

UNIFYING SIMULATION AND OPTIMIZATION OF STRATEGIC SOURCING AND TRANSPORTATION

Malak Al-Nory
Alexander Brodsky

Dept. of Computer Science
George Mason University

4400 University Drive, USA

ABSTRACT

Proposed and developed is a framework and an extensible
library of simulation modeling components for strategic
sourcing and transportation. The components include
items, suppliers, volume-discount schedules, aggregators,
procurement rules, and less-than-truck-load delivery. Ser-
vice models are classes in the Java programming language
extended with decision variables, assertions, and business
objective constructs. The optimization semantics of the
framework is based on finding an instantiation of real
values into the decision variables in the service object
constructor, that satisfies all the assertions and leads to the
optimal business objective. The optimization is not done
by repeated simulation runs, but rather by automatic com-
pilation of the simulation model in Java into a mathemati-
cal programming model in AMPL and solving it using an
external solver.

1 INTRODUCTION

To ensure the procurement function is aligned with the
organization’s long-term objectives such as savings and
profitability, many organizations have transitioned to stra-
tegic sourcing to acquire their raw materials and service
requirements (Carr and Smeltzer 1999). Strategic sourc-
ing should be a systematic and comprehensive process to
determine the procurement plan that minimizes linked
costs in the supply chain, and maximizes the value of
purchased goods and services. This is done by determin-
ing the best suppliers for needed goods or services and the
conditions under which to use their services in a way that
achieves the best value and contributes to the organiza-
tion’s long-term objectives (Anderson and Katz 1998). To
fully achieve the alignment of the procurement process
with the organizational objectives, transportation should
be an essential element in the strategic sourcing plan. The
reason is that strategic sourcing and transportation are in-
terrelated processes and one of them can not be optimized
in isolation of the other. For example, if the delivery cost
of the purchased items was not incorporated in the model,

these costs can tremendously increase the overall costs.
However, the full integration of strategic sourcing and
transportation is very complex and challenging in prac-
tice, and therefore organizations have increasingly used
different methodologies to solve this problem.

The most widely used tools apply simulation and/or
optimization techniques to support strategic sourcing and
transportation decisions (Padmos et al. 1999; Phelps, Par-
sons, and Siprelle 2000; Terzi and Cavalieri 2004). Ana-
lytical optimization models are challenging and require
high level of expertise in Operations Research (OR) tech-
niques and mathematical modeling languages such as
AMPL (Fourer, Gay, and Kernighan 2003) and GAMS
(Boisvert, Howe, and Kahaner 1985). The elements of an
OR model are abstract constraints, which have only an in-
direct connection to elements of a real-world process.
Also, the notions of order and timing of events are usually
not explicit in OR models, which puts additional burden
on the modeler. Even when the OR expertise is available,
classical Linear Programming (LP) and Mixed Integer
Linear Programming (MILP) do not provide means for
modeling complex relations of highly complex problems
such as strategic sourcing and transportation. The prob-
lems are usually simplified to a great extent to be modeled
mathematically and solved by a mathematical program-
ming solver.
 Simulations such as discrete-event simulation and
Monte Carlo simulation are more realistic and provide
means for incorporating complex model behavior using
easier model development methodologies and tools (Law
2007). The elements of the simulation model are state-
variables and state-transitions, which have clear one-to-
one correspondence with elements of a real-world proc-
ess. Also, real-world time and sequence of events corre-
sponds to time and sequence in the running simulation in
an obvious way.
 Combinations of simulation methods have been also
widely used to develop simulation environments that can
get the most out of simulation. For example, combining
object-oriented simulation with discrete-event simulation
as in Jwrap (Bizaro and Silva 1998) or with process-

2616 978-1-4244-2708-6/08/$25.00 ©2008 IEEE

Proceedings of the 2008 Winter Simulation Conference
S. J. Mason, R. R. Hill, L. Mönch, O. Rose, T. Jefferson, J. W. Fowler eds.

Al-Nory and Brodsky

oriented simulation as in Silk (Healy and Kilgore 1998).
Simulation modeler can practice modern object-oriented
software engineering to build arbitrarily complex modular
models from simple building blocks.
 While simulation offers numerous advantages in ease
of modeling, testing and extensibility, it is optimized by
choosing parameters manually. An optimization layer can
be added by running a simulation multiple times with
possible heuristics. The improving strategies for the simu-
lation objectives are mainly a trial-and-error procedure
(Kelton, Sadowski, and Sturrock 2004). Thus, simulations
lack systematic optimization.

In the last decade, there has been work on combin-
ing simulation and optimization by adding an optimiza-
tion model on top of a simulation model. See (Swisher
and Hyden 2000; Fu 2001) for excellent simulation opti-
mization surveys. The optimization model is used to op-
timize a set of user-selected system parameters with re-
spect to some performance measures of the simulation
model. The user does not know that an optimum has been
reached (Fu 2002). Thus, the optimization uses the simu-
lation as a black-box and the parameters of the actual
problem are not used directly in the optimization strategy.
Furthermore, computational cost for the simulation-based
approaches is still very expensive, in spite of the ad-
vancement in the computing power, which makes classi-
cal search procedures inefficient. Advanced techniques
such as OCBA by (Chen et al. 2000) used for allocating
simulation budget are required to enhance the efficiency
of the simulation for optimization and to determine the
number of runs required.
 When reviewing the literature we found limited num-
ber of papers that deal with optimization by simulation in
the context of strategic sourcing and/or transportation in
supply chains. The paper of (Lee and H.Kim 2002) com-
bined simulation and optimization for a production-
distribution system. The iterative hybrid analytic-
simulation procedure uses simulation result to adjust the
parameters of the optimization model. The goal is to pro-
duce a solution representing a more realistic optimization
model which is also within the constraints of the stochas-
tic simulation model. The work of (Truong and Azadivar
2003) combines simulation, Mixed Integer Programming
(MIP) and Genetic Algorithm (GA) to solve supply chain
configuration problem such as facility location and part-
ner selection. MIP and GA are used to optimize qualita-
tive and quantitative variables respectively. Simulation is
used to evaluate performance of each configuration de-
sign. (Almeder and Preusser 2007) developed a frame-
work for network flow in the supply chains that embeds
abstract deterministic LP or MILP model within a com-
plex discrete-event simulation model to improve the over-
all performance. Their hybrid methodology uses loops be-
tween the simulation and the optimization until the model
reaches convergence to a table solution based on adapting

decision rules. The approach requires modeling the supply
chain as a discrete-event simulation as well as an optimi-
zation model. In addition, the decision rules of the simula-
tion model might change and might necessitates a recalcu-
lation of the parameters for the optimization model. This
might result in a situation where convergence is not pos-
sible. In general, most of the work in the literature require
developing multiple models, each of which optimizes
some of the problem parameters. There has been work on
algorithms for clearance in combinatorial reverse auc-
tions, e.g., (Sandholm and Suri 2001; Sandholm et al.
2001; Sandholm and Suri 2003) and their extensions.
However, the optimization problem is formulated as ex-
tended reverse auction and do not provide the level of
flexibility of simulation-based models.

In our previous work (Brodsky, Al-Nory and Nash
2008) we introduced the Service Composition (SC) Co-
Java language to unify simulation and optimization of
supply chains, i.e., SC-CoJava is used to specify a simula-
tion model, yet its complier automatically constructs a
mathematical programming model and solves it using a
mathematical programming solver. SC-CoJava also pro-
vides a Service Composition framework that allows to
specify both atomic and composite services, which form a
simulation model. However, SC-CoJava only provided a
general framework, but did not focus on modeling spe-
cific components in a supply chain.

This paper focuses on modeling Strategic Sourcing
and Transportation services in the Service Composition
framework, and on simplification of SC-CoJava syntax
and its optimization semantics. More specifically, the
contributions of this paper are as follows.
 First, we developed an extensible modular library of
strategic sourcing and transportation modeling compo-
nents, including items, services, business metrics, and
procurement rules. The service models include (a) differ-
ent types of suppliers and volume-discount schedules; (b)
supplier aggregators with procurement rules such as the
amount/percentage of awarded business; and (c) less-
than-truck-load transportation. This library within the
Service Composition framework allows quick construc-
tion of simulation models for composite services involv-
ing sourcing and transportation.
 Second, we simplified the syntax and suggested a
conceptually easier, yet equivalent, optimization seman-
tics of SC-CoJava, which is being used with the sourcing
and transportation library. A service is modeled as a Java
class, in which the data part captures all the relevant ser-
vice information, and constructors compute business met-
rics associated with a service instance (business transac-
tion). However, a service class constructor may involve
(a) decision-choice constructs for one or more program
variables, (b) assert statements with Boolean conditions,
and (c) a single variable objective in the service class, as
well as the min/maxFlag, to indicate whether the objec-

2617

Al-Nory and Brodsky

tive is to be minimized or maximized. In addition to the
procedural “simulation” semantics of Java, we also pro-
vide an optimization semantics, which is based on the no-
tion of an optimal service object. Namely, it is an object
of the service class, constructed so that (a) decision-
choice variables are instantiated with real numbers, (b) all
assert conditions are satisfied, and (c) the value of the
variable objective in the service class is minimal/maximal
among all service objects that satisfy (a) and (b). The op-
timization semantics of a service constructor is the one of
the optimal service object; the rest is executed as a regular
Java program. The optimal service object computation is
done by automatic construction of a mathematical pro-
gramming model (in AMPL) and solving it using a
mathematical programming solver. Note that SC-CoJava
does not optimize using multiple simulation runs, but
rather using a mathematical programming solver. Also,
important to note that while this framework constructs a
mathematical programming model, very similar tech-
niques can be used to construct reverse auctions and thus
would utilize specialized optimization algorithms such as
in (Sandholm and Suri 2001; Sandholm et al. 2001; Sand-
holm and Suri 2003).
 Third, we developed a case study of the use of the
strategic sourcing and transportation services library and
SC-CoJava.
 This paper is organized as follows. Section 2 explains
the strategic sourcing and transportation problem. Section
3 describes the simulation semantics of the proposed
framework and its individual components. Section 4 de-
scribes the optimization semantics. Section 5 exemplifies
the use of the framework through a case study. Section 6
describes the implementation. Section 7 concludes the pa-
per and briefly outlines directions for future work.

2 STRATEGIC SOURCING AND
TRANSPORTATION PROBLEM

To understand the problem, consider an example of a
Strategic Sourcing and Transportation (SST) service. This
service is responsible of purchasing three different types
of products (i.e., food, water, and medicine) and deliver
these products to customers in two different locations.
The SST service consists of two sub-services; a Supply
service to purchase the products and deliver them to a
number of stocking locations, and a Transportation ser-
vice to deliver these products from the stocking locations
to the customers. See Figure 1.
 In turn, the supply service may involve multiple sup-
pliers of different types and cost functions (e.g., fixed
price supplier and volume-discount supplier) Similarly,
there might be multiple carriers (e.g., full-truck-load or
less-than-truck-load). In this specific case, we consider a
less-than-truck-load (LTL) transportation. In LTL mode,
only a fraction of the truck capacity is hired and the cost

is proportional to the transported amount with specific
fees depending on weight ranges and the destination zone
(Kuo and Soflarsky 2003; Caputo, Fratocchi, and Pela-
gagge 2006).

Figure 1: Strategic Sourcing and Transportation

 A typical decision required may be how to purchase
and deliver the products to the customers’ locations in the
shortest amount of time subject to available resources, or
for the minimal total cost within a fixed amount of time.
The outcome of such strategic decision is an actionable
recommendation involving quantitative and qualitative
variables. Specifically, what products, in what quantities
should be delivered by which transportation carriers, to
which locations, and which products should be purchased,
in what quantities from which suppliers, and which stock-
ing locations should be used, for which products, in what
quantities.

3 SIMULATION SEMANTICS

3.1 Conceptual Service Composition Framework

Figure 2 shows a partially expanded library of strategic
sourcing and transportation components that adhere to the
Service Composition (SC) CoJava framework proposed in
(Brodsky, Al-Nory, and Nash 2008). All strategic sourc-
ing and transportation components are represented in the
framework as subclasses of the corresponding abstract
classes: Item, Service, ServiceInfo, and BusMetric.
The most important concept is that of a Service, to repre-
sent services such as Supply and Transportation. Concep-
tually, a service represents a transformation of incoming
Items to outgoing Items. For example, a Transportation
service transforms Items of type Transportation Package
or Transportation Product to Items of the same type (with
an instance indicating a different location). Some services
have only incoming, but no outgoing Items, or the other
way around. For example, a Supplier service, has only

2618

Al-Nory and Brodsky

outgoing Items of type Products, whereas a Demand ser-
vice has only incoming Items.

Figure 2: Strategic Sourcing and Transportation Modeling
Components Library

Incoming and outgoing Items used in Services are
characterized by multiple attributes such as quantity and
location, which differ in Items of different types. Services
are also associated with one or more Business Metrics,
such as Reliability, Responsiveness, Flexibility, Assets,
and Cost. Also, each Service has an associated Service
Information. While Service instance represents a specific
dynamic transaction (transformation), its corresponding
Service Info instance represents more static parameters.
For example, a Supplier Service Info may hold a price list
of Items supplied by the Supplier Service, as well as vol-
ume-discount and their steps. This data is being used, for
example, to compute the Business Metric Cost for a spe-
cific set of Items (and their quantities) supplied by a Sup-
plier Service.

Services may be composed of other, more basic ser-
vices. A composite service transforms its incoming items
(if applicable) to outgoing items (if applicable) as if it was
an atomic service. All of the operations of determining the
items’ quantities and the partners selection are encapsu-
lated in the composite service. For example, our SST ser-
vice is a composite service that is composed of two other
sub-services: Aggregated Supplier service, and an atomic
Transportation service. In turn, the Aggregated Supplier

service is composed of multiple levels of aggregated
Supplier services of different types of suppliers.

3.2 Strategic Sourcing Service

The abstract class SupplierService extends Service
class with three fields and an abstract method supplying-
Cost() which must be overridden by the concrete sub-
classes that extend the SupplierService class.

abstract class SupplierService extends
Service{
 SupplierInfo supplierInfo;
 Products[] outProducts;
 CostMetric costMetric;
 abstract protected double supplyingCost();
}

In the Strategic Sourcing & Transportation frame-
work, SupplierService is extended by three other types
of suppliers differentiated from each other by their cost
functions. FCSupplierService class represents suppliers
with a fixed cost price structure. This model might be
more suitable for trading services rather than goods. The
supplyingCost() method of the FCSupplierService
class computes the cost by iterating over outProducts
and summing the fixed price of each product regardless of
its quantity, then at the end, it adds the supplier’s fixed
cost. Similarly, FPSupplierService class represents sup-
pliers with a fixed price, however, the product quantity is
an important factor of determining the cost of a FPSup-
plierService. Its supplyingCost() method computes
the cost by multiplying the price of each product by its
quantity, at the end, it adds the supplier’s fixed cost.
VDSupplierService class is used for suppliers with a
price structure that provides varying levels of discounts
for certain threshold amounts that are reached by the
buyer.

To exemplify the class SupplierService, consider
one of its subclasses, VDSupplierService, below:

class VDSupplierService extends
SupplierService{
 VDSupplierInfo supplierInfo;
 Products[] outProducts;
 CostMetric costMetric;
 //class constructor
 VDSupplierService(VDSupplierInfo sInfo,
 Products[] outProd){
 this.supplierInfo = sInfo;
 this.outProducts = outProd;
 this.costMetric =
 new CostMeric(supplyingCost());
 this.defaultOptObjective = optMetric();
 this.minFlag = true;}
 //method to compute service cost
 protected double supplyingCost(){
 double cost=0;
 if(this.outProducts.length>0){
 for (int i=0; i<outProducts.length;
 i=i+1){

2619

Al-Nory and Brodsky

 double itemPrice =0;
 for(int p=0; p<supplierInfo.
 products.length; p=p+1){
 if(outProducts[i].iID==
 supplierInfo.products[p]){
 itemPrice =
 supplierInfo.unitCost[p];}}
 cost=cost+(itemPrice *
 outProducts[i].iQty);}
 for(int t=0;
 t<supplierInfo.thresh.length; t=t+1){
 if(cost>=supplierInfo.thresh[t]){
 cost = supplierInfo.thresh[t]+
 ((1 - supplierInfo.discount[t])*
 (cost-supplierInfo.thresh[t]));}}
 if (cost>0){
 cost=cost+supplierInfo.fxdCost;}}
 return cost;}
 //optMetric method is omitted here

 }

 Note that the Boolean variable minFlag is assigned a
true value, which indicates that the defaultOptObjective
of this service should be minimized. In this case the
Nd.checkMinObjective() method is called for the de-
faultOptObjective.

Note also that this service provides level of dis-
counts based on the total cost before discount (i.e.,
threshold specified by the corresponding supplierInfo).
The discount is applied on the amount greater than (or
equal) the threshold. The service then sums up the cost
(after applying appropriate discounts) and adds its fixed
cost to instantiate its costMetric.

3.3 Transportation Service

TransportationService is an atomic service represented
as a subclass of the Service class. The constructor of the
TransportationService class requires to provide a
Transportation Info, the demand for outgoing products,
and the locations from which the products are going to be
transported. Similar to SupplierService class, the
TransportationService constructor computes the trans-
portation cost based on the carrier fee structure. In the
LTL model, transportation cost is computed per origin-
destination zone, and is proportional to the transported
products weight and quantity. However, Transporta-
tionService has a special method to construct its incom-
ing items’ quantities and locations since we only provide
the outgoing items in the list of this class constructor pa-
rameters.

private TransportationProducts[]findProdsND
(int[] locs){
 TransportationProducts[] inProds =
 new TransportationProducts
 [locs.length*outProducts.length];
 int i=0;
 for (int p=0; p<outProducts.length;
 p=p+1){
 double prodQty = 0;
 double totProdQty = 0;

 for(int l=0; l<locs.length; l=l+1){
 prodQty=Nd.choice(0,outProducts[p].iQty);
 totProdQty = totProdQty + prodQty;
 inProds[i] = new TransportationProducts(
 outProducts[p].iID,
 outProducts[p].iDes,prodQty, locs[l],
 outProducts[p].locZone,
 outProducts[p].weight);
 i=i+1;}
 assert(totProdQty==outProducts[p].iQty);}
return inProds;
}

A private method constructs the consumed items
(inProducts) by assigning a non-deterministic value to
each package quantity to be transported from each stock-
ing location within the range 0 to the demanded quantity
of each product,

prodQty = Nd.choice(0, outProducts[p].iQty);

In the simulation semantics, the default interpreta-
tion of the Nd.choice methods is the random selection of
a real value (of type double) from the interval with
boundaries indicated by its actual parameters. In the line
of code above, from the interval [0,outProducts[p].iQty].
(We will explain the optimization semantics of this state-
ment in the next section). The private method also uses an
assert statement

assert (totProdQty == outProducts[p].iQty);

which is ignored in the simulation semantics (except for
an error message if the assertion is violated). The trans-
portation service computes its cost by iterating over the
consumed products and looking-up the fee in the fee table
of the service, and then multiplying it by the product
weight and quantity. The service then sums up the costs
of all products, adds the fixed cost of this service, and
uses this cost to instantiate the service’s CostMetric.

3.4 Composite Sourcing Service

To exemplify the composite sourcing services, consider
the Service Aggregator abstract class and its concrete
subclass Volume-discount Supplier Service Aggregator
(denoted as VDSupplierSerAgg) The constructor takes as
arguments an array of suppliers Info, i.e., VDSuppli-
ersInfo[], and the set of items that should be produced
by the service, i.e., Products[].

VDSupplierSerAgg constructs the atomic volume-
discount supplier services in the composition. The private
method aggSuppliers() returns an array of VDSuppli-
erService[]. For each possible supplier service provided
by VDSuppliersInfo[], it constructs a new outProducts
with non-deterministic order quantities and use these
products to instantiate a new supplier service, such that all
the outProducts from all atomic volume-discount sup-
plier services are aligned with the service aggregator out-
Products.

2620

Al-Nory and Brodsky

class VDSupplierSerAgg extends
ServiceAggregator{

 VDSupplierInfo[] vdSuppliersInfo;
 Products[] outProducts;
 VDSupplierService[] vdSupplierServices;
 CostMetric costMetric;

 //constructor
 VDSupplierSerAgg(VDSupplierInfo[] si,
 Products[] oItems){

 this.outProducts = oItems;
 this.vdSuppliersInfo = si;
 this.vdSupplierServices = aggSuppliers();
 this.costMetric =
 new CostMetric(supplyingCost());
 this.defaultOptObjective = optMetric();}
 //method to aggregate suppliers

 private VDSupplierService[]aggSuppliers(){
 VDSupplierService[] ss =

 new VDSupplierService
 [vdSuppliersInfo.length];

 Products[] totOutProducts=
 new Products[vdSuppliersInfo.length*
 outProducts.length];

 int i=0;
 for (int p=0;p<outProducts.length;p=p+1){
 double ordQty = 0;
 double totQty = 0;
 for(int s=0;s<vdSuppliersInfo.length;
 s=s+1){
 ordQty=
 Nd.choice(0,outProducts[p].iQty);
 totQty = totQty + ordQty;
 totOutProducts[i]= new Products(
 outProducts[p].iID,
 outProducts[p].iDes, ordQty,
 outProducts[p].locZone,

 outProducts[p].weight);
 i=i+1; }
 assert(totQty>=outProducts[p].iQty);}
 for(int s=0; s<vdSuppliersInfo.length;
 s=s+1){

 Products[] newOutProducts=
 new Products[outProducts.length];

 int count = s;
 for(int t=0; t<outProducts.length;
 t=t+1){
 newOutProducts[t]= new Products(
 totOutProducts[count].iID,

 totOutProducts[count].iDes,
 totOutProducts[count].iQty,
 totOutProducts[count].locZone,
 totOutProducts[count].weight);
 count=count+vdSuppliersInfo.length;}

 ss[s]= new VDSupplierService(
 vdSuppliersInfo[s], newOutProducts);}

 return ss;}
 //method to return supply cost

 private double supplyingCost(){
 double cost = 0;
 for (int i=0;i<vdSupplierServices.length;
 i=i+1){
 cost = cost + vdSupplierSevices[i].

 costMetric.objective();}
 return cost;}

 //optMetric method is omitted here
 }

Note that the assert statement specifies that the total

quantity of each product in outProducts from all supplier

services must be greater than or equal to this product
quantity in the outProducts of the aggregator, but this
statement is ignored in the simulation semantics. The ag-
gregator computes volume-discount suppliers’ costs by
iterating over each service object and summing up the
costMetric objectives.

Other Supplier Service Aggregators perform similar
tasks. They assign non-deterministic values to the quanti-
ties from each possible atomic service, while asserting
that the items that are consumed and produced by the
sub-services are aligned with the items that are consumed
and produced by the aggregator.

3.5 Strategic Sourcing Service with Supplier Rules

In reality, the objective of the strategic sourcing and
transportation (e.g., minimizing the cost of the total pur-
chase) is usually constrained by some business rules
which make the optimization problem a harder one. Our
framework provides a Service class with supplier busi-
ness rules which are formulated in a simple fashion. The
rules are specified by a set of double numbers passed as
parameters to the constructor of the Service class. Each
of these numbers corresponds to a specific business rule
to be added to the model.
 The SupplyServiceAggsAggWithRules service class
supports supplier business rules of the following types:
• The maximum quantity (or percentage of the total

quantity) of each item procured from each supplier is
bounded to limit exposure to few suppliers.

• The minimum quantity (or percentage of the total
quantity) of each item procured from each selected
supplier is controlled to reduce the overhead of man-
aging large number of suppliers.

• The maximum amount (or percentage of the overall
procurement cost) paid for each selected supplier is
bounded to limit exposure to few suppliers.

• The minimum amount (or percentage of the overall
procurement cost) paid for each selected supplier is
bounded to eliminate suppliers with minor advantage
to the procurement process.

4 SYNTAX AND OPTIMIZATION SEMANTICS

Assume that user defines a subclass MyService of the
class Service. The method Nd.choice(double min,

double max) is used to indicate unknown choice con-
stant, i.e., a decision variable, and the assert construct is
used to indicate Boolean conditions that must be satisfied.
 The optimization semantics is based on the notion of
optimal service objects as follows.
 We say that an object s of the class MyService is fea-
sible, if it is constructed by MyService constructor, where
each invocation of Nd.choice(a,b) method returns a

2621

Al-Nory and Brodsky

value in the interval [a, b], and all assert statements are
satisfied. Thus, every feasible MyService object can be
identified by choice constants (C1,…, Cn) where Ci is the
value returned by the i-th invocation of the method
Nd.choice(ai,bi). Let S denote the set of all feasible ob-
jects s.

Given a specific input to MyService constructor, the
constructor defines a function : ng R R→ as follows.
Given choice constants c1,…,cn, it returns a value of the
variable objective in the instantiated MyService object.
We define a vector (c1,…,cn) of optimal choice values as
argmin 1 1(,...,) . .(,...,)n ng x x s t x x S∈ if minFlag=true; oth-
erwise argmax is used.

The semantics of the MyService constructor is as fol-
lows. It operates exactly as the user specified constructor
where the i-th invocation of Nd.choice(ai,bi) method
for i= 1,…,n is replaced with the choice construct Ci
from the vector (C1,…,Cn) of optimal choice values as de-
fined earlier. Finally, the semantics of the Service Com-
position framework is identical to that of the Java lan-
guage, with the exception of the MyService constructor.

5 A CASE STUDY

In this section, we exemplify the use and the semantics of
the proposed framework using the example depicted in
Figure 1. Once we have a library of atomic and aggre-
gated services, building a new service such as the SST
service can be easily done as follows:

class StrategicSourcingAndTransp extends
Service{

 StrategicSourcingAndTranspInfo sstInfo;
 Products[] outItems;
 CostMetric costMetric;
 boolean minFlg;

 //constructor
 StrategicSourcingAnTransp

 (StrategicSourcingAndTranspInfo info,
 Products[] products, int[] locations,
 double[] suppliersRules){
 this.sstInfo = info;

 this.outItems = products;
 //instantiate transportation
 TransportationService TS =

 new TransportationService(
 sstInfo.transportationInfo[0],
 outItems, locations);
 //instantiate sourcing

 SupplyServiceAggsAggWithRules SSAA =
 new SupplyServiceAggsAggWithRules(
 sstInfo.sInfo, TS.inProducts,
 suppliersRules);
 //define costMetric computation
 this.costMetric = new CostMetric(
 TS.costMetric.objective()+
 SSAA.costMetric.objective());
 this.defaultOptObjective= optMetric()

 this.minFlag = true;}
 //optMetric method is omitted here

 }

The constructor of the class StrategicSourcingAnd
Transp (SST) encodes a simulation procedure which uses
two of the services in the library; Transportation, and
Supplier Aggregators Aggregator. We instantiate SST us-
ing the following parameters;

1. the service info (i.e., StrategicSourcingAnd-

TranspInfo which carries the info of all the sup-
pliers that are possibly going to be selected),

2. the demand (i.e., the products including specific
demand locations),

3. the possible locations of the stocking facilities that
products are going to be transported from,

4. and the business rules that constrain the sourcing.

Table 1: Data for SST Study Case
Demand and Suppliers Info
 Fixed

cost
Prod 11
(Water)

Prod 12
(Food)

Prod 13
(Medicine)

Volume-
Discounts

 % after
De-
mand

- 100 at
Loc 1

200 at
Loc 1

200 at
Loc 2

- -

FC1 5,000 10,000 20,000 30,000 - -
FP1 1,000 16 20 30 - -
FP2 2,000 11 20 22 - -
VD1 1,000 11 22 31.5 .2

.4
1,000
5,000

VD2 2,000 10.5 21 30.5 .1
.3

2,500
4,000

Transportation Info
Zone 0 1 2 3
0 10 20 30 40
1 20 10 50 60
2 30 50 10 70
3 40 60 70 10

Transportation Fixed cost = 30

 The constructor of SST does a number of instantia-
tions that simulate the entire supply process. First it uses
all its parameter arguments to instantiate the transporta-
tion service object (TS). Then it instantiates the supplier
service aggregators aggregator object (SSAA) using the
products that were constructed from TS as inProducts.
SSAA in turn, instantiates a number of composite sourc-
ing services (i.e., supplier service aggregators) each of
which instantiates a number of atomic supplier services.
 Since SST is a service itself, it instantiates a BusMet-
ric that is defined here to be a cost metric; simply, it is
the summation of all the sub-services BusMetrics objec-
tives. Since the Boolean variable minFlag is true then the
defaultOptObjective of SST will be minimized.
 In the main program we instantiated strategic-
SourcingAndTranspInfo using one transportation ser-
viceInfo, and five supplier serviceInfo; one fixed-cost
supplier, two fixed-price suppliers, and two volume-
discount suppliers. We also instantiated the demand prod-
ucts and the stocking locations (i.e., loc 0 and loc 3). We
also defined two business rules to state that the procure-
ment quantity from each supplier should not exceed 50%

2622

Al-Nory and Brodsky

of the total quantity of each product, and the amount paid
for each supplier should not exceed 40% of the total pro-
curement cost. See Table 1 for the case study data.
 Having all the input data instantiated, we can now in-
voke the constructor of the StrategicSourcingAnd-

Transp class, which simulates the entire process. Every
time this application is run as a regular Java program, it
produces a simulation to the StategicSourcingAnd-

Transp service example. Because a random selection is
used by every Nd.Choice method to select such values as
quantities of each product to be shipped from each loca-
tion to each demand location, and quantities of each prod-
uct supplied by each supplier, each simulation run would
result in a different outcome, including a different total
cost of SST service. These outcomes do not give the
minimum cost for SST service, but merely the costs cor-
responding to the random selections of values in the simu-
lation runs. The optimization semantics, on the other
hand, would minimize the cost of SST service, by auto-
matically constructing a mathematical programming
model and solving it on an external solver. The results of
the solver are given in Figure 3.

 optimize:
[echo] #### 3. Solving the decision problem...
[exec] CPLEX 10.1.0: integrality=1e-9
[exec] ILOG CPLEX, licensed to "AMPL Student Edition".
[exec] CPLEX 10.1.0: optimal integer solution; objective
133728.4483
[exec] 625 MIP simplex iterations
[exec] 37 branch-and-bound nodes
results:
[echo] #### 4. Interpreting the optimized results...
[java] Quantity of Product 11 from loc 0 to loc 1: 100.0
[java] Quantity of Product 12 from loc 0 to loc 1: 200.0
[java] Quantity of Product 13 from loc 0 to loc 2: 200.0
[java] Transportation cost 120000.0
[java] Supplier FCSupplier1 total cost is: 0.0
[java] Quantity of Product 11 from FPSupplier2: 50.0
[java] Quantity of Product 12 from FPSupplier1: 87.2845
[java] Quantity of Product 12 from FPSupplier2: 37.069
[java] Quantity of Product 13 from FPSupplier2: 100.0
[java] Supplier FPSupplier1 total cost is:
2745.6899999999996
[java] Supplier FPSupplier2 total cost is: 5491.38
[java] Quantity of Product 11 from VDSupplier1: 50.0
[java] Quantity of Product 12 from VDSupplier1: 75.6466
[java] Quantity of Product 13 from VDSupplier1: 100.0
[java] Supplier VDSupplier1 total cost is:
5491.380160000001
[java] Supplier VDSupplier2 total cost is: 0.0
[java] objective: 133728.45016
solve:
BUILD SUCCESSFUL

Figure 3: Optimization Results

6 IMPLEMENTATION NOTES

The Strategic Sourcing and Transportation framework
was implemented by extending SC-CoJava (Brodsky, Al-
Nory et al. 2008) with the sourcing and transportation
modeling component library. The simulation procedure
leaves the decision variables open which we call non-
deterministic procedure. Then, the SC-CoJava (and Co-
Java) compiler translates a non-deterministic simulation

procedure into an equivalent decision problem using a re-
duction algorithm. See (Brodsky and Nash 2005) for more
details. The resulting decision problem consists of a set of
constraints in the modeling language AMPL.

Simulation procedure in Java

Nondeterministic simulation
procedure

Constraint generator procedure

Symbolic expression structure

Optimization problem in AMPL

Send nondeterministic choices for
parameters

Substitute symbolic types
for numeric types

Execute the transformed procedure

Translate expression structure
to AMPL

Figure 4: Implementation Flow

The overall flow of the constraint compiler is shown
in Figure 4. First, a simulation procedure is made nonde-
terministic by initializing it with values from the nonde-
terministic choice library, and designating its output as an
objective value. This requires no change to the procedure
itself, only to its parameters and return value. Next, the
procedure is transformed to create a constraint generator
procedure. This involves uniformly converting all of its
numeric data types to symbolic expression data types.
Next, the constraint generator is compiled and executed
(using a standard java compiler). The result generated by
this procedure is a set of symbolic expression data struc-
tures, represent the nondeterministic output of the simula-
tion procedure. These symbolic expressions are translated
into a mathematical programming language AMPL and
are solved on a solver. Finally, the optimization results
are used to run the simulation model deterministically. In
the case of our case study example, it took 17 seconds to
solve the problem using ILOG CPLEX (MILP) solver on
a Dell OPTIPLEX GX260 machine with Intel® Pen-
tium® 4 CPU 2.80GHz and 1 GB of RAM.

7 CONCLUSION AND FUTURE WORK

We proposed a new framework and a component library
for making strategic sourcing and transportation deci-
sions. Our approach allows quick construction of models
for composite services with all the advantages of simula-
tion model development, testing and extensibility, and yet
allows optimization based on mathematical programming.
Many questions remain for future research. They include
extending our framework with stochastic and probabilistic
models to allow for solving problems with uncertainty
factors.

2623

Al-Nory and Brodsky

REFERENCES

Almeder, C., and M. Preusser. 2007. A Hybrid Simulation Op-
timization Approach for Supply Chains. The 6th
EUROSIM Congress on Modelling and Simulation,
Ljubljana, Slovenia.

Anderson, M. G., and P. B. Katz. 1998. Strategic Sourcing. The
International Journal of Logistics Management 9(1):
1-13.

Bizaro, L. M. S. P., and J. G. Silva. 1998. Jwrap: A Java Library
for Parallel Discrete-Event Simulation. The ACM
Workshop on Java for High-Performance Network
Computing.

Boisvert, R. F., S. E. Howe, and D. K. Kahaner. 1985. GAMS:
A Framework for the Management of Scientific Soft-
ware. ACM Transactions on Mathematical Software
(TOMS) 11(4): 313-355.

Brodsky, A., M. Al-Nory, and H. Nash. 2008. Serivce Composi-
tion Language to Unify Simulation and Optimization
of Supply Chains. Proceedings of the 41st Hawaii In-
ternational Conference on System Sciences, Hawaii,
USA, IEEE Computer Society Press.

Brodsky, A., and H. Nash. 2005. CoJava: Optimization Model-
ing by Nondeterministic Simulation. Principles and
Practice of Constraint Programming - CP2005.

Caputo, A. C., L. Fratocchi, and P. M. Pelagagge. 2006. A Ge-
netic Approach for Freight Transportation Planning.
Industrial Management & Data Systems 106(5): 719-
738.

Carr, A. S., and L. R. Smeltzer. 1999. The Relationship of Stra-
tegic Purchasing to Supply Chain Management. Euro-
pean Journal of Purchasing & Supply Management
5(1): 43-51.

Chen, C.-H., J. Lin, E. Yucesan, and S. E. Chick. 2000. Simula-
tion Budget Allocation for Further Enhancing the Ef-
ficiency of Ordinal Optimization. Dicrete Event Dy-
namic Systems: Theory and Applications 10: 251-270.

Fourer, R., D. M. Gay, and B. W. Kernighan. 2003. AMPL: A
Modeling Language For Mathematical Programming.
Pacific Grove, VA, Brooks/Cole-Thomson Learning.

Fu, M. C. 2001. Simulation Optimization. Proceedings of the
2001 Winter Simulation Conference, Arlington, VA,
USA, ACM.

Fu, M. C. 2002. Optimization for Simulation: Theory vs. Prac-
tice. Informs Journal on Computing 14(3): 192-215.

Healy, K. J., and R. A. Kilgore. 1998. Introduction to Silk and
Java-Based Simulation. Proceedings of the 1998 Win-
ter Simulation Conference, Los Alamitos, CA, USA.

Kelton, D. W., R. P. Sadowski and D. T. Sturrock. 2004. Simu-
lation with Arena, McGraw-Hill Professional.

Kuo, C.-C., and F. Soflarsky. 2003. An Automated System for
Motor Carrier Selection. Industrial Management &
Data Systems 103(7): 533-539.

Law, A. M. 2007. Simulation Modeling & Analysis. New York,
NY, Suzanne Jeans.

Lee, Y. H., and S. H.Kim. 2002. Production-Distribution in
Supply Chain Considering Capacity Constraints.
Computers and Industrail Engineering 43(1-2): 169-
190.

Padmos, J., B. Hubbard, T. Duczmal, and S. Saidi. 1999. How i2
Integrates Simulation in Supply Chain Optimization.

Proceedings of the 1999 Winter Simulation Confer-
ence.

Phelps, R. A., D. J. Parsons, and A. J. Siprelle. 2000. The SDI
Industry Product Suite: Simulation from the Produc-
tion Line to the Supply Chain. Proceedings of the
2000 Winter Simulation Conference.

Sandholm, T., and S. Suri. 2001. Market Clearability. Proceed-
ings of the Seventeenth International Joint Conference
on Artificial Intelligence (IJCAI), Seattle, WA.

Sandholm, T., and S. Suri. 2003. BOB: Improved Winner De-
termination in Combinatorial Auctions and Generali-
zations. Artificial Intelligence 145: 33-58.

Sandholm, T., S. Suri, A. Gilpin and D. Levine. 2001. Cabob: A
Fast Optimal Algorithm for Combinatorial Auctions.
Proceedings of the 2001 International Joint Confer-
ences on Artificial Intelligence, Seatle, WA.

Swisher, J. R., and P. D. Hyden. 2000. A Survey of Simulation
Optimization Techniques and Procedures. Proceed-
ings of the 2000 Winter Simulation Conference, FL,
USA, ACM.

Terzi, S., and S. Cavalieri. 2004. Simulation in the Supply Chain
Context: A Survey. Computers in Industry 53: 3-16.

Truong, T. H., and F. Azadivar. 2003. Simulation Based Opti-
mization for Supply Chain Configuration Design. Pro-
ceedings of the 2003 Winter Simulation Conference.

AUTHOR BIOGRPHIES

MALAK AL-NORY is a PhD candidate in the Informa-
tion Technology Program at George Mason University.
Her research interests include decision-guidance in supply
chains, and unifying simulation and optimization in sup-
ply chains. Her email address is <malnory@gmu.edu>.

ALEXANDER BRODSKY is an Associate Professor of
Computer Science at George Mason University. His re-
search interests include decision-guidance systems and
enterprise optimization. He also serves as Chief Technol-
ogy Officer of Adaptive Decisions Inc., a start-up com-
pany that delivers Adaptive Enterprise Optimization solu-
tions For his research work on Constraint Databases and
Programming, Dr. Brodsky received a National Science
Foundation (NSF) CAREER Award, NSF Research Ini-
tiation Award, and grants from the Office of Naval Re-
search and NASA. Dr. Brodsky served as conference
chairman of the fifth International Conference on Princi-
ples and Practice of Constraint Programming. He has au-
thored a series of refereed journal and conference papers
and co-edited a LNCS volume on constraint databases and
programming. He earned his Ph.D. and prior degrees in
Computer Science and/or Mathematics from the Hebrew
University of Jerusalem. His email address is
<brodsky@gmu.edu>.

2624

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

