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ABSTRACT 

Many iterative optimization methods are designed to be used in conjunction with deterministic objective functions. These op-
timization methods can be difficult to apply to an objective generated by a discrete-event simulation, due to the stochastic na-
ture of the response(s) and the potentially extensive run times. A metamodel aids simulation optimization by providing a de-
terministic objective with run times that are generally much shorter than the original discrete-event simulation. Polynomial 
metamodels generally provide only local approximations, and so a series of metamodels must be fit as the optimization 
progresses. Other classes of metamodels can provide global fit; fitting can be done either by constructing the global model 
once at the start of the optimization, or by using the optimization results to identify additional discrete-event runs to refine the 
global model. This tutorial surveys both local and global metamodel-based optimization methods. 

1 INTRODUCTION 

Simulation models provide insight on the behavior of real systems and products.  Often the building, verification and valida-
tion of a simulation model are followed by ad-hoc exercise of the model to explore “what-if” scenarios.  When management 
objectives can be clearly specified, the simulationist would like to exercise the simulation model with different input parame-
ter settings to find settings that meet the objectives.  Simulation optimization is a formal tool for achieving such goals.  If we 
let Y0 be the output objective value of the simulation, an element of a possible larger output vector Y, and θ the vector of in-
put parameter settings, the optimization problem formulation can be described in general form as: 
 

  (1)  
 
 

 
The problem has a stochastic objective if Y0 is random.  The constraints imposed by the coordinate functions of a and the 
constraint vector b may allow θ to take on continuous values or may force one or more components of θ to be discrete (e.g., 
integer) valued.  If θ includes time (t) as an element, the optimization has a dynamic response; otherwise it is static.  Con-
straints arising from c are only implicitly known since there is no explicit form for the elements of Y as a function of θ.  The 
simulation optimization problem is unconstrained without the multivariate functions a and c. 

In spite of this variety, simulation optimization problems have some characteristics in common.  The objective is gener-
ally not available explicitly, but instead must be estimated by making R replications of the simulation model with parameter 
vector θ0 say, and estimating the objective by the observed simulation output averaged over the R replications: 
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Further, the estimation of f(θ) by simulation is often expensive, especially when R must be large.  These characteristics have 
led researchers to develop specialized methods for simulation optimization.  These methods were reviewed in April et al. 
(2003) and Fu et al. (2005).  

The authors identify a number of strategies employed for simulation optimization: 
 
• ranking and selection 
• metamodel-based methods (he calls RSM) 
• gradient-based procedures 
• random search 
• sample path optimization 
• metaheuristics, and a set of  
• model-based methods that put a probability distribution on potential solutions. 

 
This tutorial focuses on the second class of optimization strategies; metamodel-based methods for simulation optimiza-

tion.  Methods in this class are relatively easy to implement, and they provide a dual benefit of optimization and insight (Bar-
ton and Meckesheimer 2006). The implicitly represented stochastic response of the simulation is replaced by an explicit de-
terministic response function, as are any implicitly represented constraints. Techniques developed for deterministic 
optimization can be applied to these metamodel objectives.  The next section will describe overall strategies for metamodel-
based simulation optimization.  The following section will briefly highlight metamodel types and associated properties.  The 
next two sections highlight advances in local and global metamodel-based optimization since Barton and Meckesheimer 
(2006).  The final section summarizes recent events and discusses remaining issues. 

2 METAMODEL-BASED OPTIMIZATION STRATEGIES 

A metamodel-based optimization strategy has the following elements (Barton and Meckesheimer 2006): 
 

• identify a metamodel form 
• design an experiment to fit the metamodel 
• conduct the simulation experiment 
• fit the metamodel and validate the quality of its fit 
• optimize the metamodel (or using it to provide a search direction), and  
• check the performance of the simulation at the metamodel-predicted optimum  

(or along the metamodel-determined search direction).  
 
In some cases this process is repeated, with the new experiment design focused on the neighborhood of the predicted opti-
mum. Two general strategies have been used for metamodel-based simulation optimization: global metamodel fit, followed 
by optimization, and iterated local metamodels. In global metamodel fitting strategies, the entire region of interest (in terms 
of θ) is explored, and the experimental results are used to fit a global approximation.  The global approximation is then ex-
plored iteratively in the process of optimization.  For local fitting strategies, the fitting and optimization steps alternate:  as 
the optimization search moves, new local regions of θ space are explored, and new metamodel approximations are fitted. 
Figure 1 shows the differences and similarities between these two classes of fitting strategies. 

The local metamodeling strategy is commonly used with low-order polynomial metamodels. The linear or quadratic me-
tamodel is used to determine an optimization search direction. This is followed by a line search, typically evaluating the si-
mulation model directly (averaged over several replications perhaps). Because the metamodels are local, Taylor’s Theorem 
implies that linear and quadratic polynomial models can provide adequate fit. This is the scenario for response surface me-
thodology. Determining the meaning of local is critical to the adequacy of these metamodels and to the success of the me-
thod. If the local region is too small, differences in the mean simulation output for different values of θ will be small relative 
to the amount of variation in the simulation model output. As a result, the metamodel coefficients will not be sufficiently pre-
cise to distinguish them from zero. If the local region is chosen to be too large, linear or quadratic approximations will be in-
adequate.  Local methods thus require checks on metamodel goodness of fit and statistical significance of the metamodel 
coefficients. 

Global metamodel-based optimization is rarely based on polynomial response surface metamodels. Instead, spline, neur-
al network, spatial correlation (kriging) or radial basis function approximations are used. The next section gives a brief over-
view of these metamodel types and the experiment designs used to fit them. Since global metamodels can have multiple local 
optima, a global optimization strategy (genetic algorithm, simulated annealing or multistart local optimization) is necessary. 
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Figure 1: Global vs. local metamodel-based optimization strategy, similarities and differences. 
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3 METAMODEL TYPES 

Approximations to simulation input-output response functions have the advantages of i) explicit form, ii) deterministic re-
sponse and iii) computational efficiency.  Since the approximation is a model of a simulation model, Kleijnen called them 
metamodels (Kleijnen 1975, 2008).  They are called surrogate functions in the deterministic simulation community (Yesi-
lyurt and Patera 1995).  Running multiple replications of the simulation to produce f(θ) is expensive; running the metamodel 
once produces the deterministic value g(θ) which approximates f(θ) with low computational expense. The major issues in me-
tamodeling are the choice of a functional form for g, the design of experiments, that is, the selection of a set of θ values at 
which to observe Y(θ) by running the simulation model, the assignment of random number streams, the length of runs, etc., 
the fitting of the metamodel g to the simulation response using the experimental data, and the assessment of the adequacy of 
the fitted metamodel (confidence intervals, hypothesis tests, lack of fit and other model diagnostics).  Many of these issues 
are discussed in Barton (1998). 

Common metamodel functions are shown in Table 1, along with comments on experiment designs and global and local 
properties.  Polynomial models are not appropriate for global approximation in most cases, as explained in Barton (1992) and 
Barton and Meckesheimer (2006).  Kleijnen reviews experiment design strategies for low-order response surface polynomial 
metamodels (Kleijnen 2007).  Yang et al. (2007) use a nonlinear regression metamodel for predicting cycle time as a function 
of throughput and product mix. Many authors have used the deterministic version of the spatial correlation (kriging) meta-
model, but recent papers examine the stochastic version (Huang et al. 2006, Ankenman et al. 2008).  The stochastic kriging 
model represents Y0r in equation (2) as: 

 
 Y0r(x) = g(x)'β + M(x) + εr(x) (3) 

 
for replication r at design point θ = x, with M representing the kriging mean component.  The model allows modeling the ef-
fect of common random numbers, so that Corr(εr(x), εr(xr')) > 0.  To implement a sequential design strategy for fitting the  
stochastic kriging model (3), the authors assume statistical independence across runs (no CRN) and introduce a second (but 
deterministic) kriging metamodel for V(x) = Var(ε(x)).  The two-phase strategy allows allocation of replications and new de-
sign points in the second phase to minimize an estimated IMSE. The resulting stochastic kriging model need not interpolate 
average response at the design points. 

Van Beers and Kleijnen (2008) introduce a sequential experiment design strategy that can be applied in fitting any global 
metamodel. The examples fit (deterministic) kriging models to stochastic responses.  The strategy is also two-phase, using a 
pilot maximin or Latin hypercube design.  The fit is based on average of md replicates at dth design point.  These replicate Y 
values (and those at all other design points) are bootstrap resampled and the kriging model is refitted.  With B bootstrap repli-
cations, the variance of predicted values at each of nc pre-specified locations is checked. A new design point is added at the 
location with the highest bootstrap variance. 

A piecewise linear metamodel that is a kind of spline uses the simplex interpolation defined in (Weiser and Zarantonello 
1988) to provide a metamodel response for simulations that can only accept integer values for the elements of θ (Wang and 
Schmeiser 2008). 

 
Table 1: Metamodel types, properties and experiment designs for fitting them. 

 

Metamodel Type Local 
Approximation Global Approximation 

Experiment 
Designs 

Stochastic 
or Deterministic Response 

linear and quadratic  
polynomial yes no 

fractional factorial 
central composite 
small composite 

stochastic 

higher order  
polynomial no not recommended factorial or 

fractional factorial stochastic 

nonlinear regression no phenomenon-specific factorial stochastic 
radial basis function no yes space filling designs: 

maximin, orthogonal 
array, Latin hypercube  

uniform design 
application-driven 

deterministic 
spatial  

correlation (kriging) no yes deterministic 
or stochastic 

neural  
networks no yes stochastic or 

deterministic 
splines no yes factorial stochastic or deterministic 
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The metamodel types in Table 1 separate into two categories:  low-order polynomials for a local metamodel-based opti-

mization strategy (also called response surface methodology), and all other models are for global metamodel-based simula-
tion optimization strategies.  Advances in each of these areas are described in the next two sections. 

 

4 RESPONSE SURFACE METHODOLOGY 

Response surface methodology (RSM) has its origins in the work of Box and Wilson (1951).  They developed the approach 
while working with a company to determine optimal operating conditions for chemical processes.  One of the earliest appli-
cations in simulation was by Biles (1974). A current comprehensive reference for RSM is Myers et al. (2009). Formal RSM 
algorithms for metamodel-based simulation optimization are described in Neddermeijer et al. (2000) and Nicolai et al. 
(2004).  They follow the general structure in the left half of Figure 1.  A formal RSM procedure following this structure is al-
so described in Barton and Meckesheimer (2006).  Despite its long history, there have been continuing developments in RSM 
in recent years.  These are summarized in the paragraphs below, and later in Table 2. 

Kleijnen et al. (2004) proposed an alternative to the steepest descent search direction, and step length.  In a minimization 
setting, the method searches for the parameter θ'' that gives the lowest upper confidence interval on predicted mean perfor-
mance.  The search direction is then from the current point toward θ''. 

Oon and Lee (2006) investigated the advantage of ordinal optimization in RSM.  In place of the simulation response Y, 
the rank of each Y was used as the dependent variable for the regression model fit.  In some cases their ordinal RSM per-
formed comparably to RSM based on actual values, but their conclusion was that it was inferior to ordinary RSM. 

Chang et al. (2007) incorporated the trust region concept from unconstrained optimization in RSM.  Sequential quadratic 
approximations are fitted using orthogonal experiment designs.  An optimization step is determined based on the quadratic 
model, with magnitude limit based on the trust region size.  The simulation model is evaluated at this new point, followed by 
a check comparing the actual reduction against the reduction predicted by the quadratic approximation.  If the reduction is a 
small fraction of the amount predicted, the size of the trust region is decreased.  If the actual and predicted decrease are near-
ly the same, the trust region size is increased.  Otherwise the trust region size remains unchanged.  If the improvement is not 
statistically significant, additional simulation replications are allocated. 

RSM is generally applied in unconstrained optimization settings. Kleijnen and co-authors have formally extended the 
method to incorporate constraints. Biles et al. (2007) presented some examples.  The approach is based on constructing hypo-
thesis tests for the plausibility of the Karush-Kuhn-Tucker conditions of nonlinear programming at the candidate optimal so-
lution.  The details were presented in Bettonvil et al. (2009), and the method was summarized in Kleijnen (2008c). 

Many of these issues in response surface methodology were presented in del Castillo (2007), in some cases with addi-
tional (and better) alternatives.  

5 GLOBAL METAMODEL-BASED SIMULATION OPTIMIZATION 

The flexibility of neural networks, radial basis functions, splines and spatial correlation (kriging) models present an opportu-
nity to fit and optimize a single metamodel, eliminating the need to repeatedly design experiments, make runs and fit a se-
quence of local metamodels.  This removes the need for sequential decisions on the type of metamodel to be fit and the kind 
of experiment design to be used for fitting, and allows more complete automation of the optimization process.  Global meta-
model-based simulation does not require a simultaneous design strategy, however. More complex global metamodel-based 
optimization methods update the global fit by selecting additional simulation runs as the optimization progresses (Alexandrov 
et al. 1998, Jones et al. 1998, Booker et al. 1999).  This section reviews recent developments in global metamodel-based si-
mulation optimization, extending the discussion in Barton and Meckesheimer (2006). 

Compared with the nearly sixty-year history of RSM, global simulation metamodel optimization has been an active area 
for less than twenty years.  Barton (1992) summarized many global approximation models and their potential application in 
simulation metamodeling. The earliest focus was on modeling, not optimization, and initial optimization work was for deter-
ministic simulations such as finite element and circuit simulation models (Bernardo et al. 1992; later reviews include Simp-
son et al. 2001, Simpson et al. 2004 and Samarasinghe 2006).  This setting has come to be known as DACE, or the design 
and analysis of computer experiments (Santner et al. 2003).   

Wang (2005) proposed a formal neural network metamodel-based simulation optimization procedure.  Neural networks 
can be used to fit either deterministic or stochastic responses, which adds flexibility to the method.  The (unconstrained) op-
timization is performed using a genetic algorithm (GA).  The GA approach can require many function evaluations, but these 
are performed using the metamodel, minimizing the computational cost. 

While applications of global metamodeling methods such as neural networks and radial basis functions have received 
some attention, the most active area of recent research in metamodel-based simulation optimization has centered around spa-
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tial correlation models. The spatial correlation papers of Sacks et al. (1989), Currin et al. (1991), Handcock and Stein (1993), 
Morris et al. (1993) and Cressie (1993) among others laid out a framework for fitting and analyzing spatial correlation mod-
els.  These studies expanded on the spatial correlation model of Krige (1951), formalized by Matheron (Matheron 1962, 
1963), and so are frequently called kriging metamodels. 

Recent advances in kriging metamodel-based optimization extend the frameworks of Alexandrov, Jones et al. and Book-
er.   Formal methods for kriging metamodel-based optimization with constraints were proposed by Sasena et al. (2002), Biles 
et al. (2007) and Kleijnen et al. (2009).  Sasena et al. focused on deterministic simulation response functions. Biles et al. and 
Kleijnen et al. used the interpolating (deterministic) version of the kriging metamodel fitted to the outputs of a stochastic si-
mulation. These metamodels are used as approximations to objective and constraint functions, and a nonlinear programming 
optimization method is applied to the approximations.  If the optimization yields a new candidate θ*, then the original simu-
lation code is exercised at θ*. The algorithm includes validity and termination criteria.  Allen et al. (2003) noted that bias er-
ror in metamodels often dominates the error introduced by a stochastic objective, and Kleijnen and co-authors used the same 
argument to justify the deterministic (interpolating) kriging form. 

Huang et al. (2006) introduced a stochastic kriging metamodel-based optimization method.  The kriging model follows 
the form in Equation (3). The sequential experiment design strategy used a sophisticated approach, based on the Jones et al. 
expected improvement function.  The expected improvement function is augmented to capture uncertainty from the stochastic 
response.  The method performed well on five test cases.  One drawback cited by the authors was the significant computa-
tional time needed to fit the kriging models. The method and test cases were unconstrained optimizations, but the authors 
suggested that the method could be extended to constrained optimization using the approach described in Sasena et al. 

6 SUMMARY 

Table 2 summarizes the recent developments in metamodel-based simulation optimization described in the last two sections.  
It only includes complete methods, not improvements related to individual components of an overall metamodel-based simu-
lation optimization strategy.  More details on metamodel-based simulation optimization can be found in Barton and Mecke-
sheimer (2006), Kleijnen (2008a), and Kleijnen (2008b). 

This survey has excluded likelihood ratio, mathematical programming and score function sensitivity methods, which 
might be viewed as kinds of metamodel-based optimization. Rubinstein and Shapiro (1993), L'Ecuyer and Glynn (1994), 
Kleijnen and Rubinstein (1996), Rubinstein and Melamed (1998) and Chan and Schruben (2006) all examine simulation op-
timization strategies based on local derivative estimates.  Convergence results for optimization are presented in Rubinstein 
and Shapiro (1993). 

This overview indicates that there has been significant progress in recent years in metamodel-based simulation optimiza-
tion methods, but much remains to be done.  While many extensions and improvements have been developed, few conver-
gence results exist (but see del Castillo 2007).  Further, many methods require decision procedures that are difficult to fully 
automate. Finally, the relative performance of competing metamodel-based simulation optimization strategies remains un-
clear.  Comparisons have been informal, ad-hoc and not comprehensive. The future is bright for continuing research in this 
area. 

 
Table 2: Summary of recent developments in metamodel-based simulation optimization. 

 
 

Metamodel 
Type(s) 

Response 
modeled as 

Deterministic 
or Stochastic 

Continuous, In-
teger or Mixed 
Decision Va-

riables 

Constrained or 
Unconstrained  
Optimization 

Simultaneous 
or Sequential 

DOE 

Local 
Models or 

Global 
Model 

Paper       

Kleijnen 2008 Linear & 
Quadratic Stochastic Continuous Constrained Sequential Local 

Chang et al. 2007 Linear & 
Quadratic Stochastic Continuous Unconstrained Sequential Local 

Oon and Lee 2006 Linear & 
Quadratic 

Stochastic 
(Rank) Continuous Unconstrained Sequential Local 

Biles et al. 2007; Kleijnen et al. 2009 Kriging Deterministic Continuous Constrained Simultaneous Global 
Huang et al. 2006 Kriging Stochastic Continuous Unconstrained Sequential Global 

Wang 2005 Neural 
Network Deterministic Continuous Constrained Simultaneous Global 
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