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ABSTRACT

This paper provides an introduction to simulation fundamentals via the Monte Carlo and next-event approaches to simulation,
supported by two representative programs from the software suite written specifically for the Winter Simulation Conference’s
Simulation 101 workshop. The simulation libraries and functions associated with workshop are written using the R statistical
language. R is suitable for an introduction to simulation because of its easy learning curve and its wide range of statistical
procedures, built-in functions, and graphics capabilities. This paper begins with general instructions for downloading,
compiling, and executing the software. This is followed by explanations of the Monte Carlo and next-event approaches,
using two examples: craps() uses Monte Carlo simulation to estimate the probability of winning the dice game Craps,
and ssq3() uses a next-event approach to estimate several measures of performance associated with a single-server queue.

1 INTRODUCTION

This paper provides an introduction to simulation fundamentals through the concepts of Monte Carlo and next-event simulation.
The concepts are supported using examples from the simulation software provided with the Simulation 101 workshop and
associated with the introductory simulation textbook by Leemis and Park (2006). For the workshop, the software is written
entirely in R, using object-oriented design when appropriate. In this paper, we discuss the downloading, installation, and
execution of R and the simulation software, followed by a discussion of the simulation concepts with supporting examples.

2 INSTALLING R AND THE SIMULATION SOFTWARE

R (The R Foundation 2009) is a programming language and software environment used primarily for statistical computing.
It includes standard statistical tools, such as classical statistical tests and regression analysis, and more modern tools such as
bootstrapping, survival analysis, and time-series analysis. R is also capable of producing publication-quality plots and has
many built-in functions, such as sort for sorting the elements of a vector and gamma for evaluating the gamma function.

The primary advantage of using R instead of a more typical high-level language (HLL) for simulation work lies in R’s
affordability (it can be downloaded for free), easy-to-use statistical procedures, built-in functions, and graphics capabilities.
The primary disadvantage of using R is that it is an interpreted language—in general, simulation programs will execute
more slowly when written in R rather than another HLL (sometimes dramatically so). Nonetheless, because of its ease of
use and its many built-in statistical capabilities, we have provided a suite simulation software in R for the Simulation 101
workshop, well-suited for an introduction to simulation.

2.1 Obtaining R

R can be downloaded via <http://www.r-project.org/>. Click on the CRAN (Comprehensive R Archive Network)
link and choose a mirror that is located near you. Then choose your platform (Linux, MacOS X, Windows), and the
appropriate version of the software can be downloaded and installed according to the typical installation process for your
platform.
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2.2 Obtaining the R.oo Package

In addition to the base R software, there is an add-on package to R that is necessary to run the simulation software. The
R.oo package (Bengtsson 2003) provides functionality for object-oriented programming and pass-by-reference capabilities
in R.

The package can be obtained as follows. After starting R software, type

source("http://www.braju.com/R/hbLite.R")

which fetches and sources in R the functions necessary for installing R.oo. Next type

hbLite("R.oo")

which invokes a newly sourced function to install the R.oo package. The previous two steps are a one-time cost.

2.3 Obtaining the R Simulation Software

The simulation software for the workshop is available as a package for R. Visit the link <http://www.mathcs.
richmond.edu/˜blawson/Sim101/packages/> and choose the directory that corresponds to your platform, saving
to disk the package file (ending in .tar.gz for Mac OS-X or Linux, .zip for Windows) in that directory. If you are
using Windows, in R enter

install.packages(file.choose(), repos=NULL)

If you are using Mac OS-X or Linux, in R enter

install.packages(file.choose(), repos=NULL, type="source")

In the resulting pop-up window, navigate to and choose the Simulation 101 package that you downloaded above. (You may
receive progress and/or warning messages in R, but, in the absence of a fatal error, these may be ignored.) The download
and install steps are a one-time cost.

2.4 Loading the Simulation Software at R Startup

Every time R is started, to use the simulation software you need to execute the following two commands in sequence:

library(R.oo)
library(Sim101)

The former command loads the add-on R.oo package (installed above) in your current R session; the latter loads the add-on
Sim101 package. If the R prompt returns with no messages (or at most a version warning message), the Sim101 package
has been successfully loaded.

3 LIBRARIES AND FUNCTIONS IN THE R SIMULATION SOFTWARE

Following is a list of the libraries and functions that are provided with the R version of the simulation software. These libraries
and functions were written to be consistent with the corresponding C versions described in Leemis and Park (2006)—given
the same initial conditions, both generate exactly the same random number sequences and can therefore produce exactly the
same output. For more details about a specific library or function, use R’s online help, e.g., help(Rngs).

3.1 Libraries

The following random-number-generation libraries all use object-oriented (OO) design. These “libraries” are themselves used
as objects in R, not as a typical R library you might load at startup. More specifically, instances of the random-number-generation
classes are used within the simulation functions discussed below.
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• Rngs: a multiple-stream Lehmer random number generator.
• Rvgs: a library used to generate random variates from six discrete (Bernoulli, binomial, “equilikely”, geometric,

Pascal, and Poisson) and seven continuous (uniform, exponential, Erlang, normal, log-normal, chi-square, and
student) distributions.

• Rvms: a library used to evaluate the probability density functions, cumulative distribution functions, and inverse
distribution functions for the distributions provided in Rvgs.

3.2 Functions

In the R simulation software, we have also provided a collection of simulation functions (programs) and utilities, including
three Monte Carlo simulations and three discrete-event simulations. In the R version, each of these is its own function.

• craps: produces a Monte Carlo estimate of the probability of winning the simple dice game Craps played with two
fair dice.

• galileo: produces a Monte Carlo estimate of the probability of each sum 3,4, . . . ,18 obtained when rolling three
fair dice.

• hat: produces a Monte Carlo estimate of the probability that a hat check person will return all n hats to the wrong
owners when returning n hats at random.

• ssq1: uses a process-interaction world view to implement the arrival and service processes of a trace-driven
single-server queue.

• ssq2: an extension of ssq1 that uses the Rngs library, implementing exponentially distributed interarrival times and
uniformly distributed service times.

• ssq3: an extension of ssq2 that uses the Rngs library, illustrating a next-event approach to the single-server queue.

• cdh: utility that plots a histogram of data drawn from a continuous population.
• ddh: utility that plots a histogram of data drawn from a discrete population.
• estimate: utility that computes a confidence interval estimate for a data set.

In addition, we have provided implementations of the inverse distribution (also known as probability transformation) functions
for seven of the distributions provided in Rvgs. Each of these functions evaluates the corresponding inverse distribution and
(optionally) displays an intuitive graphical representation:

• idfBinomial,
• idfExponential,
• idfGeometric,
• idfLognormal,
• idfNormal,
• idfPascal, and
• idfUniform.

For more details on any of these functions, use R’s online help (e.g., help(idfPascal)).

3.3 Viewing and Modifying R Simulation Source Code

The R code associated with the various simulation functions can be viewed by typing the name of the function. For example,
typing galileo in R will display the source code for the function galileo(), the first few lines of which are shown in
Figure 1. The first line of the function indicates that there are two parameters, seed (the random number generator seed)
and N (the number of replications), which have default values 12345 and 1000 respectively.

To modify one of the simulation programs, you should first dump to file the source code of the related function, e.g.,

dump("galileo", file=file.choose(new=TRUE))

In the resulting pop-up window, if you name the file galileo mods.R, you may then make modifications to the source
code by editing the file galileo mods.R using your favorite text editor. You can then overwrite the existing version of
the function in your current R session by reading in your modified source code, e.g.,
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> galileo
function (seed = 12345, N = 1000)
{

if (!is.numeric(seed))
stop("seed must be an integer > 0, ",

"or < 0 for system-clock-supplied seed, ",
"or 0 for interactively-supplied seed")

if (!is.numeric(N) || N <= 0)
stop("N must be an integer > 0")

rng = Rng()

...

Figure 1: The first few lines from the R source code for the galileo() function

source(file.choose())

Any subsequent calls to the function in the current R session will exhibit the effects of your modifications. Note this will
not supplant the implementation provided in the original Sim101 library. If, on a subsequent restart of R, you load the
Sim101 library, the original version of the function will be used. If you want to use your modified version, you will need
to read in your modified source code again.

3.4 Executing the R Simulation Software

To execute a simulation program in R, simply type the corresponding function name with associated arguments. For example,
because galileo has default parameters, it can be executed using

galileo()

which displays a vector of 16 elements that are Monte Carlo estimates of the probabilities of rolling a 3,4, . . . ,18 when
rolling three dice. The default parameters can be changed by supplying the parameters in the function call, as shown in the
following examples:

galileo(8675309, 10000)
galileo(seed = 8675309, N = 10000)
galileo(N = 10000)

If subsequent operations on the estimates are required, the estimates can be placed into a vector, e.g.,

x = galileo()

Subsequent functions can be applied to x, whether native R functions (e.g., sum(x) to confirm that the elements of x form
a legitimate probability density function, or sum(3:18 * x) to calculate the mean of the total number of pips showing on
the dice in the experiments) or functions provided by the simulation software (e.g., cdh(x) to produce a continuous data
histogram of the probabilities).

As another example, the idfExponential() function can be used to evaluate the inverse distribution function of the
exponential distribution at u = 0.2, u = 0.5, and u = 0.999 as shown below, with a resulting graphic as shown in Figure 2.

> idfExponential(mean = 2.0, u = c(0.2, 0.5, 0.999))
[1] 0.4462871 1.3862944 13.8155106

Because the simulation software will execute more slowly in R (an interpreted language) than in some other HLLs,
especially for long simulations, users may be interested in having R interface with C or Java. This is accomplished by writing
simulation source code in C or Java, and then constructing an R function to accept arguments from the user, invoke the
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Figure 2: Graphical representation of an Exponential(2) idf evaluated at u = 0.2, 0.5, and 0.999

corresponding C or Java program, and return the simulation results to the user in an R-accessible format (e.g., R vector or
list). In this way, the user will experience much shorter execution times for long simulations while maintaining accessibility
to the built-in statistical and graphical routines of R. The interested reader may contact the authors of this paper for existing
implementations. For the details of the interfacing procedure, the interested reader should refer to the documentation on
writing R extensions (R Development Core Team 2009).

4 A BRIEF INTRODUCTION TO SIMULATION

Here we consider two basic types of simulation models: Monte Carlo simulation and discrete-event simulation. A Monte
Carlo simulation model contains one or more stochastic (random) components for which time evolution does not play a
significant role. A discrete-event simulation model also contains one or more stochastic components but, unlike Monte Carlo,
the passage of time plays a significant role. As implied by the name, discrete-event simulation involves state variable(s) that
naturally change values only at discrete points in time. Other types of simulation models (e.g., stochastic continuous-time)
are beyond the scope of this introduction. We illustrate some of the details associated with Monte Carlo and discrete-event
models using examples from the R simulation software below.

4.1 Monte Carlo Simulation

Monte Carlo simulation is often used in the estimation of one or more probabilities based on the frequency theory of
probability. More specifically, if a random experiment is repeated N times and Na is the number of times an event A occurs
(Na ≤ N), then the frequency theory of probability asserts that the relative frequency Na/N of event A converges to the
probability of A :

Pr(A ) = lim
N→∞

Na

N
.

Consider the gambling game “Craps”. The game involves tossing a pair of fair dice one or more times and observing
the sum of the two up faces (i.e., the total number of pips showing on the up faces). The rules are as follows:

• If a 7 or 11 is tossed on the first roll, the player wins immediately.
• If a 2, 3, or 12 is tossed on the first roll, the player loses immediately.
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• If any other number is tossed on the first roll, this number is called the “point.” The dice are rolled repeatedly until
the point is tossed (in which case the player wins) or a 7 is tossed (in which case the player loses).

The goal here is to find the probability that the player wins. This example is naturally modeled using Monte Carlo
simulation—the evolution of time plays no role in the probability of winning. As the number of replications N of the game
increases, the resulting probability estimate will tend to the true probability of winning at Craps.

To construct a Monte Carlo model, an Equilikely(1,6) random variate is used to model the roll of a single fair die (i.e.,
any of the integer values 1 through 6 is equally likely to occur). The algorithm shown in Figure 3 uses N for the number
of replications of the game of Craps. The variable wins counts the number of wins and the do-while loop is used to
simulate the player attempting to make the point when more than one roll is necessary to complete the game.

wins = 0;
for (i = 1; i ≤ N; i++) {

roll = Equilikely(1, 6) + Equilikely(1, 6);
if (roll == 7 or roll == 11)

wins++;
else if (roll != 2 and roll != 3 and roll != 12) {

point = roll;
do {

roll = Equilikely(1, 6) + Equilikely(1, 6);
if (roll == point) wins++;

} while (roll != point and roll != 7)
}

}
return (wins / N);

Figure 3: Monte Carlo algorithm for estimating the probability of winning at Craps

The algorithm has been implemented in the R function craps() (type craps in R to see the source code corresponding
to the algorithm above). The function has two arguments: the number of Monte Carlo simulation replications N (default
is N = 1000) and the random number generator seed (default is seed = 12345). Invoking craps() to use the default
arguments returns the probability estimate as a scalar, as shown below:

> craps()
[1] 0.522

If craps() is executed again in this fashion, an identical result will occur because the same sequence of random numbers
will be used, manifested by the choice of (default) initial seed. In order to get a different set of Monte Carlo replications
(and, therefore, different probability estimates), the seed must be changed as shown in the following two examples.

> craps(seed = 987654321)
[1] 0.51
> craps(seed = 54321)
[1] 0.53

This rather surprising streak of three estimates greater than one-half makes one wonder if this is a game with odds tilted
toward the player. Fortunately, in this case the problem also has an analytic solution. (This will not be the case for the
discrete-event simulation in the next section.) The solution using the axiomatic approach is 244/495∼= 0.493.

The three simulated values that exceeded the analytic value are the probabilistic equivalent of tossing three consecutive
heads with a fair coin. This is evidence that the coin may be biased or double-headed, but certainly is not conclusive. It
is a worthwhile investigation to increase the number of simulation replications in order to confirm the correctness of the
analytic solution, as shown in the following three examples with probability estimates scattered about the true theoretical
value 0.493 as expected.

> craps(N = 10000, seed = 987654321)
[1] 0.497
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> craps(N = 10000, seed = 123456789)
[1] 0.4855
> craps(N = 10000, seed = 555555555)
[1] 0.5021

Our three earlier unexpectedly high estimates using N = 1000 were simply a result of random sampling variability (often
the case when the number of replications is too low). If we use the same three seeds as above but increase the number of
replications even more, we expect the probability estimates to be even closer to the theoretical value, as confirmed by the
following three examples:

> craps(N = 100000, seed = 987654321)
[1] 0.49264
> craps(N = 100000, seed = 123456789)
[1] 0.4913
> craps(N = 100000, seed = 555555555)
[1] 0.49339

Keep in mind that for many (most) problems for which the Monte Carlo approach applies, a true theoretical probability
may be difficult or even impossible to obtain. In those cases, one can use consistency checks to provide confidence that
the simulation-derived estimates are accurate (e.g., as N increases, do the estimates tend to one another?). For more details,
consult Leemis and Park (2006) or any other simulation text.

4.2 Discrete-Event Simulation

Monte Carlo simulation is appropriate for static systems that do not involve the passage of time. Discrete-event simulation
is appropriate for dynamic systems where the passage of time plays a significant role. We describe one instance of a
discrete-event simulation model in this section.

Queueing models are one of the common applications of discrete-event simulation. Consider a single-server queue:
there is a single entity that provides service to jobs that arrive, with jobs waiting in an unlimited-length queue if necessary.
The assumptions in this model are:

• The queue discipline is first-come, first-served.
• There is no time delay between jobs (customers).
• The server does not take any breaks.

In this example, the state of the system can be described by a single variable: the number of jobs in the node. Note that the
number of jobs in service (0 or 1) and the number of jobs in the queue can be determined from the number in the entire
node. It should be clear that, unlike the Monte Carlo simulation of Craps, time plays a significant role here. Changes to the
state of the system occur at discrete points in time—whenever a new job arrives or a job in service is completed.

The most commonly-used approach for discrete-event simulation is a next-event approach. Given a collection of variable(s)
that provide a complete description of system state, to construct a next-event model one must define:

• a simulation clock;
• the types of events that may change the system state;
• a data structure to store events yet to occur (i.e., the event list); and
• algorithms to define state changes for each type of event.

The simulation clock is easily defined as a real-valued variable t (with, say, maximum value T ). The two types of events
that may change the state of this system are arrival of a job and completion of service. Then after initializing the simulation
clock and event list appropriately, the basic next-event algorithm proceeds as shown in Figure 4. While the simulated time
is less than the maximum, the next event to occur in simulated time is retrieved from the event list, that event is handled
(updating the system state) according to its type, and then the next event of that same type is generated and inserted into
the event list.

The function ssq3() in the Sim101 library for R is the implementation of a next-event simulation model for a
single-server queue with exponentially distributed interarrival times and uniformly distributed service times. In addition,
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while ( t < T ) {
e = GetNextEvent();
t = e.time;
if (e.type == ARRIVAL)

numberInNode++;
schedule next arrival;

else
numberInNode--;
schedule next completion of service;

}

Figure 4: Basic next-event algorithm for a single-server queue model

ssq3() adds a third event type—feedback of a job into the queue for additional service. Several measures of performance
can be captured for this particular system, such as the average delay in the queue and the utilization of the server. The
ssq3() function has seven arguments with default values:

• seed = 123456789, the random number seed,
• MaxTime = NULL, the maximum time for the simulation,
• MaxJobs = NULL, the number of jobs to be processed during the simulation run,
• interarrivalMean = 2.0, the mean interarrival time,
• minService = 1.0, the minimum service time,
• maxService = 2.0, the maximum service time, and
• feedbackProb = 0.0, the probability that a job feeds back for additional service.

Note that exactly one of the MaxTime and MaxJobs should be initialized to a value other than the default NULL value. If
the default interarrival and service parameters are used, then the jobs arrive to the queue every 2.0 time units on average,
and are serviced in (1.0+2.0)/2 = 1.5 time units on average. The time units in the simulation are arbitrary; it is equally
sensible to think of them as minutes or hours.

The program can be executed using 10000 jobs and otherwise default parameters as in the following example. The
system statistics are returned as an R list.

> ssq3(maxJobs = 10000)
$jobsProcessed
[1] 10000
$averageInterarrival
[1] 1.9954
$averageService
[1] 1.5034
$averageDelay
[1] 2.4149
$averageWait
[1] 3.9183
$averageNumberInNode
[1] 1.9635
$averageNumberInQueue
[1] 1.2101
$utilization
[1] 0.7533

The fact that the average interarrival time (1.9954) is slightly lower than the theoretical value (2.0) means that this
particular run of the simulation was slightly more congested than average. The fact that the average service time (1.5034) is
just slightly more than the theoretical value (1.5) means that the service was slightly slower than expected for this particular
run of the simulation. Similar to that suggested for the Monte Carlo example, we can also look for consistency checks to
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provide a sense of assurance that the results are correct. The average wait (queuing delay time plus service time) in the
queue node is 3.9183, and this is approximately 1.5 time units (the theoretical average service time) more than the average
delay in the queue, as expected. The average wait in the system (3.9183) is the sum of the average delay in the queue
(2.4149) and the average service time (1.5034). The final three lines display time-averaged statistics: the average number in
the queueing node (1.9635), the average number in the queue (1.2101) and the utilization of the server (75.33%) over the
course of the simulation.

Similar to that shown in the Monte Carlo example, the default parameters can be modified to yield quantitatively different
simulation results. If subsequent operations on any of the values in the list are required, the individual values can be easily
pulled from the list and stored as scalars, e.g.,

> l = ssq3(maxJobs = 10000)
> w_bar = l$averageWait
> x_bar = l$utilization

Subsequent function calls can be applied to the list l or to the scalars w bar and x bar (see examples in Section 3.4).

5 SUMMARY

The R statistical language is suitable for an introduction to simulation fundamentals because R is easy to use and provides a
wide range of statistical procedures, built-in functions, and graphics capabilities. As part of the Simulation 101 workshop,
we have developed a collection of simulation tools and programs specifically for R. The programs are not general purpose,
but are intended to be instructional tools for learning the concepts of simulation. The main disadvantage is that, because R
is an interpreted language, the R versions of the simulation programs will execute more slowly than corresponding programs
written in a compiled high-level language. This paper outlines the downloading, installation, and execution of R and the
associated simulation software. In addition, this paper provides an introduction to simulation by briefly introducing Monte
Carlo and next-event simulation both in concept and through software examples in R.
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