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ABSTRACT 

Class Based Weighted Fair Queueing (CBWFQ) is a very 
important router discipline that allows different types of 
Internet Protocol (IP) traffic like voice, video, and best ef-
fort data to receive the required quality of service measures 
they individually need. CBWFQ dynamically allocates the 
available bandwidth to each traffic class based on the 
class’s weight. This discipline is playing a vital role as IP 
brings these traffic classes together in a truly converged 
network. Under stress and in extreme emergencies, it is 
critical to be able to determine how the CBWFQ discipline 
will perform. In this paper, we present and discuss the crit-
ical role simulation has played in our development of per-
formance analysis tools for the CBWFQ discipline.  

1 INTRODUCTION 

Industry is moving away from circuit-switched technology 
to Internet Protocol (IP) technology for telecommunica-
tions applications, including voice traffic. When IP net-
works become heavily loaded, packets get dropped and 
other quality of service (QoS) measures like packet la-
tency, loss, and jitter are significantly degraded. At some 
point, the QoS for voice and video packets becomes poor 
enough that their communication is lost. As Voice over IP 
(VoIP) and video become more prevalent in these net-
works, these issues become increasingly important—
particularly, since there is no dedicated communication 
path for a voice or video call.  
 The Class Based Weighted Fair Queueing (CBWFQ) 
discipline is being used frequently within the Internet with 
these potential QoS problems for the multiple traffic 
classes (see Cisco Systems Quality of Service Solutions 
Configuration Guide, and Semeria (2001)). Under 
CBWFQ, the bandwidth is shared in accordance with the 
weights assigned to the CBWFQ traffic classes. These 
weights are designed to ensure the traffic class gets a cer-
tain portion of the available bandwidth. CBWFQ extends 
weighted fair queueing (WFQ) by assigning weights to 

classes of traffic rather than individual flows of traffic 
identified by origination/destination pairs.  
 The CBWFQ discipline is very important to under-
stand as voice, data, and video converge and compete for 
use of the same shared transmission resources. Each of 
these traffic types has its own required QoS measures to be 
met; CBWFQ is one discipline that may be able to meet 
these QoS measures. There are several methods that can be 
used to evaluate the performance of such a system. These 
range from a direct simulation of the system to the devel-
opment of the system equations and their solution via nu-
merical or analytical methods. In this paper, we discuss the 
crucial role simulation has played in our development of 
performance analysis tools for CBWFQ.  
 In order to better present this, we consider a simple 
CBWFQ base system. This system has two traffic classes 
with Poisson packet arrivals for each class and exponential 
packet lengths and finite buffers for each class (see Section 
2). There we define the parameters for this system and de-
velop the steady state equations for the state probabilities. 
The simulation model we developed is presented and dis-
cussed in Section 3. Other methods we used in the devel-
opment of performance tools are presented in Section 4. In 
both Sections 3 and 4, illustrative examples are used to so-
lidify the points we are making. Section 5 contains some 
closing remarks. 

2 BASE SYSTEM DESCRIPTION 

The base CBWFQ system has two classes of packets. We 
assume that the arrival process for each class is an inde-
pendent Poisson process and that the service times are ex-
ponentially distributed. In addition, we assume each class 
has its own buffer. 
 In the CBWFQ system, there is no service interruption 
of packets by another. Upon service completion of a pack-
et, the next type of packet to be served is randomly chosen 
based on the class weights. Specifically, in the two-class 
system, when both classes are present, a class 1 packet is 
chosen with probability α and a class 2 packet is chosen 
with probability 1-α. If only one class of packets is present, 
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then that class is served. Within a class, service is on a 
First Come First Served (FCFS) basis. At the boundaries 
(α = 0 or 1), this system is the standard non-preemptive 
queueing system that has been extensively studied in the 
past (see Morse (1958), Cohen (1969), Miller (1981), and 
Gross and Harris (1998)). 
 Fundamentally, the model described in this paper is a 
random polling model. After serving one queue, the next 
queue to serve is randomly chosen according to specified 
weights. There is a large body of research on polling mod-
els in general. However, most of the literature deals with 
cyclic polling models in which the server visits each queue 
in ordered succession, rather than in a random fashion. For 
example, a standard reference on polling models is the 
book by Takagi (1986) as well as a subsequent survey pa-
per (Takagi 1988). Both of these works deal primarily with 
cyclic polling models. 
 Two papers that deal with random polling models and 
that are closely related to this paper are Kleinrock and 
Levy (1988) and Lee (1997). Kleinrock and Levy (1988) 
consider a discrete-time random polling model under sev-
eral different service disciplines. For the limited-service 
discipline, where the server serves at most one customer at 
a time before switching queues, results are provided only 
for a completely symmetric system in which all queues 
have identical statistical properties. No results are given for 
the asymmetric case. For some other service disciplines – 
for example, where the server continues to serve customers 
until the queue is empty – they derive a set of m2 linear eq-
uations that can be solved to obtain expected waits. Lee 
(1997) provides exact results for the asymmetric random 
polling model. However, we have not been able to match 
our simulation results with his analytical results. 
 Finally, a related concept is processor sharing in which 
customers from different queues are served simultane-
ously. For this system, the queues are served individually, 
one customer at a time. If we regard the customers as 
packets and we set the maximum packet size to be small, 
then the model in this paper can be approximated by ap-
propriate processor sharing models—for example, the gen-
eralized processor sharing and its packet-by-packet vari-
ants (e.g., Parekh and Gallager 1993). 
 We define the following parameters and random vari-
ables. 

 
• λi is the packet per second arrival rate for class i  

(i = 1,2). 
• 1/μi is the average time to serve a class i packet. 
• α is the probability a class 1 packet is selected for 

service when both classes are waiting. 
• Qi is the random number of class i packets in the 

system. 
• Y is a random variable identifying the class of 

packet in service (Y = 1,2) or that the system is 
empty (Y = 0). 

• Pi,j,k = Pr{Q1 = i, Q2 = j, Y = k} in steady state (i = 
0,1,2,…, j = 0,1,2,3…, Y = 0,1,2). 

• Ki is the maximum number of class i packets al-
lowed in system  

• ρi = λi /μi is the class i load. For the infinite buffer 
case, we assume that ρ = ρ1 + ρ2 is less than one. 

 
For a discussion of the appropriateness of these arrival 

and packet size distributions assumptions, see Cao (2002), 
Fischer (2005), Newman (2001), and Thompson (1997). 
The assumption of Poisson packet arrivals and exponential 
service times are the most lenient assumptions one could 
make and get analytic results. As we will see, even making 
these assumptions does not allow a simple analytic solution 
except for boundary cases and we are forced to go to simu-
lation or numerical methods. 

The steady state birth and death equations for this sys-
tem for the infinite buffer (K1 = K2 = ∞) case are: 
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and for i = 1,2 … and j = 1,2, … 
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When i = 1 and j ≥ 1 (the first expression in the right hand 
side of equation (2)), we have P0,j,1 = 0, and, similarly in 
equation (3), if j = 1 and i ≥ 1 (the second expression on 
the right hand side of equation (3)), we have Pi,0,2 = 0. 
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For these equations to have a solution we must have ρ < 1. 
 In general, we know of no solution to this system; al-
though some results exist for special cases in steady state. 
For the case of α = 0 or 1, we have a non-preemptive prior-
ity queueing system and Miller (1981) gives an expression 
for the probability of the number of high priority packets in 
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the system. If α = 1, then the class 1 packets have queue 
priority and Pr{Q1=n}=Pn

1 is given by 
 

 
1 2 1 1 1

1 1
1 1 2 1 1 1 2

Pr( ) (1 )
( )

n n n
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μ λ μ μ μ λ μ +
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(6) 

 
When α = 0, then the class 2 packets have priority and 
Pr{Q2=n} is given by equation (6) with a suitable changes 
in the subscripts (this result only holds when μ1 = μ2). Al-
so in steady state, for any α when the service rates of each 
class are equal then the probability of the total number of 
packets (=Q1+Q2) is given by standard M/M/1 results; that 
is  

 
 

2121 ,)1(}){( ρρρρρ +=−==+= wherenQQPP n
n .     (7) 

 
This result stems from the fact that it does not matter 
which customer is in service, the departure rate is the same. 
Also the server always works when customers are present 
and no work is lost.  

3 SIMULATION MODEL 

We were first interested in developing a simulation model 
for a Low Latency Queueing (LLQ) system (see Masi 
(2007a, 2007b). That system is composed of a Priority 
Queueing (PQ) module and a CBWFQ module. Because 
we understand the interaction between the priority queues 
and the class based weighted fair queues, and how to mod-
el that interaction, our focus in this modeling is within the 
CBWFQ portion of the router, which is not understood. 
We considered developing our own custom simulation ver-
sus using a simulation package such as OPNET Modeler. 
OPNET Modeler is a popular discrete-event simulation 
package which is designed specifically to model telecom-
munications networks. We decided to develop our own 
custom simulator of the CBWFQ system for several rea-
sons, one of which was that we wanted to have a flexible 
simulator that could be modified to examine future system 
configurations. OPNET Modeler has limited ability to 
model router configurations that do not exist in current 
equipment without custom programming. In addition, de-
tails on the precise specifications of CBWFQ scheduling 
(both within OPNET and in real routers) were not readily 
available, and we wanted to have control over and knowl-
edge of the precise mechanics of the CBWFQ algorithm in 
the simulation. Also, we anticipated that run times in 
OPNET Modeler would be longer than in our custom 
simulator, which has much less overhead. Later compari-
sons (see Masi et al. (2007a, 2007b)) showed that our cus-
tom simulator run times for a router using CBWFQ were 
about one tenth that of the OPNET run times. 
 We developed a simulation of the CBWFQ system in 
Visual Basic for Applications (VBA). The interface is 

shown in Figure 1. Development time for this model was 
relatively short, taking several days. Background research 
 
on the precise rules used by class based weighted fair 
queues to select which class of packet to transmit when the 
router is available was required and is described in Masi et 
al. (2007a, 2007b). The original simulator allowed three 
classes of traffic, but for this paper we use the two-class 
version, each having Poisson arrivals. Our original simula-
tion allowed for a packet service time distribution that was 
Internet specific; three packet sizes are dominant in IP traf-
fic (Thompson et al. (1997)). However, for this paper we 
modified the simulation to use exponential service times to 
enable comparisons with analytic models. The simulation 
computes several measures of effectiveness: latency (mean 
queue wait), mean number of packets in the system, and 
packet loss. The simulation can also output individual 
packet queue waiting times and number of packets at each 
departure point, enabling the entire distributions to be ob-
tained if desired.  

 
 

 
 

Figure 1: VBA CBWFQ Simulator 
 
We now consider some illustrative examples using the 

simulation model. Our input parameters are as follows. The 
class 1 packets have a mean packet size 1.6 kb, and the 
class 2 packets have a mean packet size of 5.57 kb. We as-
sume the line speed is a T1 (1536 kbps). The code is writ-
ten in VBA and the runs were made on a 2.4 GHz laptop. 
We ran the simulation for 3,000,000 packet arrivals. For 
these examples α = 0.77, λ1 = 425 pps and λ2 = 130 pps 
which result in ρ1 = 0.443 and ρ2 = 0.471 or a total load of 
0.914. In Figures 2, 3, and 4, we see that as the buffer size 
increases, the packet loss for each class is going to zero, 
and the expected number of each type of packet and the 
buffer latency by class are converging to the infinite buffer 
cases. These parameter values will also be used in the next 
section, where we show the results in tabular format in a 
comparison with other analysis methods.  

Figure 5 shows the simulation run time. Each run took 
about 29 seconds to simulate 3 million packet arrivals. The 
run time did not vary much with the size of the buffers. 
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Figure 2: Simulation Packet Loss 
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Figure 4: Simulation Buffer Latency 
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Figure 5: Simulation Run Time in Seconds 

4 COMPARISON WITH OTHER METHODS 

We also investigated other methods such as solving the in-
finite buffer steady state equations analytically using the 
standard generating function approach (see Gross and Har-
ris (1998)) or solving the problem numerically.  
 In trying to solve the problem analytically, we met 
with extreme difficulty. We began with the simplest as-
sumptions: two service classes, exponential service times, 
Poisson arrivals, and infinite buffers. The generating func-
tion approach has been successfully applied to analytically 
solve similar queues, such as the priority queue (e.g., Gross 
and Harris (1998) Section 3.4.1, or Morse (1958) Chapter 
9), so we followed the approaches given in these refer-
ences. The two-class priority queue is a special case of the 
two-class CBWFQ when the weights of one class or the 
other is zero. 
 For the two-class priority queue, the approach defines 
a two-dimensional generating function H(z1, z2). By appro-
priate summation of the state equations, H(z1, z2) can be 
obtained as a function of known parameters and an un-
known one-dimensional generating function P02(z2). Gross 
and Harris (1998) point out (for equal service rates) that 
the complete form for P02(z2) is not needed to evaluate the 
partial derivative of H(z1, z2) with respect to z1—only the 
value P02(1) is needed and this can be easily obtained. 
Thus, it turns out that all standard first-moment perform-
ance measures for the priority queue can be obtained even 
without obtaining the exact functional form for H(z1, z2). 
 However, for the CBWFQ, the analogous form of 
H(z1, z2) involves two unknown generating functions, 
which we may call P02(z2) and Q01(z1). It turns out that tak-
ing the partial derivative of H(z1, z2) with respect to either 
z1 or z2 requires knowing the complete form of at least one 
of these two functions. Thus, the mean-value performance 
measures cannot be obtained without knowing the com-
plete form of these two functions.  
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 Morse (1958) provides some guidance here. For the 
priority queue, he shows that the function P02(z2) can be 
obtained by solving a first-order homogenous difference 
equation (easy) and then solving a second-order non-
homogenous difference equation. The method works be-
cause the two difference equations can be decoupled, so 
one equation can be solved first and then used as an input 
into the second. However, for the CBWFQ queue, the re-
sult is a coupled system of two second-order non-
homogenous difference equations, with driving terms in-
volving unknown probabilities from the original queue. We 
did not make any serious attempts to solve this system. 
 Even if solvable, the approach has limitations in being 
restricted to the assumptions of two-service classes, expo-
nential service times, infinite buffers, and load less than 1. 
All of these assumptions can be easily generalized using 
simulation. 
 Our next step was to solve the equations numerically. 
Some candidate approaches were the Matrix Geometric 
Method (see Miller (1981)), or the method presented by 
Cidon (1990); but they involved significant analytic set-up 
time to put the equation in a usable form. As an alternative, 
we used an iterative method to solve the steady-state bal-
ance. In this approach, we plug an initial guess for the Pi,j,k 
values into the right-hand side of equations (1) – (5) to 
generate the next iteration values of Pi,j,k. As the process is 
repeated, the Pi,j,k value converge to the steady-state prob-
abilities. As an initial starting value of Pi,j,k we set P1,0,1=1. 
 Finally, we considered another numerical method. 
This numerical method also yields the transient probabili-
ties. This method solves the system of difference differen-
tial equations for Pi,j,k(t), the conditional probability at time 
t there are i class 1 and j class 2 packets in the system, and 
class k (=1,2) is in service, given the system state at 0. 
These equations can be easily developed using standard 
birth and death arguments. We use the method described in 
Knepley and Fischer (1977) to solve these equations. The 
code for each of these methods was written in VBA and all 
runs were made on the same computer. 
 Table 1 compares the QoS results when using the si-
mulator and the iterative and Knepley and Fischer method 
to solve equations (1) through (5). We see that for all prac-
tical uses the results are the same. The buffer latency 
(Wq_i) are given in ms. When using the Knepley and 
Fischer method, the integration constant h has to be se-
lected. For the parameters used in these examples, h = 
0.001 was used. The steady state convergence criterion for 
the iterative and Knepley and Fischer methods was that the 
expected number of packets in the system at one iteration 
was within 0.0001 of the previous iteration. We see all 
three methods give the same results for decision making 
purposes.  
 Figure 6 compares the run times of the three methods. 
We see the run times for the iterative and Knepley and 
Fischer methods are dependent on the buffer size, because 

at each iteration the complete probability distribution of the 
state space is determined. As the buffer size increases, the 
state space increases and the number of calculations in-
creases as well. The simulation run time does not depend 
on the buffer size. The Knepley and Fischer method is 
much more sensitive to the buffer size as we had to set h = 
0.001 for this problem, because of the values of the input 
 parameters, λi and μi.  

The major advantage of the Knepley and Fischer me-
thod is that it generates the transient results, while the it-
erative method does not. The simulation method could be 
used to do that, but it would require significantly more 
runs. One option of the simulator is to output the buffer de-
lays and the number of packets in the system at each depar-
ture point. Here we are only interested in expected value 
results in steady state. But if expected transient results 
were required via the simulator; then multiple runs of the 
simulator would have to be made.  

Also if steady state probability distributions of the 
number of packets in the system are needed, the iterative 
and Knepley and Fischer methods give those results di-
rectly with no additional computational work. They can 
also be obtained from the simulator, but the run time is 
significantly increased because the associated table has to 
be output. The increase in run time to output the tables is a 
factor of 10. So the simulation run times become 290 sec-
onds as opposed to 29 seconds. In addition, the output ta-
bles then have to be post-processed to generate the desired 
probability distributions. The simulation run time does not 
depend of the buffer size. 
 A significant advantage of the simulation model is that 
it outputs the actual waiting time for each packet by type. 
We got the mean delay for the iterative and Knepley and 
Fischer methods by using Little’s formula; higher moments 
can be obtained via the higher moments of Little’s formula 
(Gross and Harris (1998)), but the total probability distri-
bution of the queue wait is not available from those meth-
ods.  

We close this section with a brief look at the accuracy 
of the methods. In order to do this analysis, we ran the it-
erative method for the 100 buffer case for 15,000 itera-
tions—a graph of the convergence profile and run time is 
given in Figure 7. It took approximately 160 seconds for 
this run and the resulting number of expected packets (both 
classes) in the system was 13.0292. We use this value as 
the true steady state value. Table 2 presents the percentage 
difference of the three methods with this value, using the 
data from Table 1. 

Three points are immediate from Table 2. First, the re-
sults presented in Table 1 are very close to the steady state 
values, less than 1 percent difference. Second, the simula-
tion method gets closer to the steady state value as com-
pared to the other two methods based on computer time. 
Even though the Knepley and Fischer method was closer to 
the   steady   state   value,  it took 180 seconds of computer 
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Table 1:  QoS Comparison of Simulation, Iterative, and Knepley and Fischer 

 Simulation Iterative Knepley and Fischer 
Buffer Size PB_1 PB_2 PB_1 PB_2 PB_1 PB_2 

25 0.011395 0.001196 0.011339 0.001012 0.011658 0.001450 
50 0.001401 0.000004 0.001290 0.000019 0.001309 0.000029 
75 0.000243 0.000000 0.000174 0.000000 0.000180 0.000001 
100 0.000047 0.000000 0.000024 0.000000 0.000027 0.000000 

Buffer Size L_1 L_2 L_1 L_2 L_1 L_2 
25 6.24 4.05 6.43 3.97 6.48 4.08 
50 8.04 4.43 8.05 4.41 8.08 4.47 
75 8.38 4.58 8.40 4.46 8.44 4.51 
100 8.45 4.60 8.47 4.47 8.51 4.52 

Buffer Size Wq_1(ms) Wq_2(ms) Wq_1(ms) Wq_2(ms) Wq_1(ms) Wq_2(ms) 
25 14.33 27.62 14.27 26.96 14.27 26.96 
50 18.06 31.07 17.92 30.30 17.92 30.30 
75 18.73 31.49 18.72 30.69 18.72 30.69 
100 18.88 31.61 18.88 30.76 18.88 30.76 

 
  

 
 

Figure 6:  Run Time Comparisons of Methods 
 

time where as the simulation only took 29 seconds. Finally, 
the Knepley and Fischer method is better than the iterative 
method on a per-iteration basis, because it builds in more 
information. Its recursive calculation uses data from the 
past two iterations. The iteration method took a little under 
160 seconds for the 15,000 iteration, the Knepley and 
Fischer method got there in fewer iterations, but the same 
length of time. 
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Iterative Method 

 
Table 2:  Percent Difference of Methods and Steady State 

Method Value Percent Difference 
Iterative 12.9362 0.0071 
Knepley and Fischer 13.0291 0.0000 
Simulation 13.0483 0.0015 

5 CONCLUDING REMARKS 

In this paper we have shown the critical role simulation has 
played in our development of performance models for a 
very important IP router discipline, CBWFQ. At the start 
of this development, no performance analysis tools were 
available. We were tasked with the development of tools 
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and found simulation played a crucial role in our develop-
ment efforts.  
 In this paper simulation was presented and compared 
to two numerical methods. In order to make the numerical 
methods tractable, we had to restrict the comparison to on-
ly two classes of packets with Poisson arrivals and expo-
nentially distributed packet lengths. Those simplifying as-
sumptions allowed us to generate the balance equations for 
the system, but not an analytic solution. When more realis-
tic assumptions about the packet arrival processes and 
packet length distributions are used, it appears that simula-
tion will be the only tool that will yield practical results. 
We also suggest that researchers develop custom simula-
tors for an analysis of router queueing disciplines like 
CBWFQ, rather than relying on commercially-available 
simulators, as they have a substantial amount of run time 
overhead and may not have the flexibility of use and un-
derstanding. 
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