time in one transition, and

γd̂(i)≡ lim
k→∞

Ed̂

[
k

∑
s=1

r̄2(zs,d(zs))|z1 = i

]/
k,

which is the second moment of the immediate reward. Then for irreducible and recurrent Markov chains, the long-run
average reward of a policy d̂ in an SMDP, starting at state i, is

ρd̂(i) =
αd̂(i)
βd̂(i)

,

and via Theorem 1 of Gosavi (2006), the long-run variance of rewards of the policy d̂ in an SMDP, starting at state i, can
be defined as:

ψd̂(i) =
γd̂(i)

βd̂(i)
−

(αd̂(i))
2

βd̂(i)
.

The Bellman equation for the SMDP is proposed as follows: For all (i,a) ∈S ×A (i),

Q(i,a) = ∑
j∈S

p(i,a, j)
[

r(i,a, j)−θ(r(i,a, j)−ρ)2−φ t(i,a, j)+ max
b∈A ( j)

Q( j,b)
]
,

where ρ denotes the optimal average reward on a per transition basis (not on unit time basis) and φ denotes the optimal
score on a unit time basis.

3.2 Algorithms

Algorithm B-1 is for the MDP and B-2 for the SMDP. We now present the details.
Steps in Algorithm B-1:

Step 1. Set k, the number of state changes, to 0. Set for all (l,u), where l ∈S and u ∈A (l), Qk(l,u)← 0. Set ρk, the
estimate of the long-run reward per state change, and σ k, the estimate of the long-run squared reward per state change, to
0. Set kmax, which is the number of iterations for which the algorithm is run, to a sufficiently large number;note that the
algorithm is run iteratively between Steps 2 and 6. Start system simulation at any arbitrary state.
Step 2. Let the current state be i. Select action a with a probability of 1/|A (i)| or with some other rule such as the Boltzmann
selection rule. Action a will be considered greedy if a = argmaxb∈A (i) Qk(i,b).
Step 3. Simulate action a. Let the next state be j. Let r(i,a, j) be the immediate reward earned in the transition to state
j from state i under the influence of action a. Increment k by 1. Then calculate µ and ν , both of which are predefined
functions of k.(See Remark below).
Step 4. Compute ψk = σ k− (ρk)2 and φ k = ρk−θψk. Update Q(i,a) as follows:

Qk+1(i,a)← (1−µ(k))Qk(i,a)+ µ(k)
[

r(i,a, j)−θ

(
r(i,a, j)−ρ

k
)2
−φ

k + max
b∈A ( j)

Qk( j,b)
]
.
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Step 5. If a is greedy, update ρ and σ using the following:

ρ
k+1← (1−ν(k))ρk +ν(k)

[
r(i,a, j)+ρkk

]
k +1

;σ
k+1← (1−ν(k))σ k +ν(k)

[
(r(i,a, j))2 +σ kk

]
k +1

.

Step 6. If k < kmax, set i← j and then go to Step 2. Otherwise, go to Step 7.
Step 7. For each l ∈S , select d(l) ∈ argmaxb∈A (l) Qk(l,b). The policy returned is d̂. Stop.
Remark: Note that limsupk→∞ ν(k)/µ(k) = 0 is a condition required of the step-sizes (Borkar 1997).

The three main differences with the steps of B-1 for B-2 (the algorithm for the SMDP) will be:
Step 1: In addition to other tasks, let τk denote the estimate of the time spent in each transition, which should be initialized
to a very small positive quantity.
Step 4: Update ψk as in B-1, but φ k as follows:

φ
k = [ρk−θψ

k]/τ
k.

Update Q(i,a) as follows:

Qk+1(i,a)← (1−µ(k))Qk(i,a)+ µ(k)
[

r(i,a, j)−θ

(
r(i,a, j)−ρ

k
)2
−φ

kt(i,a, j)+ max
b∈A ( j)

Qk( j,b)
]
.

Step 5: In addition to updating ρ and σ , update τk in case of a greedy update as follows:

τ
k+1← (1−ν(k))τk +ν(k)

[
t(i,a, j)+ τ

kk
]/

(k +1).

4 NUMERICAL EXPERIMENTS

In this section, we present a sample of our numerical experiments to illustrate the usefulness of our algorithms. We first
present the results with the model-building algorithm and then present the same for the variance-penalized algorithm.

We tested our algorithms on a 2-state MDP in which two actions allowed per state in which all Markov chains are
regular. Pa and Ra denote the transition probability and reward matrices for action a respectively; Pa(i, j) = p(i,a, j) and
Ra(i, j) = r(i,a, j).

P1 =
[

0.7 0.3
0.4 0.6

]
;P2 =

[
0.9 0.1
0.2 0.8

]
;R1 =

[
6.0 −5
7.0 12

]
;R2 =

[
5.0 68
−2 12

]
. (4)

Table 1: For A-2, Q̃(i∗,a∗)≡ Q̃(1,1) = 10.55689≈ 10.56 = optimal average reward

γ = 0.8;θ = 0 θ = 0
Q(, .) A-1 Q-Value-iteration A-2
Q(1,1) 42.668598 44.84667 2.70674
Q(1,2) 50.959958 53.03333 10.98493
Q(2,1) 49.230419 51.86667 9.581180
Q(2,2) 46.284741 49.28000 6.672185

Example I: This is used to test algorithms A-1 and A-2. We changed R2 in (4) as follows: r(1,2,1) = 10; r(1,2,2) = 17;
r(2,2,1) =−14; r(2,2,2) = 13.
Example II: This example is designed to test algorithms B-1 and B-2. The data in (4) is used.

Table 1 shows the Q-values obtained from the algorithms, A-1, A-2, and a discounted value iteration algorithm based
on Q-values (Example I). Each algorithm is run for a maximum of 100 iterations in a simulator; the Q-values remained
bounded in all our experiments. The step-size rules used were: µk = log(k+1)

k+1 ;ηk = 10
k+9 . Table 2 lists the mean and variance

via exhaustive enumeration for Examples I and II.
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Table 2: The optimal policy’s metrics are in bold

Example II (θ = 0.15) Example I (θ = 0)
Policy ρ ψ φ ρ

(1,1) 5.828571 30.142041 1.307265 5.828571
(1,2) 8.625000 31.284375 3.932344 5.64
(2,1) 11.04000 287.23840 -32.04576 10.56
(2,2) 10.95000 187.54750 -17.182125 9.666667

5 CONCLUSIONS

In this paper, we develop a model-free RL algorithm for solving the variance-penalized MDP and a model-building RL
algorithm that does not need explicit counting or Bayesian nets but (a) is compatible with ANNs and (b) does not compute
an expectation in every iteration. Although we presented only a sample here, our numerical results are encouraging since
they solve the classical Bellman equation (which is (1) or (2)) and the variance-penalized Bellman equation (which is (3)).
What remains as a topic for future work is a study of the convergence properties of these algorithms. We believe that
the model-building algorithm has the potential to overcome some problems associated with combining RL with ANNs.
Experiments need to be performed to test whether this is true of large-scale problems.
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