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ABSTRACT 

Wildfire propagation is a complex process influenced by 
many factors. Simulation models of wildfire spread, such 
as DEVS-FIRE, are important tools for studying fire be-
havior. This paper presents how the sequential Monte 
Carlo methods, i.e., particle filters, can work together with 
DEVS-FIRE for better simulation and prediction of wild-
fire. We define an application framework of particle fil-
ters for the problem of wildfire spread using the DEVS-
FIRE model, and discuss several applications. A case 
study example is provided and preliminary results are pre-
sented.  

1 INTRODUCTION  

Wildfire propagation is a complex process influenced by 
many factors, such as spatial fuel, weather conditions, and 
landscape. In past years, several models were developed 
to study and predict the forest fire spread. Examples in-
clude FARSITE (Finney 1998), BehavePlus (Andrews et 
al. 2005), and DEVS-FIRE (Natimo et al. 2008). In all 
these models, the states of the system, such as fire front, 
rate of spread speed, perimeter, and burned area at differ-
ent time steps are computed based on information includ-
ing spatial fuel data, weather data, and landscape data. In 
a dynamic data-driven environment where timely sensor 
data (e.g., fire fronts and burned areas of a wildfire from 
satellite images) are available, it is desirable to update a 
simulation model with the current system state for better 
simulation and prediction of wildfire. The problem arises 
about state estimation of dynamic systems. 
        Sequential Monte Carlo methods, often referred to as 
particle filters, are a set of statistical methods to study dy-
namic systems by recursively estimating the probability 
density function that can be used to compute different es-
timated states (Doucet et al. 2001; Schön 2006). In practi-
cal applications, the probability density function is repre-
sented by a set of samples, also called particles and their 
corresponding weights. Many approaches of generating 
samples are proposed to solve the problem that we cannot 

obtain the samples from the target density. These include 
perfect sampling, sampling importance resampling, accep-
tance-rejection sampling, Metropolis-Hastings independ-
ence sampling. Each of these techniques has its own ad-
vantages and disadvantages, so they can be adopted in 
various occasions (Simandl et al. 2007).  
        In this paper, we formalize the application of particle 
filters based on the wildfire spread model of DEVS-FIRE 
(Natimo et al. 2008). Within this framework, we define 
several applications of particle filters that could be devel-
oped using the wildfire spread simulation model. These 
applications include dynamic state estimation, static pa-
rameter calibration, and reconstruction of historical timely 
parameters. As a case study example, we show how the 
dynamically changing wind speed and wind direction in a 
fire spreading scenario can be estimated based on ob-
served fire fronts and burned areas using the DEVS-FIRE 
model. We note that although the case study example 
deals with wind data, the formalized particle filters-based 
framework can be adapted and extended to other applica-
tions for wildfire spread.  
        The rest of this paper is organized as follows. Section 
2 briefly discusses related applications of particle filters. 
Section 3 describes the basic methods and algorithms of 
particle filters. Section 4 formalizes the applications of 
particle filters in DEVS-FIRE. Section 5 provides a case 
study example. Section 6 presents the experiment results 
and analysis. Section 7 draws some conclusions. 

2 RELATED WORK 

Particle filters have been used in many applications, such 
as image processing, communications, chemistry, biology, 
and social sciences. (Wang et al. 2002) used particle fil-
ters to solve the problem of multiuser detection in signal 
processing. (Gustafsson et al. 2002) designed a frame-
work for the problems of positioning, navigation, and 
tracking based on particle filters, and some general algo-
rithms were described. Based on a Monte Carlo method, 
(Fox et al. 2001) discussed robot localization, one of the 
key problems of mobile robots, in which the initial posi-
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tion of the robot was unknown. Therefore, sensor data 
were utilized to estimate the robot’s positions. (Zhang et 
al. 2003) provided another application of particle filters in 
biology. In this paper, populations of compact long chain 
off-lattice polymers were generated based on a sequential 
Monte Carlo method to explore the relationship between 
packing density and chain length.  

In the forest fire literature, (Bradley 2007) presented 
an approach to estimate and track forest fires based on 
particle filters in video processing, in which images in-
formation obtained from miniature air vehicles was used. 
Another research direction of particle filters in forest fire 
spread system is data assimilation. (Mandel et al. 2007; 
Douglas et al. 2006; Coen et al. 2007) used particle filters 
to study fire behaviors of wildfire models. Their work was 
based on two kinds of fire models, reaction-diffusion-
convection partial differential equations-based model and 
the level set method model. By estimating the temperature 
and fuel supply of each cell of the area, the outputs of the 
fire could be calculated by the function of the fire model 
based on level set method. This output was treated as the 
measurement to update the temperature and fuel supply by 
comparing estimated outputs and observed data. More de-
tails can be found in these papers. 

3 THE NON-LINEAR DYNAMIC SYSTEM, ITS 
STATE ESTIMATION, AND PARTICLE 
FILTERS 

3.1  The Non-linear State Space Model 

A typical non-linear state space model can be denoted by 
formula (Jazwinski 1970) 
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where ts and tm  are the state variable and the measure-

ment variable respectively; the functions of f  and g  de-
fine the evolution of the state variable and the measure-
ment variable; tv  and tw  are two independent random 
variables to generate the state noise and the measurement 
noise; θ  is a set of static parameters.  
 According to Markov property, a system can be de-
scribe as 

)(),...,,(~ 12111 ttttt sspssssps +++ = θθ ,  (2) 

where )(spθ  describes a set of probability density func-

tions, and )( 1 tt ssp +θ  represents the evolution of the sys-

tem over time 1+t . According to the model, we can cal-
culate the next state using the current information at time 
t .  

 Using the Markov property and hidden Markov mod-
el (Doucet et al. 2000),  (1) can be changed in the form of 

⎪⎩

⎪
⎨
⎧

−=

−= +++

)),,,(()(~

)),,,(()(~ 111

tsgmpsmpm

tsfspssps

ttwttt

ttvttt

t

t

θ

θ

θ

θ
 (3) 

where we use mutual independence of the measurement 
noise tw  to denote that of observation over t , and the 

process noise tv   is also mutually independent over time. 

3.2 State Estimation and Filter Density 

After formalizing the dynamic system as a state space 
model, we can estimate the future state according to the 
history information contained in the current state. This al-
so comes from probability density function )( st xyp . 
For the estimation problem, t  is the next or the last step 
of s .  Similarly, it is the filtering density problem when 
s  equals t . Considering (3), according to Bayes’ theo-
rem, we obtain the Chapman-Kolmogorov equation (Jaz-
winski 1970), 

ttttttt dsMspsspMsp )()()( 11 θθθ ∫ ++ = , (4) 
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        From the above equations, we can see there are not 
effective methods to recursively estimate the states of 
nonlinear dynamic systems. This results in many ap-
proximation algorithms to solve the problem. These algo-
rithms either linearize the model to solve it, or find an op-
timal solution by numerical methods. The widely used 
Kalman filter (see e.g., (Kailath et al. 2000)) belongs to 
the first category. Sequential Mento Carlo methods, or 
particle filters, are in a different category, in which prob-
ability density functions are approximated by a series of 
particles.  

3.3 Particle Filters 

Generally speaking, a particle filters algorithm is a nu-
merical method to approximate conditional filtering dis-
tribution. Considering filter density in (6), we can obtain 

)()()( 1−∝ tttttt MspsmpMsp θθθ . (7) 

Let the target density )()( ttt Mspst θ= , the impor-

tance weight )()( ttt smpsq θ= , and the sample den-
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sity  )()( 1−= ttt Mspssd θ , then we can generate the 

formula )()()( ttt ssdsqst ∝ . Therefore, we need to 
obtain samples from the target density. There are various 
algorithms designed for this goal, including perfect sam-
pling, importance sampling, acceptance-rejection sam-
pling, and Metropolis-Hastings independence sampling, 
which were discussed in (Liu et al. 1998; Bølviken et al. 
2001; Chib et al. 1995). Among all these sampling algo-
rithms, SIR (Sampling Importance Resampling) is widely 
used in many applications to generate samples from the 
target density. 
        We can construct the approximation of the target 
density 

∑
=

−=
N

i

ii
N xxxqxt

1

][][ )()(~)(ˆ δ , 

where )(~ ][ixq  is the normalized importance weight of 
the sample, and δ  is the Delta function. The importance 
weight of a sample specifies the possibility of its being 
generated. However, this approach has the limitation that 
the whole process relies on these initially generated sam-
ples. To improve the algorithm, a resampling step is add-
ed according to  

)(~)~( ][][][ jji xqxxP == , i=1, 2, …, N. 
More details about the algorithm can be found in (Gordon 
et al. 1993). 
 In summary, the major steps of particle filters based 
on sampling importance resampling is described below. 
    Step 1: initialize N particles.  
    Step 2: calculate importance weights. 
    Step 3: normalize importance weights. 
    Step 4: resampling. 
    Step 5: predict new particles for future use. 
    Step 6: go to Step 2 to execute the next time step. 

4 APPLICATIONS OF PARTICLE FILTERS 
USING THE DEVS-FIRE SIMULATION 
MODEL  

4.1 Overview of The DEVS-FIRE Model 

DEVS-FIRE is an integrated simulation environment for 
surface wildfire spread and containment based on Discrete 
Event System Specification (DEVS) (Zeigler et al. 2000). 
It uses a cellular space to model a forest and each cell cor-
responds to a sub-area of the forest. Fire spreading is a 
propagation process that burning cells ignite their un-
burned neighbor cells. The speed of fire spreading is cal-
culated based on conditions including spatial fuel data, 
landscape data, and weather data of the area. Besides fire 
spread simulation, DEVS-FIRE also supports fire sup-
pression simulation, and optimization of firefighting re-
source deployment for containing a fire. More details 

about DEVS-FIRE can be found in (Natimo et al. 2008). 
In the paper, we only consider the aspect of fire spread 
simulation.  

Ignoring the implementation details, the DEVS-FIRE 
fire spread model can be describe as  

),,,,(1 tt xweatherslopeaspectfuelDFx =+ , 

where tx  and 1+tx  are the system states that represent the 
fire spreading situation (i.e., which cells are ignited and 
which cells are not) at time step t  and 1+t  respectively, 
each of which can be denoted by a two-dimensional ma-
trix with elements 1 or 0 representing whether the cell is 
ignited or not. fuel  is a static input parameter to define 
the fuel models of each cell in the cell space. slope  and 
aspect  refer to the static input parameters to specify 
landscape of each cell in the cell space. weather  means 
an input parameter to define the wind speeds and wind di-
rections at different time. DF  stands for the model of the 
dynamic fire spread system. According to tx , we can 
compute outputs of the model, such as fire fronts, fire pe-
rimeters, and burned areas.  

4.2 Towards A Framework of Applications of 
Particle Filters Using DEVS-FIRE 

Given that DEVS-FIRE is a simulation model for dy-
namical wildfire spread in a forest, this section discusses 
several applications of particle filters that could be devel-
oped based on DEVS-FIRE. These discussions intend to 
define a framework of the applications of particle filters to 
the problem of wildfire spread using the DEVS-FIRE 
model.  
 The first application corresponds to state estimation 
of wildfire spread using DEVS-FIRE. When we have ob-
served real data at some time steps from sensors or satel-
lite images, we can estimate the states, e.g., fire fronts, of 
the system based on the observed data using particle fil-
ters. At every time step, we generate particles, e.g., differ-
ent fire front shapes, and then update the weight of each 
particle based on the sensor data from the real forest. Ac-
cording to the particles and their corresponding weights, 
the next fire shape can be obtained. In this way, the in-
formation from real data is incorporated into the DEVS-
FIRE model to better predict the fire propagation in prac-
tical applications.  
 Another application of particle filters is to calibrate 
the static parameters of DEVS-FIRE. In this case, the stat-
ic parameters should be extended with states, thus trans-
forming the problem into an optimal filter problem (Dou-
cet et al. 2003). For example, an important parameter in 
DEVS-FIRE is the fireline intensity threshold that is used 
to decide whether an ignited cell is burnable or not. Given 
the real fire spreading observation data, e.g., burned areas, 
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for some time period, the threshold can be approximated 
by particle filters. To do that, we randomly assign N parti-
cles with values in a pre-defined range. Using these parti-
cles as inputs, we run DEVS-FIRE model N times for this 
time period to obtain their corresponding burned areas. 
Then comparing these areas with the real burned areas, we 
can compute the weight of each particle, and choose the 
particles having larger weights for use of the next step. 
Recursively executing this process, the threshold will 
converge to a small range, so we can use this as the esti-
mated threshold.  
 Another application is to reconstruct timely parame-
ters (i.e., estimate what happened before) for a given set 
of observation data. For example, in DEVS-FIRE, wind 
data always change with time advances. If knowing the 
fire fronts and burned areas from time 0 to 1+t , we can 
estimate the past wind data conditions using particle fil-
ters. This problem is similar to that of smoothing all past 
states using measurement data (see (Gibson 2003) for 
more details).  
 Each of the above applications deals with a different 
aspect. Thus the specific details of particle filters will also 
be different. Despite that, they all share a similar imple-
mentation structure that corresponds to the general struc-
ture of particle filters and uses the simulation model of 
DEVS-FIRE. Figure 1 illustrates a structure of particle fil-
ters based on DEVS-FIRE for the state estimation applica-
tion described above. Every time step, we use the particle 
filters component to generate particles, run simulations 
based on the particles, and obtain measurements. Compar-
ing the measurements with the observed data tOBD , we 
can calculate the weights of the particles, and normalize 
them. Using the particles and their weights, we can get the 
value of state variable tSV  at time t , and the estimation 

of the next state 1+tSV  at time 1+t  according to the 
DEVS-FIRE simulation model. 
 
 

 
 
 
 
 
 
 
 
 

 
 

5 A CASE STUDY EXAMPLE 

5.1 The Case Study Example 

As a case study example, this section shows how particle 
filters can be applied to wind speed and wind direction 
estimation using the DEVS-FIRE model. It is known that 
wind speed and direction can significantly affect the 
spreading of a wildfire. Being able to estimate the dy-
namic changing wind speed and direction thus is helpful 
and can complement the weather data collected from 
weather stations for better prediction of wildfire spread. In 
this example, we use three terms to differentiate three 
types of wind data: 1) real data– the “real” wind 
speeds/directions that need to be estimated. In the exam-
ple, these data are artificially generated by a computer 
program every 10 minutes. A fire spread simulation using 
the real data is referred to as the “real fire spread”; 2) 
weather data– the wind speeds/directions that are ob-
tained from a local weather state. These data are only 
available every 1 hour (assuming no measurement errors); 
3) estimated data– the wind speeds/directions estimated 
from the particle filters. This example estimates the wind 
speeds/directions every 10 minutes. Our goal is to show 
that the estimated data will follow the same trend of the 
real data, and fire spread simulation using the estimated 
data gives better prediction result than using the weather 
data.  
 To apply particle filters, we define the wind data as 
the state variable, and estimate them according to the ob-
servation data. The observation data used in this example 
are the fire fronts and burned areas that are collected 
every 10 minutes from the real fire spread (fire spread si-
mulation using the real data). Based on the above discus-
sion, the dynamic system under study is defined as fol-
lows. 
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at time t ; tB  is the measurement variable, the new 

burned area of the fire from time t  to 1+t ; tA  and 

1+tA  are observed burned areas of the fire at time t  and 

1+t  respectively. tv  and tw  are the noises of twind  

and tB  respectively. calA  is used to calculate the 

burned areas from time t  to 1+t  based on the observed 
fire fronts at time t . DF  is the DEVS-FIRE simulator, 
and fuel , aspect , and slope  are treated as the static 

SVt 

Figure 1:  State estimation using DEVS-FIRE 
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input parameters.  Here the key idea is to estimate the 
wind data at time t  based on the new burned area after 
one time step for a given fire front at time t . 
 In the process of state estimation, the noises of the 
state variable and the measurement variable are used. The 
noises are mutually independent variables generated by 
normal distributions as follows. 

),0(~ 2
vt Nv σ , and ),0(~ 2

wt Nw σ . 

5.2 Implementations of Particle Filters 

Based on the dynamic system formalized above, we im-
plement the particle filter algorithm as shown below. 

1. Initialize N  particles 
for i = 0 to 1−N  

  Randomly generate )0,(ivwsp  and )0,(ivwdir  

according to normal distributions ),0( 2
vwspN σ  and 

),0( 2
vwdirN σ  respectively; 

);0,()0,( 0 ivwspwspiwsp +=  

);0,()0,( 0 ivwdirwdiriwdir +=  
2. Compute weights 

  for i = 0 to 1−N  
  Randomly generate ),( kivwsp  and 

),( kivwdir  according to normal distributions 

),0( 2
vwspN σ  and ),0( 2

vwdirN σ  respectively;  
  

);,())1,((),( kivwspkiwspfkiwsp wsp +−=  

);,())1,((),( kivwdirkiwdirfkiwdir wdir +−=
             )];,(),,([),( kiwdirkiwspkiwind =  
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distribution ),0( 2
wN σ ; 

);,())),(((),( kiwkiwindPFcalAkiB +=   
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3. Normalize weights 
;0_ =wtss  

for i = 0 to 1−N  
    );,(__ kiweightswtsswtss +=  
for i = 0 to 1−N  
    ;_/),(),(_ wtsskiweightskiwtsn =  
4. Resampling 

);,0(_)0( kwtsnq =  
for i = 1 to 1−N  
   );,(_)1()( kiwtsniqiq +−=  
 Uniformly generate N  numbers between 0 and 1,  
 and sort them as array u ; 

1=count ; 
for j = 0 to 1−N  
    while ))()(( jucountq <  
        ;1+= countcount  
     );,()( kcountwindjtemp =  
for l = 0 to 1−N  
    );(),( ltempklwind =  
5. Output states (the estimated wind data) 

;0)( =kos  
for i = 0 to 1−N  

);,(_*),()()( kiwtsnkiwindkoskos +=  
 In this algorithm, step 1 initializes N  particles. With 
time advances, step 2 to step 5 are executed as shown in 
Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
        
  
 
 
 Figure 2: Flow of particle filters algorithms of case study 
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There are several proposed sampling algorithms, for 

example, systematic sampling (Kitagawa 1996) and resid-
ual sampling (Liu et al. 1998). Among them, the system-
atic sampling is widely used (Hol 2004). We use system-
atic sampling in our implementations too. 

6 EXPERIMENTS AND RESULTS 

6.1 Experiments Design 

Based on the example described above, we design two 
experiments as follows. The first one uses a uniform fuel 
model (fuel model 7) with simple wind flow, and zero 
slope and aspect. The wind is generated as follows. The 
initial wind speed is 2 miles/hour. In the first half of the 
entire process that lasts for 5 hours, the wind speed in-
creases 0.5 mile/hour every time step (10 minutes), and 
then decreases 0.5 mile/hour every time step. The wind 
direction keeps a fixed value of 180 degrees. In the sec-
ond experiment, we use non-uniform GIS data, where 
cells have different fuel models, aspects, and slopes. The 
initial wind speed and wind direction are 5 miles/hour and 
180 degrees. Then every time step, the wind speed in-
creases or decreases a number between 0~2 miles/hour 
based on that of the last step, and the wind direction is 
180±20 degrees.  
 Table 1 and Table 2 show the real wind data (column 
2 and column 3) generated based on the wind flow model 
described above. Note that these are the data that need to 
be estimated by the particle filters. Based on the real wind 
data, we use DEVS-FIRE to run the simulations to obtain 
the fire fronts and their corresponding burned areas every 
10 minutes (these are the observation data). Table 1 and 
Table 2 also show the weather data (column 4 and 5). We 
assume the weather data are known only at every 1 hour. 
Our goal is to estimate the wind data every 10 minutes for 
the time when the weather data are not available. This is 
achieved using particle filters based on the observation 
data of fire fronts and burned areas. The particle filters al-
gorithm uses 50 particles. The simulations are run for 5 
hours, and the wind flow model used in the particle filters 
for both experiments is as follows. 

 

⎩
⎨
⎧

=+=
=+−=
,...2,1),40,0(180)(

,...2,1),4,0()1()(
tNtwdir

tNtwsptwsp
 

 
 

Time Real 
wsp 

Real 
wdir 

Weather 
wsp 

Weather 
wdir 

0:00 2.0 180 2.0 180 
0:10 2.5 180 2.0 180 
0:20 3.0 180 2.0 180 
0:30 3.5 180 2.0 180 
0:40 4.0 180 2.0 180 

0:50 4.5 180 2.0 180 
1:00 5.0 180 5.0 180 
1:10 5.5 180 5.0 180 
1:20 6.0 180 5.0 180 
1:30 6.5 180 5.0 180 
1:40 7.0 180 5.0 180 
1:50 7.5 180 5.0 180 
2:00 8.0 180 8.0 180 
2:10 8.5 180 8.0 180 
2:20 9.0 180 8.0 180 
2:30 9.5 180 8.0 180 
2:40 9.0 180 8.0 180 
2:50 8.5 180 8.0 180 
3:00 8.0 180 8.0 180 
3:10 7.5 180 8.0 180 
3:20 7.0 180 8.0 180 
3:30 6.5 180 8.0 180 
3:40 6.0 180 8.0 180 
3:50 5.5 180 8.0 180 
4:00 5.0 180 5.0 180 
4:10 4.5 180 5.0 180 
4:20 4.0 180 5.0 180 
4:30 3.5 180 5.0 180 
4:40 3.0 180 5.0 180 
4:50 2.5 180 5.0 180 

 
 
 

Time Real
wsp 

Real 
wdir 

Weather 
wsp 

Weather 
wdir 

0:00 6.0 186 6.0 186 
0:10 5.2 178 6.0 186 
0:20 6.1 199 6.0 186 
0:30 6.9 174 6.0 186 
0:40 5.4 187 6.0 186 
0:50 6.1 191 6.0 186 
1:00 7.1 182 7.1 182 
1:10 7.2 166 7.1 182 
1:20 7.0 169 7.1 182 
1:30 8.3 167 7.1 182 
1:40 7.8 172 7.1 182 
1:50 8.9 182 7.1 182 
2:00 10.4 182 10.4 182 
2:10 10.7 191 10.4 182 
2:20 12.2 179 10.4 182 
2:30 10.5 179 10.4 182 
2:40 9.9 173 10.4 182 
2:50 11.6 185 10.4 182 
3:00 10.9 169 10.9 169 
3:10 11.8 176 10.9 169 
3:20 12.6 187 10.9 169 
3:30 10.9 189 10.9 169 
3:40 12.4 168 10.9 169 
3:50 11.4 177 10.9 169 
4:00 10.8 196 10.8 196 

Table 1:  Wind data of experiment 1 

Table 2:  Wind data of experiment 2 
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4:10 11.1 180 10.8 196 
4:20 9.3 166 10.8 196 
4:30 7.8 186 10.8 196 
4:40 6.5 181 10.8 196 
4:50 5.5 185 10.8 196 

6.2 Experiments Results 

6.2.1 Case 1: Uniform Fuel with Simple Wind 
Condition 

Figure 3 displays the states of wind speed every 10 min-
utes for case 1. Figure 4 shows the states of wind direction 
of each time step of case 1. In the figures, real data mean 
wind data used to obtain observed areas in particle filters, 
and weather data, estimated data stand for the wind data 
every 1 hour and estimated wind data by particle filters 
respectively. From Figure 3 and Figure 4, we can see that  
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the estimated wind speeds and wind directions have the 
same trend as those of the real wind conditions. There-
fore, in the practical applications, if we only know the 
wind condition every time period (e.g., 1 hour), we can 
estimate the wind data each time slot between this time 
according to observed data by particle filters. Figure 5 
displays the burned areas with three wind conditions form 
time step 11 to 20. From the figure, we can conclude that 
compared to using weather data, the burned areas com-
puted by using estimated wind data are closer to the ones 
calculated by real wind data. This means that the esti-
mated data can be used to produce more accurate predic-
tions. 
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6.2.2 Case 2: GIS Data with Complex Wind 
Condition 

Figure 6 and Figure 7 show the wind speeds and wind di-
rections of case 2. From the pictures, we can draw similar 
conclusions as before.  Figure 8 displays the burned areas 
with the three types of wind data from time step 21 to 24. 
From the picture, we can see that the estimated areas fall 
between the areas obtained by using real data and by us-
ing weather data. 
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Figure 5: Burned areas of case 1 

Figure 6: Wind speeds of case 2 

Figure 3: Wind speeds of case 1 

2858



Gu and Hu 
 

140

150

160

170

180

190

200

210

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
Time step (every 10 minutes)

W
in

d 
di

re
ct

io
n 

(d
eg

re
es

)

Real data Weather data Estimated data

 
 
 

90

95

100

105

110

115

120

125

130

21 22 23 24
Time step (every 10 minutes)

B
ur

ne
d 

ar
ea

 (h
a)

Real data Weather data Estimated data

 
 

7 CONCLUSIONS 

In this paper, we discussed the basic knowledge of parti-
cle filters method, and then constructed the non-linear dy-
namic system model  of DEVS-FIRE fire spread model 
according to the specification of sequential Monte Carlo 
methods. Although there are many possible applications 
of particle filters using DEVS-FIRE, we focus on the 
wind estimation as a case study in the paper. Preliminary 
results show that particle filters are powerful tools that 
can be used in the problem of wildfire spread simulation. 
Future work will proceed along the following directions: 
1) precisely estimate the fire shapes by using observation 
data from satellite images; 2) apply particle filters to esti-
mate the static parameters from the observation data, and 

smooth parameters to study past states according to ob-
servation data; 3) develop advanced methods to reduce the 
computation cost of particle filters that use large number 
of particles. 
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