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ABSTRACT

In this paper we lay the foundations for studying decision-
making in complex dynamic construction management sce-
narios using situational simulations as experimental testbeds.
We draw on research conducted in dynamic decision mak-
ing, construction data-mining and situational simulations
to develop methods to study human decision-making data
collected in ICDMA - a situational simulation of a real
four story steel frame office building construction project.
Specifically, we address challenges in the collection, orga-
nization and analysis of human subject data. We define a
discipline driving the collection of human decision-making
data, establish a semantics to organize the data and a sim-
ple mathematical syntax to represent it. We also present an
analysis of preliminary experimental work and show that
our method can be used to analyze patterns in complex con-
struction decision-making. Finally, we present an agenda of
research in construction decision-making using situational
simulations that can be conducted using our proposed meth-
ods.

1 INTRODUCTION

Successful management of complex projects requires ef-
fective decision making. A decision-making environment
which changes as a function of the sequence of decisions, in-
dependently of them, or both, is referred to as a dynamic task
environment (Edwards 1962). Construction project manage-
ment scenarios are examples of high stakes, dynamic task
environments. For example, a delay in a particular activ-

ity related to events such as material delivery, the need
for rework, lowered labor productivity, weather, or similar
external circumstances can result in cascading delays that
impact the final cost and schedule of the project, with im-
pacts running into large sums of money, litigation and or
liquidated damages.

Expertise in managing such environments is dependent
on the ability to make critical decisions, and select appro-
priate management strategies to complete the project on
schedule and under budget. Construction crisis scenarios
can be modeled as combinations of resource and temporal
constraint violations (Rojas and Mukherjee 2006). Hence, it
is likely that effective decisions reflect the same model that
describes the crisis scenarios they address. The hypothesis
driving this research is that there are significant patterns in
effective construction decisions that drive strategy selection,
even when they are made in different contexts. This re-
search is to study the dynamics of human decision-making
in construction management. The contributions are twofold.
First, the research will help in the development of powerful
systems that assist effective construction decision-making.
Second, it will add to the knowledge of decision-making
in dynamic environments, by extending existing research to
complex decision-making environments such as construc-
tion management.

The challenge lies in analyzing large volumes of con-
struction decision-making data to find the anatomy of a good
decision. Case studies can provide important guidelines to
classify project scenarios and to investigate patterns in effec-
tive decision-making. However, they can be misleading as
they narrate limited scenario specific responses, instead of
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providing general statistically significant trends. In addition,
it is not possible to explore what-if scenarios to test changes
in responses in a case study. (Pennell, Durham, Ozog, and
Spark 1997) Data regarding construction projects can be
difficult to collect. Direct observation while not impossible,
is time consuming and costly. Besides, collecting data is
a complex operation, if the level of detail at which data is
being collected, and the level of abstraction of the model
being used are not known. Existing construction databases
have been studied (see discussion in Section 2.2) and can
often be used to construct project histories. However, such
data seldom provides information regarding decisions that
shape the course of the project, and the factors that influence
the anatomy of effective decisions.

The first step is to address appropriate levels of detail
at which construction decision-making data need to be col-
lected, and the level of abstraction at which such data need
to be analyzed. Situational simulations (Rojas and Mukher-
jee 2006) allow large quantities of human-subject data to be
quickly and easily obtained because it is completely digital.
It is also easy to duplicate scenarios for multiple human
subjects, providing the ability to conduct controlled experi-
ments by exposing human subjects to similar scenarios. In
this paper, we discuss the role of situational simulations in
studying human decision-making in construction manage-
ment. Specifically, we present a formal method to capture
decision data from a simulated construction environment.

The significance of this work is that it furthers the
knowledge of construction management decision-making,
its effectiveness, and its impact on project outcomes. The
broader impact of this research is in its contribution to
the study of dynamic human decision-making in complex
environments.

2 THEORETICAL FOUNDATIONS

The decisions and strategic responses in construction scenar-
ios can vary significantly depending on the specific project
scenarios at hand. We hypothesize that the anatomy of an
effective decision is dependent on the dynamics of the rela-
tionships between resource and temporal constraints driving
the project, instead of being dependent only on the project
context. This is supported by notions that have been estab-
lished by previous research in construction crisis manage-
ment and decision-making in dynamic task environment. In
this section we discuss relevant research that supports our
hypothesis and research in construction data mining and
situational simulations to establish the foundations for our
research methodology.

2.1 Decision-making in Dynamic Environments

Existing research on decision-making in dynamic task envi-
ronments has documented the characteristics of such envi-

ronments and the challenges they pose to decision-makers.
Some of the challenges identified are:

• Ability to take into account the rate of change of
the construction environment and relate their sense
of timing, to the system evolution rate (De Keyser
1990, Kerstholt 1994, Kerstholt 1995)

• Capacity for selecting strategies by appropriately
updating uncertainties and identifying risks when
the system is changing (moving targets) (Ford,
Schmitt, Schechtman, Hults, and Doherty 1989,
Payne, Bettman, and Johnson 1993) resulting in
sub-optimal performance

• Sub-optimal decisions that can result from misper-
ceptions of feedback (delayed rather than imme-
diate) (Diehl and Sterman 1995)

• Failure to adapt to changes in the environment
with a tendency to continue working on models
of the environment that have ceased to exist (e.g.,
Lusk and Hammond’s (1991) work with weather
forecasters.)

Kerstholt and Raaijmakers (1997) mention that most studies
so far have involved subjects who are often not familiar
with the domain and have little or no adaptive expertise.
Given that construction management scenarios are dynamic
task environments (Sterman 1992), it is likely that the same
challenges will apply to construction decision-making and
elicit an organized response. Kerstholt and Raaijmakers
(1997) also note that many expert decision makers in dy-
namic environments “are able to maintain an overview of
the system under control, whereas others tend to fixate too
much on single local diagnosis problems.” This is one of
the main differences (Bransford, Brown, and Cocking 1999,
Chi 1988) identified between expert and novice approaches
to problem solving. Finally, research in expert-novice cog-
nition suggests that expert cognition and knowledge exhibits
structured organization. Effective decision-making, being a
product of expert cognition more often than not, it is likely
to reflect a similar structure and organization. This supports
the hypothesis driving this research.

Recent research in construction decision making has
investigated strategic decision-making of construction man-
agers who are given the opportunity to reason with the
causal knowledge of key performance factors and indicators
(Dissanayake and AbouRizk 2007). A subjective method
for modeling construction performance was presented us-
ing cognitive maps to represent mental models or internal
knowledge representation of construction managers. Fuzzy
cognitive maps model the cause and effect relationship be-
tween concepts that present themselves in a construction
project. In this method, the concepts are represented as
nodes in a graph, and the links between the nodes represent
the cause and effect relationship between concepts. This
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work is important to our own because we are modeling
human decisions that drive construction projects.

Our analysis does not start with a directed graph of
concepts that provides the basis for inferences. Instead,
this research captures and analyzes human decision-making
data, including data describing the context and environment
in which the decisions are taken. The analysis method finds
significant associations between the context of decisions,
with consequences and the decisions, to find the most sig-
nificant patterns in effective construction decision-making.
Given the difficulty of capturing human subject data directly
from construction sites, we use situational simulations to
capture human decision-making data while human subjects
explore what-if scenarios and try alternative scenarios. The
models reflect relationships between decision variables and
environment variables. We depart from (Dissanayake and
AbouRizk 2007) by developing objective methods that iden-
tify concepts from the graphical reasoning models.

This leads us to the discussion of situational simulations
and data mining methods that will provide the methodology
to collect data and develop graphical reasoning models.

2.2 Construction Data Mining

Construction databases have been analyzed using data min-
ing methods to investigate delays in construction projects.
Soibelman and Kim (2002), analyzed the US Army Corps
of Engineers construction database. The research effort em-
phasized careful data preparation, including identification of
statistical outliers followed by their elimination after man-
ually verifying their validity. The data set was subjected to
feature subset selection algorithms, and a decision tree was
developed from the results. This decision tree identified
several important relationships in the construction data that
predicted project delays. Such relationships were used as
inputs to neural networks, that were trained on a subset of
the original data. This approach proved to be successful at
predicting delays in new data.

Soibelman and Kim’s (2002) research focuses primarily
on developing a framework for identifying how the project
variables such as weather can be related to the occurrence
of delays in the project. It does not, however, include the
influence of the contexts in which decisions are made by
construction managers on project delays. In our research,
we consider a decision to be a function that maps the state
of the construction project onto an action. In other words,
when a particular state is observed, the decision maker
issues a decision which affects the flow of the construction
project by rescheduling activities or re-allocating resources.
The impact of the action can vary significantly based on the
state of the project at which the decision is taken. The same
decision can have different outcomes in different contexts.
Because of this, the delay observed is based not only on

the observed set of environmental conditions, but also on
the decision issued by the decision maker.

Our work addresses patterns in decision making across
varieties of contexts. The goal is to develop a framework in
which the relationship between decisions and environmental
conditions can be studied.

2.3 Situational Simulations

Situational simulations provide an interactive simulation
platform that can be used to explore “what-if” construction
scenarios, estimate risks and contingencies, test alternative
plans during construction, and facilitate the capture and
analysis of decision-making data. They create temporally
dynamic clinical exercises of construction project scenarios
that expose users to rapidly unfolding events and the pres-
sures of decision making. The design, development, and use
of general-purpose situational simulations can be found in
previously completed research (Rojas and Mukherjee 2006,
Rojas and Mukherjee 2005, Rojas and Mukherjee 2003).

ICDMA (Interactive Construction Decision Making
Aid) is a specific implementation of a general purpose
situational simulation framework and its description can be
found in previous work by authors (Anderson, Onder, and
Mukherjee 2007). It simulates the construction of a steel
frame building and was developed on the basis of a real con-
struction project, the information for which is compiled and
documented (Daccarett and Mrozowski 2005). The build-
ing has four stories, has 80,000 square feet of built area,
weighs approximately 400 tons of structural steel or about
10 pounds per square foot. Fabrication and erection cost
$9 per square foot. A total of 964 pre-fabricated structural
steel members were used in the construction. The standard
bay size in the building is 30 feet by 30 feet and there are
3 bays along the width and 7 bays along the length of the
building.

ICDMA simulates the construction project based on
the as-planned schedule and costs. The human-subjects
in it are construction managers. Construction managers

Figure 1: The process used to update the state of ICDMA
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are decision-makers whose primary goal is to complete a
construction project on time and under budget. The sim-
ulation presents a construction manager with a situation,
and allows the manager to respond. Consequences from the
decisions result in new scenarios that require the subjects
to respond. This process continues until the completion
of the simulated construction project (Figure 1). Upon
completion, the elapsed simulation time and the costs en-
countered are recorded. Figure 2, illustrates the interface of
ICDMA, providing the subject with information on planned
and actual performance with respect to budget and schedule
(Gantt Chart) and future predictions with respect to project
completion time and final cost.

Throughout the simulation, human subjects (often re-
ferred to in this paper as users) play the role of construction
managers and are presented with events that force the sim-
ulated project to deviate from its original plan. Typical
subjects have various levels of experience, ranging from se-
nior level construction engineering and management students
with limited project management experience to construction
managers with several years of experience. The goal of the
subjects is to complete the project on schedule and under
budget. They face multiple decision-making challenges in
their efforts to complete the project. The challenges are
generated as events in the system. There can be two kinds
of events that the subject has to handle. The first kind of
events are external in nature and the construction managers
have no control over them. Examples of such events include
failed material delivery and bad weather. External events
cause delays in planned construction activities which may
in turn have consequences cascading throughout the project,
as a delay in one activity may delay other activities that are
related to it by time and resource constraints. Such cascad-
ing delays, impacts and complex feedback from previous
human subject decisions (for example a labor crew that has
been assigned to more than a single activity at the same
time) lead to the second type of events, namely, internal
events. The manager’s reaction to these crisis scenarios and
the specifics of the scenarios are captured by the simulation.

The ICDMA provides us with a micro-world to study
human decision-making (Gonzalez, Thomas, and Vanyukov
2005) in dynamic environments such as the construction
project management domain. Previous decision-making
research in similar domains have successfully used micro-
worlds and Gonzalez et al. (2005) present a taxonomy of
dynamic decision making. According to their classification
framework, ICDMA ranks as follows:

• Dynamics: ICDMA is a highly dynamic environ-
ment as the simulation environment changes au-
tonomously (external events and internal events)
and directly in response to users’ decisions. While
the decisions are not taken in “real-time” the sim-
ulation runs in “pseudo real-time” requiring the

users to make decisions under the pressure of time
and rapidly unfolding events.

• Complexity: ICDMA shows moderate complexity
as the user can currently manage resource vari-
ables - including labor crew management and ma-
terial management. While the user cannot directly
reschedule activities, they can control the length
of the schedule indirectly through their control on
productivity.

• Opaqueness: ICDMA is highly opaque to the user,
as the external events are randomly and unex-
pectedly generated and the internal events can be
apprehended by the user only if they are critically
aware of the state of the simulation.

• Dynamic Complexity: ICDMA shows high dy-
namic complexity because user decisions often re-
sult in internal events that are similar to decision
feedbacks that are de-localized in time and space.

Hence, we use the ICDMA as an experimental testbed to
collect and analyze decision-making data. Data regarding
the decisions made and the consequences of each decision,
are collected through the course of the simulation. The
following sections describe the formal methods of collection
and analysis.

3 THE DATA COLLECTION FRAMEWORK:
ORGANIZATION AND DISCIPLINE

Organization of the collected data should reflect the under-
lying structure and semantics of the domain parameters that
are being measured. In this section we present a simple,
but representative approach to effectively organize the data.
The primary premise of the data organization is that the re-
sults of a construction project can be traced by following the
activities of critical labor crews that primarily drive efficient
work-flow and productivity on a project. This is supported
by evidence in the literature that labor flow and work flow on
a construction site are co-dependent and significantly impact
productivity (Thomas, Horman, Jr., and Chen 2003). It has
also been shown that variability in labor productivity can
be minimized by appropriately matching the labor resource
to the amount of work available to perform (Thomas 2000).
Hence, we believe that activities of the primary labor crews
specifically with respect to changes in work, crew size and
scheduled hours will reflect the impact of the decisions.

In order to set up the simulated environments, we first
divide all the activities into groups of primary activities that
define the project. To each of these groups of activities
we assign the relevant materials that are used and the pri-
mary labor crews that are dedicated. For example, in the
construction of a steel-framed office building, which is the
project simulated in ICDMA, we can classify the primary
activities driving the schedule into three groups: Hoisting
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Figure 2: The ICDMA interface

activities (Activities 1,4,7 etc. in Figure 2) Bolting activi-
ties (Activities 2,5,8 etc. Figure 2) and Decking activities
(Activities 3,6,9 etc. Figure 2). (A detailed discussion of
the constraints relating these groups of activities and their
description can be found in Anderson et al. (2007)). Each
of these groups of activities are assigned main driving ma-
terials and labor crews that are unique to them. Then we
follow the activities of each labor crew with respect to the
three performance parameters: crew size, worker hours and
material installed. Specifically we keep track of positive or
negative deviances from the as-planned performance. This
organization is depicted in Figure 3. While this data organi-
zation approach is limited in its simplicity, it is well founded
and in future work has the ability to be extended to include
more performance parameters (for example, space) as well
as to be scaled to include more activity-material-labor crew

groups. At this early stage of our investigation, we consider
this a very good place to start.

Data collected from the simulation consists of a com-
plete project history and a list of decisions made at each
time point within the simulation. Decision data captured
is organized by its effect on each of these resources. By
tracking crew histories, it is expected that decisions which
affected crew productivity can be identified.

Next, we discuss a discipline that supports our data
collection. The study of decision making in a simulated
construction environment can be divided into four different
categories as detailed in Figure 4. Each of these four
categories can be used to study a different aspect of decision
making. There are two main categories of variables to be
controlled in an experiment: the variables involving the
project, and the variables involving the decisions. In the
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Figure 3: Organization of data collected from ICDMA

experiments where data is collected from a single project,
the project variables are controlled so that aspects of decision
making can be studied without interference from the changes
in the project environment.

Figure 4: Four categories of decision making experiments

• Single User Single Project (SUSP) - In this type of
experiment, data collected from a single user mak-
ing multiple simulation runs on the same project
is analyzed. In this type of experiment, because
both the project variables and the user variables
are controlled, the difference between each run
will be the random events triggered throughout the
simulation. Thus, the interactions between random
events and decision making can be studied.

• Multiple User Single Project (MUSP) - This type
of experiment analyzes the data collected from
multiple users each running the simulation on the
same project. Because the project variables are
controlled, the differences between the decision
makers can be studied with fewer project specific
variables to analyze. This might be used, for ex-
ample, in research studying the difference between
expert and novice decision makers.

• Single User Multiple Project (SUMP) - This type
of experiment analyzes data collected from a single
user across various different projects. In this case,
user variables are controlled, so the differences

between decisions made in different scenarios can
be studied. Research which attempts to find patterns
in the planning of decisions might benefit from this,
since many scenarios requiring different plans can
be analyzed.

• Multiple User Multiple Project (MUMP) - This
type of experiment studies data from multiple users
across multiple projects. While few variables are
controlled, data collected in this manner can be
useful for validation, since it provides a broad
range of data to test any hypothesized patterns.

Studying decisions made in dynamic task environments
within a simulation is very advantageous because often it
is difficult to collect large amounts of data from SUSP or
MUSP categories. This is because it is rare for an exact
project to be repeated multiple times. By studying decisions
in a simulated environment, new types of experiments can
be performed. In this paper, we limit our scope to the
discussion of the SUSP data collection discipline.

4 REPRESENTATION OF A DECISION

In order to analyze the collected data and draw quantitative or
qualitative conclusions regarding dynamic decision-making,
it is critical to represent the collected data mathematically.
In this section we define the syntax to represent the decision-
making data that are collected according to any of the above
disciplines and organized according to the semantics defined.

For each time point t in the simulation, Et is used to
denote the state of the simulation at that time point. The
decision provided by the user at time t is denoted by Dt .
Given Et and Dt , the simulation must be able to compute
Et+1. This process can be thought of as a function, which
takes in the current state of the simulation and the decision
produced by the user, and outputs the next state of the
simulation. This updating function is denoted as follows:

Et+1 = update(Et ,Dt) (1)

and is depicted in figure 1. Previous work (Rojas and
Mukherjee 2005) describes Et and the reasoning driving the
update function in Eq. 1. Similarly, the process by which
the user produces a decision can be thought of as a function
which takes the current state of the simulation in as input
and outputs a decision, denoted as follows:

Dt = MM(Et) (2)

where MM refers to the cognitive mental model the subject
uses to produce a decision. From these equations, it can be
seen that in order to capture the decision data, Dt must be
captured at each time point. It is also important to capture
Et at each time point in order to study the relationship
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between the environment and the decision that was made.
This allows us to study the interactions between decisions
taken and their impact on the simulated environment.

Within the simulation, the user is presented several
variables that they can use to control material and labor
allocation to activities and labor crews. For example, there
would be three variables, denoting the number of W10×12
beams available for a hoisting activity, the number of workers
in the hoisting crew available, and the number of worker-
hours assigned to the hoisting of the W10×12 beams in the
as-planned schedule. If the user realizes that the number
of beams available in stock is less than what is required to
complete the activity, or the crew size needs to be altered,
or the number of work hours adjusted (s)he will assign a
different value to each of the three variables respectively.
Multiple such variables make up the total material allocation
for each of the primary labor crews. Dt is then defined as a
vector of values specified for each of these variables. These
values are passed into the update function for the simulation,
and the state of the simulation is modified accordingly. The
user input assigns values to two different types of variables
in Dt . The first type of variables take in continuous numeric
inputs, while the second type of variable takes in discrete
inputs from well defined sets of values.

In the simulated environment, the user will make a
decision every turn, yielding a vector of decision vectors
D =< D1,D2,D3, . . . ,Dn−1 >, where n is the number of
turns the simulation takes to complete. At each step of
the simulation, there is also an as-planned decision P,
which is the decision that would be made based on the
as-planned schedule for the construction project. A vector
of as-planned decision vectors P =< P1,P2,P3, . . . ,Pn−1 >
is also defined. Given P and D, a decision shape vector DS
can be defined as DS = φ(D−P) =< φ(D1−P1),φ(D2−
P2),φ(D3−P3), . . . ,φ(Dn−1−Pn−1) >, where

φ(x) =


+ x > 0
= x = 0
− x < 0

(3)

for continuous variables and

φ(x) =

{
= x = 0
6= x 6= 0

(4)

for discrete variables. This decision shape vector, gives
a simple trace of the positive or negative deviation of as-
planned performance from the decision driving as-built per-
formance. This can be a starting point for the quantitative
analysis of the decision-making data collected from the
simulation. However, φ(x) can quite easily be extended to
provide more detailed information regarding the shape and
nature of the decision vector.

5 EMPIRICAL WORK

An as-planned schedule was generated from the project
detailed in section 2.3 to be used in ICDMA. Several errors
were added to the as-planned schedule, such that delays
were introduced to the project unless the user deviated from
the as planned schedule. These errors include two space
conflicts, where the material needed for the day’s activities
would not fit into the allowed area. They also include
scheduling conflicts, where several labor crews were over
allocated, such that they were scheduled to work on two
activities at once. The simulation also used the following
random events, so that the course of the simulation was not
predictable:

• A 5% probability of snow, which caused produc-
tivity to halt on all activities

• A 5% probability of rain, which caused productivity
to be cut in half for all activities

• A 5% probability that a labor strike would occur,
during which time there is no productivity, but the
laborers are not paid

• A 5% probability that the material purchased for
that week would not arrive, resulting in a material
shortage

• A 5% probability for each activity that a member
of the labor crew working on that activity would
call in sick

When the schedule fell behind due to a random event, the
user had the opportunity to decide whether the work rate
should be modified to restore the planned schedule. The
user also had the options to purchase materials for each
activity and to manage the labor crews to control the rate
of work. In addition, constraints were placed on the start
times of certain activities. For example, a bolting activity
for the second floor could not start until the decking for the
first floor was half way done, to reduce the fall distance for
workers. Such constraints caused the delays in the schedule
cascade and affected other activities. The objective of the
simulation was to allow the user to complete the project
within the shortest time and lowest cost possible.

The data captured from the simulation during a run
included the labor allocation to each crew, any extra labor
hired to change the crew size, and the materials purchased
for each activity. This data was captured at each step of
the simulation. Data regarding the state of the environment,
and random events triggered through the simulation was
also captured.

Data was collected from a human subject based on
two simulation runs on the same project, i.e., the SUSP
discipline was used. For this analysis, we define the schedule
performance variance (SPV) as the ratio of the difference
between as-built and as-planned schedule performance to
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as-planned schedule performance. Hence, when the project
is running on schedule, the SPV is equal to zero. Negative
deviations denote that the project is falling behind schedule
as the project falls behind schedule.

In figure 5 the primary Y-axis plots the shape function
(φ ) of the user’s decisions with respect to the worker hours
component of a welding crew. On the secondary Y-axis it
plots the SPV for the project. The X-axis plots the time
line and the markers on it indicate the external events. We
can see that the schedule reacts to both the decisions made
by the user and external events. During periods in which
the schedule is crashed (φ(x) = +), the schedule hastens,
since more work is being completed at each time step. The
schedule falls behind when external events that delay the
schedule occur. For example, we see that the user crashes
the schedule on day 7 in apprehension of a potential conflict.
This is reflected in the positive spike in the SPV during days
7 and 8. Similarly, we can trace the response of the user
on day 14 to declining SPV during days 12 and 13 which
happened very likely due to the external event in day 10.
As the project undergoes more external events till day 17,
we see the user struggling to keep the project on schedule
till day 20 when the CPV is back to zero. This presents us
the ability to trace the impacts of decisions, and to correlate
them to external and internal events. Most importantly it
allows us to study the impact of time lags between decisions
and their impacts and also, the time lags between an events,
their impacts on the schedule and cost, and to formulate
reaction/apprehension times. Figure 6 shows similar trends
for another run of the same simulation by the same user. It
relates the decision shape vector with respect to the crew
size component of the welding crew’s fate to external events
and SPV. In this case we find that in spite of corrective
measures on day 2 and day 6 in apprehension of crisis, the
SPV remains unaffected.

Figure 5: Worker hours, schedule, and external events vs.
time

Figure 6: Crew size, schedule, and external events vs. time

6 DISCUSSION

In this paper we lay the foundations for studying decision-
making in complex dynamic construction management sce-
narios using situational simulations as experimental testbeds.
We address the challenges in the collection, organization
and analysis of human subject data in the ICDMA - a situa-
tional simulation of a four story steel frame office building
construction project. We define a discipline driving the
collection of human decision-making data, establish a se-
mantics to organize the data and a simple mathematical
syntax to represent it. We also present an analysis of pre-
liminary experimental work and show that the our method
can be used to analyze complex decision-making behavior.
The limitations of this framework in its current state lies
in its simplicity; however, we believe that the presented
framework can be extended and scaled in future work to
reflect the decisions more accurately.

The framework in this paper also sets an agenda that
can drive future research in studying construction decision-
making. Each of the data collection methods in the defined
discipline can lead to a different direction of study. The
SUSP protocol, focuses on correlating the state of the simu-
lation environment and events that occur in it (both external
and internal) to decisions taken by an individual. For a
particular individual this can help us analyze correlations
between decisions pertaining to:

• Different labor crews: does the decision-maker
prioritize a specific project thread over another in
a crisis?

• Shape functions for worker-hour decisions, crew
size and material installed for a particular labor
crew: can the same impact be achieved on the
schedule by different combinations of any two
given the third, i.e., if there is no delay in material
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delivery can we have equivalent impacts on the
schedule by manipulating worker hours (overtime)
and/or crew size (hiring labor)?

As we move from SUSP to MUSP, the above questions
continue to be relevant but now can be studied across users
of different kinds of expertise. This will allow us to study
expert and novice cognition in construction management.
The SUMP and MUMP methods will provide a way of
validating results that we can get across the SUSP and
SUMP tests. The eventual goal of this research agenda
will be to develop a theory of construction management
decision-making.

Some of the primary challenges that will need to be ad-
dressed in this research agenda will be both methodological
and analytical. Methodologically, the data representation
presented in this paper and the complexity of the situa-
tional simulations will have to be further developed so that
the experimental testbeds can appropriately model the con-
struction domain. The analysis presented in this paper is a
simple first step. It lays the ground for building on future
statistical finesse in analyzing large bodies of human subject
data. We believe that by applying graphical models to ana-
lyze multi-variate decision data, we can discover underlying
hierarchical graphical structures to decisions. Future work
will establish and address the challenges in achieving these
goals.
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