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ABSTRACT

Revenue management is the collection of strategies and tactics firms use to scientifically manage demand for their products
and services. The practice has grown from its origins in airlines to its status today as a mainstream business practice in
a wide range of industry areas, including hospitality, energy, fashion retail, and manufacturing. This article provides an
introduction to this increasingly important subfield of operations research, with an emphasis on use of simulation. Some of
the contents are based on excerpts from the book The Theory and Practice of Revenue Management (Talluri and van Ryzin
2004a), written by the first two authors of this article.

1 INTRODUCTION

Every seller of a product or service faces a number of fundamental decisions. You want to sell at a time when market
conditions are most favorable, but who knows what the future might hold? You want the price to be right—not so high that
you put off potential buyers and not so low that you lose out on potential profits. You would like to know how much buyers
value your product, but more often than not you must just guess at this number. Businesses face even more complex selling
decisions. For example, how can a firm segment buyers by providing different conditions and terms of trade that profitably
exploit their different buying behavior or willingness to pay? How can a firm design products to prevent cannibalization
across segments and channels? Once it segments customers, what prices should it charge each segment? If the firm sells
in different channels, should it use the same price in each channel? How should prices be adjusted over time based on
seasonal factors and the observed demand to date for each product? If a product is in short supply, to which segments and
channels should it allocate the products? How should a firm manage the pricing and allocation decisions for products that
are complements (seats on two connecting airline flights) or substitutes (different car categories for rentals)?

Revenue management (RM) is concerned with the methodology and systems required to make demand-management
decisions, which can be categorized into (i) Structural decisions: Which selling format to use (such as posted prices,
negotiations or auctions); which segmentation or differentiation mechanisms to use (if any); which terms of trade to offer
(including volume discounts and cancelation or refund options); how to bundle products; and so on. (ii) Price decisions:
How to set posted prices, individual-offer prices, and reserve prices (in auctions); how to price across product categories;
how to price over time; how to markdown (discount) over the product lifetime; and so on. (iii) Quantity decisions: Whether
to accept or reject an offer to buy; how to allocate output or capacity to different segments, products or channels; when to
withhold a product from the market and sale at later points in time; and so on.
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Which of these decisions is most important in any given business depends on the context. The timescale of the decisions
varies as well. Structural decisions about which mechanism to use for selling and how to segment and bundle products
are normally strategic decisions taken relatively infrequently. Firms may also have to commit to certain price or quantity
decisions, for example, by advertising prices in advance or deploying capacity in advance, which can limit their ability to
adjust price or quantities on a tactical level. The ability to adjust quantities may also be a function of the technology of
production—the flexibility of the supply process and the costs of reallocating capacity and inventory. For example, the use
of capacity controls as a tactic in airlines stems largely from the fact that the different “products” an airline sells (different
ticket types sold at different times and under different terms) are all supplied using the same, homogeneous seat capacity.
This gives airlines tremendous quantity flexibility, so quantity control is a natural tactic in this industry. Retailers, in contrast,
often commit to quantities (initial stocking decisions) but have more flexibility to adjust prices over time.

We qualify RM as being either quantity-based RM or price-based RM if it uses (inventory- or) capacity-allocation
decisions or prices as the primary tactical tool respectively for managing demand. Both the theory and practice of RM differ
depending on which control variable is used. The number of topics the field spans is too large to cover adequately in a
single article like this. The book, The Theory and Practice of Revenue Management (Talluri and van Ryzin 2004a) provides
in depth coverage of both quantity and price-based RM as well as supporting topics such as demand modeling, economics,
forecasting, and system implementation. Here, we only introduce quantity-based RM and discuss the use of simulation in
this area.

2 SINGLE-RESOURCE CAPACITY CONTROL

In this section, we examine some basic results on the problem of quantity-based RM for a single resource; specifically,
optimally allocating capacity of a resource to different classes of demand. Two prototypical examples are controlling the
sale of different fare classes on a single flight leg of an airline and the sale of hotel rooms for a given date at different rate
classes. This is to be contrasted with the multiple-resource—or network—problems of Section 3, in which customers require
a bundle of different resources (such as two connecting flights or a sequence of nights at the same hotel).

We assume that the firm sells its capacity in n distinct classes (in the case of airlines, these are called fare classes) that
require the same resource. Classes are ranked from 1 to n in decreasing order of their revenue values, with r1 > r2 > · · ·> rn.
In the airline and hotel context, these classes represent different discount levels with differentiated sale conditions and
restrictions. The units of capacity are assumed homogeneous, and customers demand a single unit of capacity for the
resource. The central problem of this section is how to optimally allocate the capacity of the resource to the various classes.
This allocation must be done dynamically as demand materializes and with considerable uncertainty about the quantity or
composition of future demand.

2.1 Types of Controls

In the travel industry, reservation systems provide different mechanisms for controlling availability. These mechanisms are
usually deeply embedded in the software logic of the reservation system and, as a result, can be quite expensive and difficult
to change. Therefore, the control mechanisms chosen for a given implementation are often dictated by the reservation system.

The first type of control are booking limits that ration the amount of capacity that can be sold to any particular class at
a given point in time. For example, a booking limit of 18 on class 2 indicates that at most 18 units of capacity can be sold
to customers in class 2. Beyond this limit, the class would be “closed” to additional class 2 customers. This limit of 18
may be less than the physical capacity, for example, when we protect capacity for future demand from class 1 customers.
Booking limits are either partitioned or nested: A partitioned booking limit divides the available capacity into separate blocks
(or buckets)—one for each class—that can be sold only to the designated class. With a nested booking limit, the capacity
available to different classes overlaps in a hierarchical manner—with higher-ranked classes having access to all the capacity
reserved for lower-ranked classes (and perhaps more). Let the nested booking limit for class j be denoted b j. Then b j is
the maximum number of units of capacity we are willing to sell to classes j to n. So, naturally, b1 is equal to the capacity.
Effectively, nesting logic simply allows any capacity “left over” after selling to classes of lower ranks to become available
for sale to classes of higher rank. Nesting booking limits in this way avoids the problem of capacity being simultaneously
unavailable for a higher-ranked class yet available for lower-ranked classes. Most reservations systems that use booking-limit
controls quite sensibly use nested rather than partitioned booking limits for this reason.

The second type of control are protection levels that specify an amount of capacity to reserve (protect) for a particular
class or set of classes. Again, protection levels can be nested or partitioned. A partitioned protection level is trivially
equivalent to a partitioned booking limit. In the nested case, protection levels are again defined for sets of classes—ordered
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in a hierarchical manner according to class order. The protection level j, denoted y j, is defined as the amount of capacity to
save for classes j, j−1, . . . ,1 combined. The booking limit for class j, b j is simply the capacity minus the protection level
for classes j−1 and higher. That is,

b j = C− y j−1, j = 2, . . . ,n,

where C is the capacity. For convenience, we define b1 = C (the highest class has a booking limit equal to the capacity) and
yn = C (all classes combined have a protection level equal to capacity).

The third type of controls are bid-price controls. What distinguishes bid-price controls from both booking limits and
protection levels is that they are revenue-based rather than class-based controls. Specifically, a bid-price control sets a
threshold price (which may depend on variables such as the remaining capacity or time), such that a request is accepted if
its revenue exceeds the threshold price and rejected if its revenue is less than the threshold price. Bid-price controls are, in
principle, simpler than booking-limit or protection-level controls because they require only storing a single threshold value
at any point in time—rather than a set of capacity numbers, one for each class. But to be effective, bid prices must be
updated after each sale—and possibly also with time as well—and this typically requires storing a table of bid price values
indexed by the current available capacity, current time, or both.

2.2 Static Models

In this section, we examine one of the first models for quantity-based RM, the so-called static single-resource model. The
static model makes several simplifying assumptions that are worth examining in some detail. The first is that demand for the
different classes arrives in nonoverlapping intervals in the order of increasing prices of the classes. This could be justified
by the observation that advance-purchase discount demand typically arrives before full-fare coach demand in the airline
case. Moreover, the optimal controls that emerge from the model can be applied—at least heuristically—even when demand
comes in arbitrary order. As for the strict low-before-high assumption, this represents something of a worst-case scenario;
for instance, if high-revenue demand arrives before low-revenue demand, the problem is trivial because we simply accept
demand first come, first serve.

The second main assumption is that the demands for different classes are independent random variables. Largely, this
assumption is made for analytical convenience because dealing with dependence in the demand structure would require
introducing complex state variables on the history of observed demand. A third assumption is that demand for a given class
does not depend on the capacity controls; in particular, it does not depend on the availability of other classes. However,
in practice, customers in a high revenue class may buy down to a lower class if the latter is available, and customers in a
lower class may buy up to a higher class if the lower class is closed.

A fourth assumption in the static model is that it suppresses many details about the demand and control process within
each of the periods. However, the form of the optimal control is not sensitive to this assumption. A fifth assumption of the
model is that either there are no groups, or if there are group bookings, they can be partially accepted.

Finally, the static models assume risk-neutrality. This is a reasonable assumption in practice, since a firm implementing
RM typically makes such decisions for a large number of products sold repeatedly (for example, daily flights or daily hotel
room stays). Maximizing the average revenue, therefore, is what matters in the end. While we do not cover this case here,
some researchers have recently analyzed the single-resource problem with risk-averse decision makers or using worst-case
analysis, for example, Lan et al. (2007).

We start with the simple two-class model in order to build some basic intuition and then examine the more general
n-class case.

2.2.1 Littlewood’s Two-Class Model

The earliest single-resource model for quantity-based RM is due to Littlewood (1972). The model assumes two product
classes, with associated prices r1 > r2. The available capacity is C. Demand for class j is denoted D j, and its distribution
is denoted by Fj(·). Demand for class 2 arrives first. The problem is to decide how much class 2 demand to accept before
seeing the realization of class 1 demand.

The optimal decision for this two-class problem can be derived informally using a simple marginal analysis: Suppose
that we have x units of capacity remaining and we receive a request from class 2. If we accept the request, we collect
revenues of r2. If we do not accept it, we will sell unit x (the marginal unit) at r1 if and only if demand for class 1 is x or
higher. That is, if and only if D1 ≥ x. Thus, the expected gain from reserving the xth unit for class 1 (the expected marginal
value) is r1P(D1 ≥ x). Therefore, it makes sense to accept a class 2 request as long as its price exceeds this marginal value,
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or equivalently, if and only if

r2 ≥ r1P(D1 ≥ x). (1)

Note the right-hand side of (1) is decreasing in x. Therefore, there will be an optimal protection level, denoted y∗1, such that
we accept class 2 if the remaining capacity exceeds y∗1 and reject it if the remaining capacity is y∗1 or less. Formally, y∗1
satisfies

r2 < r1P(D1 ≥ y∗1) and r2 ≥ r1P(D1 ≥ y∗1 +1).

If a continuous distribution F1(x) is used to model demand (as is often the case), then the optimal protection level y∗1 is
given by the simpler expressions

r2 = r1P(D1 > y∗1), equivalently, y∗1 = F−1
1 (1− r2

r1
), (2)

which is known as Littlewood’s rule. Setting a protection level of y∗1 for class 1 according to Littlewood’s rule is an optimal
policy. Equivalently, setting a booking limit of b∗2 = C− y∗1 on class 2 demand is optimal. Alternatively, we can use a
bid-price control with the bid price set at π(x) = r1P(D1 > x).

2.2.2 n-Class Models

We next consider the general case of n > 2 classes. Again, we assume that demand for the n classes arrives in n stages, one
for each class, with classes arriving in increasing order of their revenue values. Hence, class n (the lowest price) demand
arrives in the first stage (stage n), and the highest price class (class 1) arrives in the last stage (stage 1). Since there is a
one-to-one correspondence between stages and classes, we index both by j. Demand and capacity are most often assumed
to be discrete, but occasionally we model them as continuous variables when it helps simplify the analysis and optimality
conditions.

Dynamic Programming Formulation: This problem can be formulated as a dynamic program in the stages (equivalently,
classes), with the remaining capacity x being the state variable. At the start of each stage j, the demand D j,D j−1, . . . ,D1
has not been realized. Within stage j, the model assumes that the following sequence of events occurs:

1. The realization of the demand D j occurs, and we observe its value.
2. We decide on a quantity u of this demand to accept. The amount accepted must be less than the capacity remaining,

so u ≤ x. The optimal control u∗ is therefore a function of the stage j, the capacity x, and the demand D j,
u∗ = u∗( j,x,D j), though we often suppress this explicit dependence on j,x and D j in what follows.

3. The revenue r ju is collected, and we proceed to the start of stage j−1 with a remaining capacity of x−u.

This sequence of events is assumed for analytical convenience; we derive the optimal control u∗ “as if” the decision
on the amount to accept is made after knowing the value of demand D j. In reality, of course, demand arrives sequentially
over time, and the control decision has to be made before observing all the demand D j. However, it turns out that optimal
decisions do not use the prior knowledge of D j as we show below. Hence, the assumption that D j is known is not restrictive.

Let Vj(x) denote the value function at the start of stage j. Once the value D j is observed, the value of u is chosen to
maximize the current stage j revenue plus the revenue to go, or

r ju+Vj−1(x−u),

subject to the constraint 0≤ u≤min{D j,x}. The value function entering stage j, Vj(x), is then the expected value of this
optimization with respect to the demand D j. Hence, the Bellman equation is

Vj(x) = E

[
max

0≤u≤min{D j ,x}
{r ju+Vj−1(x−u)}

]
, (3)
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with boundary conditions

V0(x) = 0, x = 0,1, . . . ,C.

Note that the Bellman equation is of the form E[max{·}] and not maxE[·] as in many standard texts. But essentially, the
maxE[·] form can be recovered by considering the demand D j to be a state variable along with x. While the two forms
can be shown to be equivalent, the E[max{·}] is simpler to work with in many RM problems. In our case, this leads to the
modeling assumption that we optimize “as if” we observed D j. The values u∗ that maximize the right-hand side of (3) for
each j and x form an optimal control policy for this model.

Optimal Policy with Discrete Demand and Capacity: We first consider the case where demand and capacity are discrete.
To analyze the form of the optimal control in this case, define

∆Vj(x)≡Vj(x)−Vj(x−1).

∆Vj(x) is the expected marginal value of capacity at stage j—the expected incremental value of the xth unit of capacity. A
key result concerns how these marginal values change with capacity x and the stage j:

Proposition 1 The marginal values ∆Vj(x) of the value function Vj(x) defined by (3) satisfy ∀x, j: (i) ∆Vj(x+1)≤
∆Vj(x), and (ii) ∆Vj+1(x)≥ ∆Vj(x).

That is, at a given stage j the marginal value is decreasing in the remaining capacity, and at a given capacity level x
the marginal value increases in the number of stages remaining. These two properties are intuitive and greatly simplify the
control. The resulting optimal control can be expressed in terms of optimal protection levels y∗j for j, j−1, . . . ,1 (class j
and higher in the revenue order) by

y∗j ≡max{x : r j+1 < ∆Vj(x)}, j = 1, . . . ,n−1. (4)

(Recall the optimal protection level y∗n ≡C by convention.) The optimal control at stage j +1 is then u∗( j +1,x,D j+1) =
min{(x− y∗j)

+,D j+1}, where the notation z+ = max{0,x} denotes the positive part of z. The quantity (x− y∗j)
+ is the

remaining capacity in excess of the protection level, which is the maximum capacity we are willing to sell to class j +1.
In practice, we can simply post the protection level y∗j in a reservation system and accept requests first come, first serve

until the capacity threshold y∗j is reached or the stage ends, whichever comes first. Thus, the optimal protection-level control
at stage j +1 requires no information about the demand D j+1, yet it produces the same optimal decision “as if” we knew
D j+1 exactly at the start of stage j +1. The reason for this is that knowledge of D j+1 does not affect the future value of
capacity, Vj(x). Deciding to accept or reject each request simply involves comparing current revenues to the marginal value
of capacity, and this comparison does not depend on how many stage-( j +1) requests there are in total.

Proposition 1(ii) implies the nested protection structure

y∗1 ≤ y∗2 ≤ ·· · ≤ y∗n.

One can also use booking limits in place of protection levels to achieve the same control. Optimal nested booking limits
are defined by

b∗j ≡C− y∗j−1, j = 2, . . . ,n, (5)

with b∗1 ≡C. The optimal control in stage j +1 is then to accept

u∗( j +1,x,D j+1) = min{(b j+1− (C− x))+,D j+1}.

Note that C−x is the total capacity sold prior to stage j+1 and b j+1 is the booking limit for class j+1, so (b j+1−(C−x))+

is the remaining capacity available for class j +1.
Finally, the optimal control can also be implemented through a table of bid prices. Indeed, if we define the stage j +1

bid price by

π j+1(x)≡ ∆Vj(x), (6)
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then the optimal control is

u∗( j +1,x,D j+1) =
{

0 if r j+1 < π j+1(x)
max{z : r j+1 ≥ π j+1(x− z)} otherwise.

In words, we accept the zth request in stage j +1 if the price r j+1 exceeds the bid price value π j+1(x− z) of the zth unit of
capacity that is allocated. In practice, we can store a table of bid prices and process requests by sequentially comparing
the price of each product to the table values corresponding to the remaining capacity. We summarize these results in the
following theorem.

Theorem 1 For the static model defined by (3), the optimal control can be achieved using either (i) nested protection
levels defined by (4), (ii) nested booking limits defined by (5), or (iii) bid-price tables defined by (6).

Optimality Conditions for Continuous Demand: When the capacity is continuous and demand at each stage has a continuous
distribution, the dynamic program is still given by (3); however D j, x, and u are now continuous quantities. The analysis
of the dynamic program is slightly more complex than it is in the discrete-demand case, but many of the details are quite
similar. Hence, we only briefly describe the key differences.

The main change is that the marginal value ∆Vj(x) is now replaced by the derivative of Vj(x) with respect to x, ∂

∂xVj(x).
This derivative is still interpreted as the marginal expected value of capacity. The marginal value ∂

∂xVj(x) is shown to be
decreasing in x (equivalently, Vj(x) is concave in x). Therefore, the optimal control in stage j + 1 is to keep increasing u
(keep accepting demand) as long as

r j+1 ≥
∂

∂x
Vj(x−u)

and to stop accepting once this condition is violated or the demand D j+1 is exhausted, whichever comes first. Again, this
decision rule can be implemented with optimal protection levels, defined by

y∗j ≡max
{

x : r j+1 <
∂

∂x
Vj(x)

}
, j = 1, . . . ,n−1.

One of the virtues of the continuous model is that it leads to simplified expressions for the optimal vector of protection
levels y∗ = (y∗1, . . . ,y

∗
n). We state the basic result here; see Brumelle and McGill (1993) for a proof.

First, for an arbitrary vector of protection levels y and vector of demands D = (D1, . . . ,Dn), define the following n−1
fill events

B j(y,D) ≡ {D1 > y1,D1 +D2 > y2, . . . ,D1 + · · ·+D j > y j}, j = 1, . . . ,n−1.

B j(y,D) is the event that demand to come in stages 1,2, . . . , j exceeds the corresponding protection levels. A necessary and
sufficient condition for y∗ to be an optimal vector of protection levels is that it satisfy the n−1 equations

P(B j(y∗,D)) =
r j+1

r1
, j = 1,2, . . . ,n−1. (7)

That is, the jth fill event should occur with probability equal to the ratio of class ( j +1) revenue to class 1 revenue. As it
should, this reduces to Littlewood’s rule (2) in the n = 2 case, since P(B1(y∗,D)) = P(D1 > y∗1) = r2/r1. Note that

B j(y,D) = B j−1(y,D)∩{D1 + · · ·+D j > y j},

so the event B j(y,D) can occur only if B j−1(y,D) occurs. Also, if y j = y j−1 then B j(y,D) = B j−1(y,D). Thus, if r j < r j−1,
we must have y∗j > y∗j−1 to satisfy (7). Thus, the optimal protection levels are strictly increasing in j if the revenues are
strictly decreasing in j.

Computing Optimal Protection Levels: One approach in computing the optimal protection levels in the n-class static model
is based on using dynamic programming recursion (3) directly and requires that demand and capacity are discrete - or in
the continuous case that these quantities can be suitably discretized. A second approach is based on using (7) together with
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Monte Carlo integration. This is most suitable for the case of continuous demand and capacity, though the discrete case can
be computed (at least heuristically) with this method as well. The idea is to simulate K demand vectors dk = (dk

1, ...,d
k
n),

k = 1, ..,K, from the forecast distributions for the n classes. We then sort through these values to find thresholds y that
approximately satisfy (7). Note that

P(B j(y,D)) = P(
j

∑
i=1

Di > y j|B j−1(y,D))P(B j−1(y,D)).

Thus, (7) implies that y∗ must satisfy

P(
j

∑
i=1

Di > y∗j |B j−1(y∗,D)) =
1

P(B j−1(y∗,D))
r j+1

r1
=

r j+1

r j

for j = 1, ...,n−1. The following algorithm, suggested by Robinson (1995), computes the optimal y∗ approximately using
the empirical conditional probabilities estimated from the sample of simulated demand data:

STEP 0: Generate and store K random demand vectors dk = (dk
1, ...,d

k
n). For k = 1, ..,K and j = 1, ...,n−1, compute the

partial sums Sk
j = ∑

j
i=1 dk

i and form the vector Sk = (Sk
1, ...,S

k
n−1). Initialize a list ϒ = {1, ...,K} and counter j = 1.

STEP 1: Sort the vectors Sk, k ∈ ϒ by their jth component values, Sk
j . Let [l] denote the lth element of ϒ in this sorted list

so that

S[1]
j ≤ S[2]

j · · · ≤ S[|ϒ|]
j .

STEP 2: Set l∗ = b r j+1
r j
|ϒ|c. Set y j = 1

2 (S[l∗]
j +S[l∗+1]

j ).

STEP 3: Set ϒ←{k ∈ ϒ : Sk
j > y j}, and j← j +1. IF j = n−1 STOP. ELSE GOTO STEP 1.

The complexity of this method is O(nK logK), which makes it relatively efficient even with large samples.

Computing Protection Levels with No Demand Information: So far, the models and methods we introduced assume the
probability distribution of demand in each class is known. However, in many applications, the revenue manager does not
know the demand distribution, either because data is not available, or forecasting is challenging because data is censored
(i.e., represents only sales as opposed to true demand). In those cases, optimal protection levels can be computed adaptively,
without recourse to the complex cycles of forecasting and optimization. The method of van Ryzin and McGill (2000) updates
booking policy parameters from one flight to the next, keeping track of the occurrence of fill events on previous flights.
The method relies on the optimality conditions (7) and works for underlying continuous demand distributions. It is provably
convergent to an optimal policy with repeated application. This approach can also be used in simulation-based optimization
when demand distributions are known because the main idea is to compute stochastic-gradients of the objective function.
Kunnumkal and Topaloglu (2008) present a similar stochastic approximation method provably convergent for the case of
discrete demand distributions. More recently, Huh and Rusmevichientong (2007) proposed another adaptive method that
uses results from online convex optimization theory and works directly with the expected revenue function (3), as opposed
to fill events.

2.3 Dynamic Models

Dynamic models relax the assumption that the demand for classes arrives in a strict low-to-high revenue order. Instead, they
allow for an arbitrary order of arrival, with the possibility of interspersed arrivals of several classes. While at first this seems
like a strict generalization of the static case, the dynamic models require the assumption of Markovian (such as Poisson)
arrivals to make them tractable. This puts restrictions on modeling different levels of variability in demand. Indeed, this
limitation on the distribution of demand is the main drawback of dynamic models in practice. In addition, dynamic models
require an estimate of the pattern of arrivals over time (called the booking curve), which may be difficult to calibrate in
certain applications. Thus, the choice of dynamic versus static models essentially comes down to a choice of which set of
approximations is more acceptable and what data is available in any given application.
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Retaining the other assumptions of the static model, one can develop a dynamic programming formulation and determine
the time-based booking limits, protection levels, or bid prices to optimally control the capacity of the resource.

3 NETWORK PROBLEMS

We next examine the problem of capacity control on a network of resources; for example, managing the capacities of a set
of flights in a hub-and-spoke airline network with connecting and local traffic. The dependence among the resources in such
cases is created by customer demand; customers may require several resources simultaneously (e.g. two connecting flights)
to satisfy their needs. Thus, limiting availability of one resource may cause a loss of demand for complementary resources.
This in turn creates dependencies among the resources that necessitates making control decisions at the network level. In
the airline industry, network RM is also called “the passenger mix problem” or “O&D (origin-destination) control”.

Simulation studies of airline hub-and-spoke networks have shown that there can be significant revenue benefits from
using network methods over single-resource methods; see Williamson (1992) and Belobaba (2001). In terms of industrial
practice, the potential improvements have been sufficient to justify significant investments in network RM systems within the
airline industry, hotel industry, and elsewhere. However, network RM poses significant implementation and methodological
challenges. On the implementation side, network RM vastly increases the complexity and volume of data that one must
collect, store and manage. On the forecasting side, it requires a massive increase in the scale of the forecasting system,
which now must produce forecasts for each individual itinerary and price-class combination - which we will call a product
- at each point in the booking process. Optimization is more complex as well. In the case of a single-resource problem
there are many exact optimization methods as we discussed in Section 2, but in the network case exact optimization is,
for all practical purposes, impossible. Therefore optimization methods necessarily require approximations of various types.
Achieving a good balance between the quality of the approximation and the efficiency of the resulting algorithms becomes
the primary challenge.

3.1 Types of Controls

As with single-resource problems, in network problems there are a variety of ways one can control the availability of capacity.
We next look at the major categories of network controls. Most are network versions of the controls used for single-resource
problems. But others, virtual nesting in particular, are somewhat unique to the network setting.

3.1.1 Virtual nesting controls

Nested booking limits, of the type we saw in Section 2 for the single-resource case, are difficult to translate directly into
a network setting. However, the ability of nested controls to dynamically share the capacity of a resource - and thereby
recover the pooling economies lost in partitioned controls - is an attractive feature. Thus, it is desirable to have a control
that combines these features.

Virtual nesting control –a hybrid of network and single-resource controls– provides one solution. This control scheme
was developed by American Airlines beginning in 1983 as a strategy for incorporating some degree of network control
within the single-leg nested allocation structure of American’s (then leg-based) reservation systems; see Smith, Leimkuhler
and Darrow (1992).

Virtual nesting uses single-resource nested booking controls at each resource in the network. However, the classes used
in these nested allocations are not the fare classes themselves. Rather, they are based on a set of virtual classes. Products
are assigned to a virtual class through a process known as indexing. This indexing could be updated over time as network
demand patterns change, though typically indexing is not a “real time” process. Nested booking limits (or protection levels)
for each resource are then computed using these virtual classes.

Virtual nesting has proven to be quite effective and popular in practice, especially in the airline industry. It preserves
the booking-class control logic of most airline computer reservation systems (CRS) yet incorporates network displacement
cost information. It therefore provides a nice compromise between leg-level and full network O&D control.

3.1.2 Bid-price controls

While nested allocations are difficult to extend directly to networks, network bid-price controls are a simple extension of
their single-resource versions described in Section 2. In a network setting, a bid-price control sets a threshold price - or
bid-price - for each resource in the network. Roughly, this bid-price is an estimate of the marginal cost to the network of
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consuming the next incremental unit of the resource’s capacity. When a request for a product comes in, the revenue of the
request is compared to the sum of the bid prices of the resources required by the product. If the revenue exceeds the sum
of the bid prices, the request is accepted; if not, it is rejected. We refer the reader to Talluri and van Ryzin (2004a) for the
origins of bid prices controls and the theoretical properties of bid-price mechanisms.

3.2 A General Network Model

We begin with a basic model of the network allocation problem. The network has m resources which can be used to provide
n products. We let ai j = 1 if resource i is used by product j and ai j = 0 otherwise. Define the incidence matrix A = [ai j].
Thus, the j-th column of A, denoted A j, is the incidence vector for product j. We also use the notation i ∈ A j to indicate
that resource i is used by product j.

The state of the network is described by a vector x = (x1, . . . ,xm) of resource capacities. If product j is sold, the state
of the network changes to x−A j. To simplify our analysis at this stage, we will ignore cancelations and no-shows.

Time is discrete, there are T periods and the index t represents the current time (here, time indices run forwards).
Within each time Period t, we assume that at most one request for a product can arrive; that is, the discretization of time is
sufficiently fine so that the probability of more than one request is negligible. This assumption can be generalized in many
of the results below, but is the simplest case to present. It is analogous to the network version of the dynamic single-resource
model.

To make the notation more compact, demand in Period t is modeled as the realization of a single random vector
R(t) = (R1(t), . . . ,Rn(t)). If R j(t) = r j > 0, this indicates a request for product j occurred and that its associated revenue
is R j(t); if R j(t) = 0, this indicates no request for product j occurred. A realization R(t) = 0 (all components equal to
zero) indicates that no request from any product occurred at time t. For example, if we have n = 3 products, then a value
R(t) = (0,0,0) indicates no requests arrived, a value R(t) = (120,0,0) indicates a request for product 1 with revenue of $120.
Note by our assumption that at most one arrival occurs in each time period, at most one component of R(t) can be positive
(as indicated in the example above). More formally, let En = {e0,e1, . . . ,en}, where e j is the j-th unit n-vector and e0 is
the zero n-vector, and define the set S = {R : R = αe,e ∈ En,α ≥ 0}. Then, R(t) ∈S . The revenue R j(t) associated with
product j may be random as well. The sequence {R(t); t ≥ 1} is assumed to be independent with known joint distributions
in each Period t. When revenues associated with product j are fixed, we will also denote these by r j. We use the notation
R(t)> for the transpose of the vector R(t).

Given the current time, t, the current remaining capacity x and the current request R(t), we are faced with a decision:
Do we or do we not accept the current request?

Let an n-vector u(t) denote this decision, where u j(t) = 1 if we accept a request for product j in Period t, and u j(t) = 0
otherwise. In general, the decision to accept, u j(t), is a function of the remaining capacity vector x and the revenue r j of
product j, i.e. u j(t) = u j(t,x,r j), and hence u(t) = u(t,x,r). Since we can accept at most one request in any period and
resources cannot be oversold, if the current seat inventory is x, then u(t) is restricted to the set U (x) = {u ∈ En : Au≤ x}.

3.3 The Structure of the Optimal Controls

In order to formulate a dynamic program to determine optimal decisions u∗(t,x,r), let Vt(x) denote the maximum expected
revenue-to-go given remaining capacity x in Period t. Then Vt(x) must satisfy the Bellman equation

Vt(x) = E
[

max
u∈U (x)

{
R(t)>u(t,x,R(t))+Vt+1(x−Au)

}]
, (8)

with the boundary condition VT+1(x) = 0,∀x.
Therefore, a control u∗ is optimal if and only if it satisfies:

u∗j(t,x,r j) =
{

1 r j ≥Vt+1(x)−Vt+1(x−A j), A j ≤ x
0 otherwise (9)

The control (9) says that an optimal policy for accepting requests is of the form: accept revenue r j for product j if and only
if we have sufficient remaining capacity and

r j ≥Vt+1(x)−Vt+1(x−A j),
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where R j(t) = r j is the revenue value of the request for product j. This reflects the rather intuitive notion that we accept
a revenue of r j for product j only when it exceeds the opportunity cost of the reduction in resource capacities required to
satisfy the request.

One can show that bid prices are not able to achieve the optimal control (9) in all cases due to the non-additive nature
of the value function; see Talluri and van Ryzin (1998). At the same time, one can show that bid-price controls have good
asymptotic properties and are in fact asymptotically optimal as the number of seats sold and the demand are increased
(proportionately), as shown in Talluri and van Ryzin (1998). However, the real test of network control methods and models
in practice must be determined through careful simulation testing.

3.4 Approximations Based on Network Models

The formulation (8) cannot be solved exactly for most networks of realistic size. Instead, one must rely on approximations
of various types. Most approximation methods proposed to date follow one of two basic (not necessarily mutually exclusive)
strategies: The first, which we look at in this subsection, is to use a simplified network model. For example, posing the
problem as a static math program. The second strategy, which we look at in Section 3.5, is to decompose the network
problem into a collection of single-resource problems. Whichever method is used, it is useful to view all such methods as
producing different approximations of the optimal value function. The outputs from these approximations can be used to
construct controls of various types - bid-price controls, partitioned or nested allocations, or virtual nesting controls.

Among the most useful information provided by an approximation method are estimates of displacement (opportunity)
costs - or bid prices. These are used either directly in bid-price control mechanisms, or indirectly in other mechanisms like
virtual nesting. Given an approximation method M that yields an estimate of the value function V M

t (x), we can approximate
the displacement cost of accepting product j by

V M
t (x)−V M

t (x−A j)≈ ∇
>
x V M

t (x)A j,

where ∇xV M
t (x) is the gradient of the value function approximation V M

t (x), assuming the gradient exists. The bid prices are
then defined by

π
M
i (t,x) =

∂

∂xi
V M

t (x)

If the gradient does not exist, then ∇xV M
t (x) is typically replaced (at least implicitly) by a subgradient of V M

t (x). If the
approximation is discrete, then first differences are used in place of partial derivatives.

Clearly, one objective for an approximation method is to produce a good estimate of the value function - and more
importantly, a good estimate of the displacement costs or bid prices. On the other hand, speed of computation matters as
well. The approximation V M

t (x) may be a static approximation that must be resolved quite frequently in practice to account
for changes in remaining capacity x and remaining time t. A static method that is accurate but very computationally complex
will therefore be of little use in practice. Thus, one should always keep these two criteria - accuracy and speed - in mind
when judging network approximation methods. We introduce two network approximation methods below.

Deterministic Linear Programming Model: The deterministic linear programming (DLP) method uses the approximation

V LP
t (x) = max

z
r>z s.t. Az≤ x, 0≤ z≤ E[D] (10)

where recall D = (D1, . . . ,Dn) is the vector of demand-to-come (demand over the periods t, t + 1, . . . ,T ) for product j,
j = 1, . . . ,n, and r = (r1, ..,rn) is the vector of revenues associated with the n products. The decision variables z = (z1, . . . ,zn)
represent partitioned allocation of capacity for each of the n products. The approximation effectively treats demand as if it
were deterministic and equal to its mean E[D]. Once the DLP is solved, typically its dual solution, not the primal solution,
is used: the optimal dual variables, πLP, associated with the constraints Az≤ x are used as bid prices.

The DLP was among the first models analyzed for network RM; see the references in Talluri and van Ryzin (2004a).
The main advantage of the DLP model is that it is computationally very efficient to solve. Due to its simplicity and speed,
it is a popular in practice. The weakness of the DLP approximation is that it considers only the mean demand and ignores
all other distributional information. Despite this deficiency, simulation studies have shown that with frequent reoptimization,
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the performance of DLP bid prices can be quite good. In general, the performance of the DLP method (like many network
methods) depends heavily on the type of network, the order in which fare products arrive and the frequency of reoptimization.

Randomized Linear Programming Model: Randomized linear programming (RLP) approach proposes one way of
incorporating stochastic information into the DLP method: replace the expected value E[D] by the random vector D itself
and the expected value of the resulting optimal solution then forms an approximation to the value function. That is, define

Ht(x,D) = max
z

r>z s.t. Az≤ x, 0≤ z≤ D (11)

The optimal value Ht(x,D) is a random variable. Let π(x,D) denote an optimal vector of dual prices for the set of constraints
Az≤ x, and note that π(x,D) is also a random vector.

Next, consider approximating the value function by the expected value of Ht(x,D),

V RLP
t (x) = E[Ht(x,D)]. (12)

Note the right hand side corresponds to a “perfect information” approximation, because it reflects a case in which future
allocations (and revenues) are based on perfect knowledge of the realized demand D. We then use ∇xE[Ht(x,D)] as a vector
of bid prices.

The RLP approach, proposed by Talluri and van Ryzin (1999), relies on an efficient method to compute ∇xE[Ht(x,D)]:
First, simulate K independent samples of the demand vector, D(1), . . . ,D(K), and solve (11) for each sample. Then, estimate
the gradient using πRLP = 1

K ∑
K
i=1 π(x,D(i)). That is, simply average the dual values from K perfect-information allocation

solutions on randomly generated demands. Hence the name randomized linear programming.

3.5 Approximations Based on Decomposition

Another strategy for generating network controls is to decompose the problem (approximately) into m single-resource
problems, each of which may incorporate some network information, but which are nevertheless independent. Formally, one
can think of such a decomposition method as follows: an approximation method M decomposes the network problem into
m single-resource models, denoted model i = 1, . . . ,m, with value functions V Mi

t (xi), that depends on the time-to-go t and
the remaining capacity xi of resource i. These may be constructed by incorporating some static, network information into
the estimates. Then, the total value function is approximated by

V M
t (x) =

m

∑
i=1

V Mi
t (xi).

Typically, such approximations are discrete and yield bid prices

πi(t,x) = ∆V Mi
t (xi), i = 1, ..,m.

where ∆V Mi
t (xi) = V Mi

t (xi)−V Mi
t (xi−1) is the usual marginal expected value produced by model i.

Decomposition approximations have several advantages relative to network approximations. First, because they are based
on single-resource problems, the displacement costs and bid prices are typically dynamic and can be represented as a table
of outputs (in the case of dynamic programming models) or simple formulas (in the case of static approximations). Thus, it
is easy to quickly determine the effect of changes in both the remaining time t and remaining capacity x on the resulting bid
prices. This should be contrasted with network models, which must typically be re-solved to determine the effects of such
changes. Second, because they are often based on simple, single-resource models, decomposition methods allow for more
realistic assumptions, such as discrete demand and capacity, sequential decision making over time and stochastic dynamic
demand.

The primary disadvantage of decomposition methods is that in the process of separating the problem by resources, it
can be difficult to retain important network effects in the approximations. However, hybrids of the two approaches can be
used to try to achieve the benefits of both network and decomposition methods. We now introduce one of the decomposition
methods commonly used in practice.
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Displacement adjusted virtual nesting (DAVN): While virtual nesting is often viewed as a control strategy - and indeed
is used as such in most cases in practice - it can also be viewed as a decomposition approximation to the network value
function. Indeed, the marginal values produced by the virtual nesting approximation can be used in a bid-price control
scheme which avoids the virtual nesting controls entirely.

DAVN starts with a set of static bid prices - or marginal value estimate - which we denote by π̄ = (π̄1, . . . , π̄m). These
estimates may be obtained, for example, from one of the network math programming models presented in Section 3.4. Given
the bid prices π̄ , one then solves a leg-level problem at each resource i as follows:

First, for all products j that use resource i, a displacement adjusted revenue r̄i j is computed using

r̄i j = r j− ∑
l∈A j ,l 6=i

π̄l . (13)

That is, the revenue of product j on resource i is reduced by the static bid-price values of the other resources used by
product j. This adjustment is intended to approximate the net benefit of accepting product j on resource i. Note that the
displacement adjusted revenue could be negative. In this case, Produce j is never accepted on resource i, and typically we
either eliminates product j from the problem on resource i or (equivalently) set the displacement adjusted revenue value to
zero.

The next step is clustering - or indexing. In this step, the displacement adjusted revenue values on each resource are
clustered into a specified number c̄ of virtual classes - or buckets - denoted c = 1, .., c̄. The number of virtual classes, c̄, is
a design parameter, but is typically on the order of 10. It may also vary across resources. The indexing from product j to
Virtual Class c on each resource can be performed using a variety of clustering algorithms. The particular indexing method
and clustering criteria are also design decisions and vary from implementation to implementation.

Once the virtual classes are formed, we compute a representative revenue value for each class - usually the demand-
weighted average revenue. Then, the distribution of total demand in a virtual class is computed - typically by adding the
means and variances of demand-to-come. Next, one solves a multi-class, single-resource problem based on these data. The
problem could be solved exactly using the static single-leg model or approximately using heuristics such as the expected
marginal seat revenue (EMSR) approach of Belobaba (1989). We call this model DAV Ni. This procedure yields a set of
booking limits (or protection levels) for the virtual classes at each resource i and a value function estimate V DAV Ni

t (xi).
The resulting DAVN approximation can be used in two basic control strategies. Most often, the control is a booking

limit control on the virtual classes. That is, a request for product j is converted into a request for the corresponding virtual
class at each resource i required by product j. (Note the virtual class on each of these resources need not be the same.)
If the virtual class on each resource is available, the request is accepted. If the virtual class on one or more resources is
closed, the request is rejected. Thus, once the indexing from products to virtual classes is performed, the control logic is
an independent, nested allocation class-level control at each resource in the network. This is the primary appeal of - and
motivation for - the method in the airline industry, because it produces the sort of booking-class-level controls that are widely
used by CRSs.

However, DAVN can also be used to produce bid-price controls. The bid price for resource i is simply given by

π
DAV N
i (t,x) = ∆V DAV Ni

t (xi)

where as usual ∆V DAV Ni
t (xi) = V DAV Ni

t (xi)−V DAV Ni
t (xi−1) denotes the marginal value generated by model i.

Regardless of the control method, typically the network model that was used to generate the static bid prices π̄ is
re-solved and the products are re-indexed periodically as demand conditions change. In the airline industry, for example,
the indexing process is a fairly major change to the CRS, so often it is only done on a seasonal basis.

Simulation-based optimization to compute optimal control parameters: Consider optimizing nested protection levels of
a virtual nesting scheme. The idea is to first fix an indexing scheme and a nesting order on each resource (for example, using
DAVN), and then to set nested protection levels (or booking limits) for each resource based on this nesting order. Using a
network-level simulation, one can generate samples of demand and compute stochastic gradients - “noisy” estimates of the
partial derivatives of the network revenue with respect to the protection level parameters of the control policy. This gradient
information can then be used in a steepest descent algorithm to search for a network-optimal (rather than resource-level
optimal) set of protection level parameters. van Ryzin and Vulcano (2006) propose such a stochastic gradient method
assuming continuous demand and continuous capacity. They show how the stochastic gradients can be efficiently computed.
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Bertsimas and de Boer (2005) focus on the discrete demand, discrete capacity problem, and their proposed methods relies
on first difference rather than first gradient estimates. We refer the reader to these two articles for more information.

4 CRITICAL ISSUES: DEMAND MODELS, OVERBOOKING, MEASURING EFFECTIVENESS OF RM

Note that the models we introduced above made specific, possibly unrealistic, assumptions about the demand; see our
discussion in Section 2.2. Recent line of research relaxes the simplistic demand assumptions of the traditional models,
trying to capture explicitly the choice behavior that customers display when faced with multiple alternatives (products or
fare classes) in a purchase context. Talluri and van Ryzin (2004b) develop the choice-based RM theory for the single-leg
case, and van Ryzin and Vulcano (2008) propose a simulation-based optimization approach that improves an initial set of
network virtual protection levels accounting for choice behavior effects. Demand modeling remains a critical decision in all
RM applications, with implications for both forecasting and optimization.

Note that all of the models introduced so far assume there are no cancelations or no-shows, which, in fact, are an
integral part of the RM problem in travel and hospitality industries. Cancelations bring an additional layer of complexity,
especially to the network RM problem. Typically, overbooking and booking control decisions are carried out separately in
airlines, and virtual capacities computed in the overbooking module of a RM system is the main input to booking control.
This reduces the complexity of forecasting and optimization significantly. We refer the reader to Talluri and van Ryzin
(2004a) and Karaesmen and van Ryzin (2008) for more information. For use of simulation-based optimization in solving
overbooking problems, we refer the reader to Karaesmen and van Ryzin (2004).

In addition to development of methodology, one critical issue in RM is measuring effectiveness of RM systems.
Simulation is used to measure the revenue opportunity during pre-implementation phase and to measure revenue benefits
post-implementation. This latter topic and other issues are covered in more depth in Talluri and van Ryzin (2004a), along
with a broader range of RM-related problems on dynamic pricing and auctions that are important in other business contexts.

5 CONCLUSIONS

RM is now a highly developed scientific and professional practice in the airline industry. This airline success has lead to a
rapidly growing interest in using RM techniques in other industries. We have focused our attention on the core methodology
developed for use in the airline industry (and related industries like hotels) over the last 25 years. We also tried to give a
glimpse of use of simulation in RM.

Current industry adopters of RM include hotels, car rental companies, shipping companies, television and radio
broadcasters, energy transmission companies, manufacturing, advertising, financial services, and apparel retailers. With each
new industry application, one encounters new challenges in both modeling, forecasting and optimization, so research in the
area continues to grow. While the details of RM problems can change significantly from one industry to the next, the focus
is always on making better demand decisions - and not manually with guess work and intuition - but rather scientifically
with models and technology, all implemented with disciplined processes and systems.
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