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ABSTRACT

Understanding how the structure of a network evolves over
time is one of the most interesting and complex topics
in the field of social networks. In our attempt to model
the dynamics of such systems, we explore an agent-based
approach to model growth of email-based social networks,
in which individuals establish, maintain and allow atrophy
of links through contact-lists and emails. The model is based
on the idea of common neighbors, but also on a detailed
specialization of the classical preferential attachment theory,
thus capturing a deeper understanding of the topology of
inter-node connections. In our event-based simulation that
schedules the agents’ actions over time, the proposed model
is amenable to significant efficiency improvements through
an application of the Gillespie stochastic simulation schemes.
Computer simulation results are used to validate the model
by showing that its unique features endow it with ability to
simulate real-world email networks with convincing realism.

1 INTRODUCTION

Understanding and utilizing the topological structure of so-
cial networks has been at the forefront of computer science
research in recent years. This interest has been primar-
ily motivated by our desire to identify sub-structures and
“important” individuals in social network graphs, and to
then use them for a variety of different purposes and appli-
cations (e.g., commercial, security, criminal investigation,
etc.). In parallel, we also try to identify and extract data
that implicitly represent social networks.

Currently, the term ”social network” is usually associ-
ated with Internet communities such as Facebook, MySpace,
LinkedIn, Friendster, Xing and others. Artificially created
communities such as these have the advantage of conveying
a deep knowledge about their members and the information
that connects them, but they suffer from other disadvan-

tages, such as limitations imposed by the comparatively
small number of members, as well as being designed for
small target audiences. While most of the research focus
today is directed to the analysis of the World-Wide-Web
networks and web-based friendship communities, our ap-
proach points to other neglected aspects of social networks:
namely, modeling natural social networks (e.g., email net-
works) created via ubiquitous digital communication that
connects people around the world, and understanding how
its evolution may allow external manipulations for a desired
purpose.

Investigation of social graphs generated from email
datasets is a topic receiving much interest recently. For
example, in (Rowe, Creamer, Hershkop, and Stolfo 2007)
the authors develop a novel algorithm for automati-
cally extracting social hierarchy data from electronic
communication behavior. Newman and co-authors
in (Newman, Forrest, and Balthrop 2002) discuss the impli-
cations of an email network structure for the understanding
and prevention of computer virus epidemics by empirically
investigating the structure of a network derived from a large
computer installation. However, the research is hampered
by the paucity of publicly available email datasets that can
be used for research purposes. To address this problem,
in this paper we present a new agent-based model, which
generates simulated networks similar to real-world email
networks, and thus provides a basis for further designs
of applications aimed at such social networks. Further-
more, we validate it by comparing the model output to the
well-known Enron email dataset (Shetty and Adibi 2004,
Diesner, Frantz, and Carley 2005).

These models have many real-world applications: in
particular, they can be used to create inter-net-based
expert/maven-networks that can then be applied to statisti-
cally estimate various properties of the social networks in
an unbiased and robust manner. These properties can then
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be fruitfully exploited by search engines, recommenders,
collective price discovery and targeted social ad tools.

The paper is structured as follows: First, a quick back-
ground on social network modeling is given in section 2.
Next, the Email Network Model (ENM) is described in de-
tail in section 3 in terms of agents behaviors and dynamics.
Simulation results are discussed in section 4, comparing the
model output to the structure of the Enron dataset. Finally,
a conclusion section appears as section 5.

2 BACKGROUND

Erd’́os-Renyi style random graphs have been found to lack
the generality needed to model real-world networks. By
using models with more elaborate static structures while
ignoring the interactions among neighbors and consequent
changes to the local topologies, one can only partially
address the limitations of the random networks. In certain
situations, naturally occurring networks, such as metabolic
networks or blood vessels, are fundamentally quasi-static
and do not change their topology perceptibly over time;
however, most real-world networks are open, and they form
by the continuous accretion and attrition of vertices in the
system. Thus, the number of vertices fluctuates throughout
the lifetime of the network, with many small and large
changes to the network topology.

For example, scientific collaboration networks grow by
the addition of new scientists to the system; the World-
Wide-Web grows exponentially over time by the addition
of new pages; and the research literature constantly grows
by the publication of new papers. The common feature
shared by all of these systems is that the network expands
through the addition of new nodes that are connected to the
nodes that were already present in the system.

There are various models of network
growth (Newman 2003, Albert and Barabasi 2002,
Liben-Nowell and Kleinberg 2007) that propose different
heuristic solutions for adding nodes and/or edges to a
network over time. Two well-known and popular ones are
the small world model (Watts 2003), and the model of
Barabasi and Albert (Barabasi and Albert 1999).

The small world model incorporates the idea that social
networks illustrate clustering (Watts 2003). This is based
on the notion that, if two neighboring “nodes” or individuals
within a social network have a mutual connection to a third
node, then the first two individuals are far more likely to
have a direct connection to each other as well (as compared
to the lesser likelihood that two random individuals would
form a connection).

Similarly, the Barabasi and Albert model
(Barabasi and Albert 1999) is based on the idea that
constantly growing networks use preferential attachment
of new nodes, meaning that individuals on the outskirts of
a social network are more likely to connect to nodes with a

high degree of connectivity (i.e., large number of “friends”)
than to ones with fewer connections. Models founded
upon this theory have been shown to be representative
of the growth of many different kinds of networks: for
example, that of Wikipedia (Capocci 2006), the network of
scientific collaboration (Roth 2005) and proteins networks
(Eisenberg and Levanon 2003).

Finally, in (Jin, Girvan, and Newman 2001), Jin and
co-authors developed two models (one simpler than the
other) of growth for social networks based on classical
stochastic processes that are able to reproduce many features
of real social networks, including high levels of clustering, or
network transitivity and strong community structure. Even
though both ours as well as their models simulate the growth
of social networks, they differ in many subtle ways. Jin’s
model uses a probability per unit time pi j that two people,
say i and j, will meet, which depends both on the total
number of friends and the number of mutual friends of
the two selected people. This way, the evolution of the
structure is based on top-level rules that operate on the
whole set of nodes in the network. Our model instead is
based on an agent-based bottom-up approach in which the
creation of new connections between nodes is due only to
the specific decisions made over time by each single person
in the network. This way, the final network generated is the
result of the emergent behavior of the system. In order to
pick pairs of individuals with the correct probability per unit
time, the first of Jin’s two models uses a continuous-time
Monte Carlo method, while the second one, albeit more
efficient, is based on few artificial rules that can be argued
to not represent real-world scenarios.

As we will describe later, as opposed to Jin’s frame-
work, the scheduler of our model-simulator operates on the
same working principle as that of the Gillespie algorithm
(Gillespie 1977), thus allowing more efficient simulation
than continuous Monte Carlo methods while still using
rules of behaviors that reflect the way real people manage
their emails and interact.

3 THE EMAIL NETWORK MODEL

The objective of this paper is to develop a model that
is capable of simulating the behavior of an email so-
cial network. In conjunction with the development of
the model, this paper derives the model parameters from
real-world data within the Enron email dataset, qualita-
tively comparing the model outputs to the real data. For
this purpose, we created extensive statistics on the Enron
dataset using the MySQL database (available for download
at (<www.isi.edu/∼adibi/Enron/Enron.htm>)
created by the University of Southern California. The
database consists of 252,759 emails that were received
2,064,442 times. Extensive research has been performed
to analyze this dataset, resulting in the widespread con-
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sideration of a subset of 151 employee and approximately
517,431 email receptions (Shetty and Adibi 2004). Taking
only emails that were sent and received by these 151 em-
ployees into account, we reduced the number of unique
emails to 14,876 over the course of roughly three years.

3.1 Model features

The Email Network Model (ENM) is an Agent-Based model
implemented in Repast 3.1 (North M.J. and J.R. 2006), a
popular and versatile Java-Based software toolkit that has
been used to model such diverse concepts as intracellu-
lar processes, social norms, planning against catastrophes
(Narzisi, Mysore, Byeon, and Mishra 2006, Mysore 2006)
and business strategies. We have also integrated Repast
with JUNG, the Java Universal Network/Graph Framework
(<jung.sourceforge.net/>), which supports mod-
eling, analysis and visualization for network analysis.

Our email model is built upon the idea of common
neighbors and a modification of preferential attachment.
We model the email traffic in a closed community. This
community can represent, for example, a research network, a
company, a sports club, etc.; in short, we are interested only
in the connections (emails sent) to individuals within this
community, as opposed to emails sent to external individuals.

The main idea of common neighbors still remains valid:
namely, the likelihood of two neighbors of a third node
becoming neighbors themselves is higher than that of a
total random connection. However, we enhance this theory
with the hypothesis that this behavior is even more likely
if multiple neighbors of an individual are the recipients
of the same unique email, thus implying a deeper level
of connection. As a basic illustration of this hypothesis,
imagine an email that is written by the CEO of a company
and sent as a carbon copy to every employee within the
organization. The likelihood that the recipients of this email–
the employees–have connections to each other independent
of their mutual connection to the CEO is far greater than if
they were simply random individuals existing in an open-
ended network.

We incorporate the idea of growth in the model by first
identifying “a seed set,” or the original cluster of individuals
from which the network evolves. Because the model is based
on the concept of a closed community, the network is not
able to grow infinitely; thus, the growth of the network is
restricted by establishing a maximum number of individuals.

We also incorporate the idea of preferential attach-
ment, but we modify it by adding a new dimension to
the Barabasi-Albert model. That original model focused
exclusively on the premise of quantity: individuals with
a large number of connections attract the outliers of the
network solely because of this numeric “popularity.” We
take this basic theory and expand it to include an element
of quality, in which we define an individual’s attractiveness

to social subordinates by specific qualitative attributes that
are uniquely relevant. Specifically, an individual’s degree
of connectivity within a social network does correlate to the
number of his connections, but also to social characteristics
that make him “attractive” in a specific community. These
two factors work in tandem to shape and define a social
network’s structure.

The last main concept that we incorporate is inspired by
the Exact Stochastic Simulation (Gillespie 1977) by Daniel
Gillespie (1977). The Gillespie algorithm has been de-
veloped in the context of chemical interactions in order to
model the time behavior of spatially homogeneous chemical
systems efficiently and accurately using limited computa-
tional power. However, its basic working principle can be
applied to simulate increasingly complex systems.

Following Gillespie’s ideas, we could improve the time-
complexity of the simulation, even when the underlying time
implicitly behaves continuously; Gillespie’s techniques rely
on the fact that, if the time distributions of actions are known
in advance, then it is possible to schedule the actions based
on the answers to the following two questions:

1. Which action occurs next?
2. When does it occur?

We apply this method in the present context on the basis that,
for every node, sending an email and removing a contact
from the contact list are both recurring events. These two
events follow specific distributions (explained in section 4)
and are organized by a schedule that invokes and organizes
them at a given time based on the following simple steps:

• INITIALIZATION: Initialize the number of agents,
parameters and random number generators.

• MONTE CARLO STEP: Generate random numbers
(according to some distribution) to determine the
next action to occur, as well as the time interval.

• UPDATE: Increase the time step by the randomly
generated time in the Monte Carlo Step.

• ITERATE: Go back to the Monte Carlo Step, unless
the simulation time has been exceeded.

The specific distributions used in this sequence of steps are
described in section 4.1.

3.2 Agents and rules of behaviors

The model consists of the interaction between two different
kinds of agents: individuals (also referred to as nodes) and
emails. In the following two paragraphs, we describe the
characteristics and rules of behavior of the agents both in
static and dynamic settings.

Emails Nodes only interact with each other through
emails. If we consider the network created by the model as a
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graph, the emails do not directly represent the edges. Rather,
the edges only connect nodes that had a bidirectional email
transfer, i.e. node A sent an email to node B, and vice versa.
This definition of edge has a number of advantages, and it
represents reality better than using graph definition derived
directly from emails. For example, spam and mass emails
do not affect the density of the network, which influences
the degree of distribution, and therefore the network growth,
by preferential attachment.

Properly defined emails must have one sender and at
least one receiver. They must also get a time stamp assigned
to them at the time of sending. Once an email is sent,
it performs only one action: invoking a receiving action
(open the email, delete the email, etc.) among all recipients.

Individuals/Nodes Every node is characterized by
two parameters representing the most simplified notion of
personality. The following two personality traits model the
“quality” of each node:

1. ATTRACTIVENESS: is a random variable attribute
that follows a uniform distribution. The attractive-
ness is defined in the range [0,1] and affects the
interest of other nodes in sending emails to this
node. The larger the attractiveness, the higher the
probability of receiving emails from other contacts
becomes. In addition, it is also the only param-
eter that affects the removal of contacts from the
contact list.

2. INVOLVEMENT: represents the different types of
behaviors of individuals in social networks based
on participation and motivation. Involvement is
defined as having a value in the range [0,1] and
follows a distribution with probability density func-
tion:

f (z) =
1

log(P+ 1)
× 1

z+ 1
×�[0,P](z) (1)

where P is the involvement parameter set to 200.
Higher the involvement, higher the rate of sending
emails.

Besides the personal traits, each node maintains a contact
list. New nodes are added to the contact list when the
list’s owner sends an email to another node. Nodes are
removed from the contact list as a reoccurring event at a
rate determined by the probability pdel (defined in paragraph
3.3). Nodes with low attractiveness are more likely to be
removed from the contact list than other nodes.

3.3 Description of the dynamic behavior

To explain the mechanisms for the growth and evolution
of our social network, let us follow the time response of

the model. For the sake of simplicity, we assume that the
simulation begins with one individual as starting seed,
from which the rest of network evolves.

Write email

Send

Get number of receivers

Select receivers

[receiver list == emt py]

Queue

[receiver list! = empty]

Figure 1: Activity diagram for “Send Email”.

Send Email The standard action for the first node is
to send an email, and this actions is scheduled at a random
time following the distribution Sn (probability distribution
for node n). Its activity diagram is shown in Figure 1. The
schedule jumps to the first scheduled action, which is ”Send
Email.” The first step this action takes is to reschedule itself
at some time in the future, following the same distribution
Sn. Specifically the time to next email is calculated as:

ti+1
send =

1
invi

·N(Sn), (2)

where invi is the involvement-value of node i and N(Sn) is
a random number according to distribution S n.

Next, the actual process of sending an email is invoked,
which involves making the following decisions: (1) deciding
the number of receivers and (2) selecting the receivers. Each
node has a FIFO queue containing a list of scheduled email
information. If the queue contains information about an
email, this email is sent. If not, as in this case, the following
actions are invoked:

• GET NUMBER OF RECEIVERS: This is a uniformly-
distributed random number in the range of 1 and
the size of the contact list.
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• SELECT RECEIVERS: This is a node of one of
following three kinds: (i) One from the contact list
of the sender (Lsender), or (ii) one from previously
selected nodes from contact list (Lselected), or (iii) a
node which was previously unknown to the sender.

Whether (i), (ii), or (iii) determines a recipient at a
particular selection-point is a stochastic event for which we
introduce the three global parameters:

• pcl for case (i),
• psel for case (ii), and
• pun for case (iii).

Where pcl , psel, pun ∈ [0,1] and pcl = 1− pun. These
parameters can be used to model different kinds of com-
munities. See Figure 2 for the activity diagram of “Select
receivers”. The function F(Ln) is the main function for the

Select new node

Select node from Contacts

Add neighbors to receivers

[pcl ]

[pun · prand ]

Add node to receivers Receivers

Create new node Select node from Network

[psel ]

[!psel ]

[pun · pnew ]

[receivers < k]

[receivers >= k]

Figure 2: Activity diagram for “Select receivers”.

link prediction. It samples a uniform random number of
nodes from the contact list Ln according to a combined prob-
ability of the degree and attractiveness of each node. The
mapping is determined by assigning to each node i a prob-
ability of being selected pi in the following way. First the
average degree weight (pdi) and the average attractiveness

weight (pai) are computed as follow:

pdi =
di

∑N
j=1 d j

, pai =
ai

∑N
j=1 a j

, (3)

where di and ai are respectively the degree and attractiveness
of node i, and N is the total number of contacts in i’s contact
list. Hence, the selection probability pi is defined as follows:

pi =
pai + pdi

∑N
j (pa j + pd j)

=
pai + pdi

2
. (4)

Thus, we have that:

pi =
∑N

j=1 (aid j + dia j)

2 ·
(

∑N
j=1 a j

)
·
(

∑N
j=1 d j

) . (5)

If one node is selected as receiver, there is a small probability
psel that some nodes belonging to its contact list will be
added to the receiver list as well. In other words, once
the function F(Lsender) returns a node n, a uniform random
number of this node’s neighbors will be added to the receiver
list with probability psel . This step reflects the core idea
of the small world model, as it represents the chance of
getting introduced to a new contact by a friend using a means
of communication other than email. Those neighbors are
selected according to the same mapping function F(L n).

When a new unknown node is selected, this node can
be either a random node of the network or a newly created
node. The probability of creating a new node p new is simply
the normalized difference between the estimated network
size and the the actual network size.

pnew = 1− actual network size
estimated network size

. (6)

Hence, the probability of selecting a random node from the
network prnd is:

prnd = 1− pnew =
actual network size

estimated network size
. (7)

When a new node is created the network grows. The
initial attributes of the node are set and its reoccurring events
are scheduled. If, on the other hand, a random node from
the network is selected, such selections follow a distribution
that is based only on the attractiveness values of all nodes
in the network and use the same technique for selection as
in the case of the contact list. Since the probability for a
node i to be selected is only based on its attractiveness, it
follows equation (3) with N representing all nodes in the
network instead of a single contact list.
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Receive email

Queue

Analyze sender

[ai · panswer ] [!(ai · panswer)]

Write reply

Add neighbors of sender

1

Figure 3: Activity diagram for “Receive Email”.

At the end of this process, k receivers are selected
and the email is sent. More specifically, an email agent is
created with the attributes described above and scheduled
for reception. The list of k receivers is then added to the
list of contacts of the sender. Since our network does not
contain any node other than the seed, k new nodes are
created with a new set of initial random attributes. For
these new nodes, the standard action of ”Send Email” and
”Remove Contact” are scheduled.

Receive Email As the simulation proceeds, the next
scheduled action of the model is invoked, which will likely
be the reception of the newly created email. Figure 3 shows
the activity diagram for the “Receive Email” action.

When an email is received, with some probability, the
recipient responds to that email by sending a reply. This
step involves a stochastic decision which is a function of the
attractiveness of the sender asender and, a global parameter,
the probability to answer panswer ∈ [0,1]. We define the
total probability of replying to an email preply as:

preply = panswer ·asender. (8)

If the recipient replies to an email, it will reply to all attractive
nodes that were also recipients of that same email. Replay
emails are stored in the FIFO queue of the node and are
scheduled to be sent according to the same distribution S n

described later in section 4.1.
While sending a new email shows the standard

behavior of a small world model, neighbors are preferred

over strangers, the emails sent as a reply enhances this
effect and gives it a time dependent notion.

Remove Contact As mentioned earlier, nodes are
removed from the contact list as a reoccurring event. When
invoked, this action removes one node i from the contact
list. The probability to be selected for deletion is:

pdel =
1
ai

∑N
j

1
a j

. (9)

where ai is the attractiveness of node i and N is the size
of the node i’s contact list. pdel , as defined, causes the less
attractive nodes to be removed from the contact list with a
higher probability. When this action is invoked, the time to
next node-deletion event is calculated as follows:

ti+1
del =

(
1

invi
·N(Sn)

)
· 1

di · pun
, (10)

where invi is the involvement for node i, N(Sn) is a random
number according to the distribution Sn, and di and pun are
defined as before.

The set of rules as defined above describes the entire
model.

4 SIMULATION RESULTS AND DISCUSSION

4.1 Emails time distribution

The distribution most central to this model is the distribution
of the time intervals between two consecutive emails. We
chose to analyze and infer this data directly form the Enron
dataset. Inspecting Figure 4, it can be observed that the dis-
tribution of time intervals between two consecutive emails
(Sn) sent by the same node n follows a log-normal distribu-
tion. The blue line represents the empirical data from the
Enron email dataset. The fitted distribution is a log-normal
distribution with the probability density function:

PDFS(x,σt ,μt) =
1√

2πσt
· e

−(ln x−μt )2

2σ2
t . (11)

The fitting is obtained using the following values for the
log-normal distribution: μt = 3.35 and σt = 3.6.

We emphasize that this is the only information that is
extracted from the Enron dataset and used in the model.
Furthermore, this distribution is applied locally at the level
of each single agent.
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Figure 4: Comparison between the CDF of the fitted dis-
tribution S and the empirical data from the Enron email
dataset.

Table 1: Model parameters.

Name Value
μt 3.35
σt 3.6

involvement 200
attractiveness uniform in [0,1]

pcl 0.98
pun 0.02
psel 0.04

panswer 0.25

Table 2: Comparison of statistical properties between the
ENM and Enron networks.

Parameter ENM Enron
Mean distance 6.85 7.48

Reciprocity 0.32 0.41
clustering coefficient 0.16 0.28

Num. emails 15113 14876
mean degree 100.09 98.52

4.2 Statistical properties

After an extensive sensitivity analysis we have observed that
in order to approximate the behavior of the Enron dataset
the parameters must be selected as described in table 1.
In order to compare the output of the ENM model with
the Enron dataset we simulate the growth of the network
for a maximum of 3 ”virtual” years. Table 2 provides a
summary of the statistical properties of the two networks.
Inspecting the results in the table it is clear that the two
graphs have similar properties. The values of ENM graph
approximate quite well the Enron dataset except for the
clustering coefficient where Enron is qualitatively higher
than the ENM model. However, the value of the ENM
network is definitely higher than the expected clustering
of a random graph of the same size, which is typical in

social network graphs. Finally, in Figure 5 it is shown that
the cumulative distribution of the number of emails sent by
each node closely follows that of the Enron dataset. It is
clear that the two distribution match very well.
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Figure 5: Cumulative distribution function (CDF) of the
number of emails sent for both the ENM model and Enron.

4.3 Model dynamics

Email networks, like many other social networks, are char-
acterized by their extremely dynamic nature. New nodes
and links are always introduced over time and the process
that regulates the dynamics of such systems is of great
interest and not completely understood yet. Figure 6 and 7
shows the evolution of both the in-degree and out-degree
distributions as a function of time. It is clear from the
plots that, as time goes on, the degree distributions of the
ENM generated graph get closer to the Enron one. Similar
behavior can be observed in Figures 8 where the distribution
for received emails is plotted over time.

It is important to observe that the these distributions
have shapes very similar to that of the Enron’s email network.
We may, thus, conclude that even if the total degree size
are sometimes slightly different for the two networks the
internal distribution is the result of a similar growth process.

5 CONCLUSION

This paper presents a stochastic agent-based approach for
modeling email social networks in a closed community such
as the ones represented by a company, a sport club, etc. The
model is based on the notions of common neighbors and
preferential attachment, but both these concepts have been
further enhanced in order to model the connection between
the nodes at a deeper level. The scheduler of the model
is based on the same working principle as the Gillespie
algorithm, which lets the actions self-schedule themselves
according to a probability distribution empirically extracted
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Figure 6: Cumulative distribution function (CDF) of the
in-degree of the nodes as a function of time.
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Figure 7: Cumulative distribution function (CDF) of the
out-degree of the nodes as a function of time.

from the dataset (e.g., Enron email). Simulation results
in terms of different statistical properties (degree distribu-
tion, number of email sent / received, cluster coefficient,
reciprocity, etc.) have shown that the model convincingly
approximates the behavior of real world email networks.
Also, in contrast to previous models, in which the network
is created in a top-down fashion, the graph generated by
this model is the result of the interaction of many single
agents, thus, the social network is created using a bottom-up
approach.

This kind of model can have many different applications.
For example, varying the model parameters, it can be used
to understand the important factors that affect the evolution
of email networks and social networks in general. After
the model is validated against a specific social network, it
can be run to generate different graphs that can be used
as test-bed for graph algorithms that try to identify sub-
structure or important nodes in the network. In this way
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Figure 8: Cumulative distribution function (CDF) of the
number of emails received as a function of time.

the algorithms can be tested on reasonably smaller graphs
that resemble the structure of real world social networks,
which are typically difficult to obtain or particularly large
to be used as test-bed.

Finally we are planning to expand and completely auto-
mate the problem of fitting/tuning the model to real network
data. This problem can be modeled as a multi-objective
optimization problem. The different statistical information
curves (degree distribution, number of email sent/received,
etc.) of the network generated by the model need to ap-
proximate the real curves of the candidate social networks.
Each of this curve fitting problems can be seen as one
of the objectives to minimize while the model parameters
represent the variable space to explore. Many interesting
computational problems arise in order to make such a task
feasible and applicable in real world scenarios.
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