
AUTOMATED GENERATION AND PARAMETERIZATION OF THROUGHPUT MODELS FOR
SEMICONDUCTOR TOOLS

Jan Lange
Kilian Schmidt

Roy Börner

AMD Saxony LLC & Co. KG
Wilschdorfer Landstrasse 101
Dresden, 01109, GERMANY

Oliver Rose

Institute of Applied Computer Science
Dresden University of Technology

Dresden, 01062, GERMANY

ABSTRACT

Cluster tools play an important role in modern semiconductor
fabs. Due to their complexity in configuration and their
varying material flow, the creation of accurate throughput
models for cluster tools is a demanding task. Proposed
analytical approaches are either quite intricate and require
manual maintenance process, or are inexact due to reliance
on lot-level events. This paper presents an approach for
the automated generation and parameterization of detailed
cluster tool models based on bottleneck analysis. Equipment
configuration as well as all throughput model base data is
extracted from recent equipment reporting data.

1 INTRODUCTION

Cluster tools are very flexible, since they combine multi-
ple process steps in a single mainframe. Because of this
flexibility cluster tools are important for modern semicon-
ductor manufacturing. To analyze the throughput capability
of cluster tools and their respective process recipes, it is
necessary to build throughput models.

Two types of throughput models are used in the industry.
One is the generation of detailed models by spreadsheets.
Through their complexity, those models are created and
maintained manually. Consequently, these tasks are very
time consuming and fault-prone. In addition, to include
recent data it is necessary to synchronize the actual tool
data to the model. The other type is the automated generation
and calculation of cluster tool throughput models. This type
relies on simplified models which are based on lot-level
events. In these models, cluster tools are regarded as black
boxes. More detailed and realistic analytical models,which
are generated automatically, often are not feasible because
of the high effort the modeling of such complex tools takes
and the lack of necessary base data. Moreover, the simple
black box models do not provide any information about
how the tool is working inside and how the process inside
the tool could be optimized. With a black box model it

is not possible to generate useful data for planned future
recipe variants with new material flows. To overcome this
problem, a detailed model is necessary, which can represent
each of the cluster tool’s entities. In the following these
entities are also called components or sublocations.

This paper presents an automated generic creation ap-
proach for detailed cluster tool models which allow to
determine the throughput behavior of cluster tools.

In the following sections we present the approach and the
implementation of the automated generation of throughput
models. Section 2 introduces the model, which contains all
tool data relevant to the throughput calculation. Section 3
shows how the tool model is filled with data from available
source data. Section 4 describes how the throughput is
calculated and how it is implemented. Section 5, provides
an overview of possible applications. The paper closes with
a conclusion in Section 7.

2 CLUSTER TOOL MODEL

In this section we present a flexible model for cluster tools,
which is the basis for successional throughput calculation.

2.1 Tool Configuration

An exemplary structure of a cluster tool is depicted in Fig-
ure 1. In this simple example the cluster tool comprises
two load locks (LL), a robot (R) and three process cham-
bers (CH). A piece enters and leaves the tool via the two
load locks and is processed in process chambers. The robot
carries pieces between load locks and process chambers.
Every component of the tool has model-relevant character-
istics. A component’s piece capacity is one of them. Other
model-relevant characteristics are component-specific times.
In the following, these times are called static times. Static
times are

• Entity Pre-Wait Time (ETpre),
• Entity Post-Wait Time (ETpost) and

2335 978-1-4244-2708-6/08/$25.00 ©2008 IEEE

Proceedings of the 2008 Winter Simulation Conference
S. J. Mason, R. R. Hill, L. Mönch, O. Rose, T. Jefferson, J. W. Fowler eds.

Lange, Schmidt, Rose, and Börner

Figure 1: Example of a Cluster Tool

• Entity Swap Time (ETswap).

ETpre is the time an entity needs before processing. ETpost
is the time after processing. Finally, ETswap is the minimum
time between the end of ETpost of one piece to the start of
ETpre of a following piece.

2.2 Material Flow

Cluster tools can process pieces on different routes and
recipes. A flow is the processing route a piece takes through
the tool. Thereby, the flow comprises a sequence of steps
representing process actions on the entities. This can be a
processing step in a chamber or a movement on the robot,
for example. The time a piece is processed on a step is
called Entity Process Time (ETp). This time depends on the
flow’s step and also on the process recipe. Figure 2 shows
an exemplary flow with seven steps. In the example the
piece processing on step five can be done either in CHB or
in CHC.

Figure 2: Exemplary Flow

2.3 Model

The model shown in Figure 3 merges the cluster tool config-
uration and the material flows. Each tool contains a number
of entities and also a number of flows. Whereby a flow
comprises a number of steps. The component Process Times
carries the values for ETp. The component combines the
contexts of step, entity and the specific recipe. Beside the

entity capacities, all static times are stored in a component
attached to the according entity.

Figure 3: Cluster Tool Data Model

For throughput calculation we use the bottleneck anal-
ysis approach. Bottleneck analysis is a very simple and
powerful method to calculate the throughput of a process
line. Also a flow inside a cluster tool can be regarded as
a process line. According to (Hopp and Spearman 2001),
’...the rate of a line is ultimately determined by the bottle-
neck, or slowest, process.’ However, in general, bottleneck
analysis is not regarded as appropriate for cluster tools. In
(Hopp and Spearman 2001) it is stated ’..that few manufac-
turers can identify their bottleneck process with any degree
of confidence [...] Most systems involve multiple products
with different processing times. As a result, the bottleneck
machine for one product may not be the bottleneck for
the other product. This can cause the bottleneck to “float”
depending on the product mix.’

Also (Dümmler 2004) states ’Whereas this approach
can produce satisfactory results for simple cluster tools with
fixed routing, it is not applicable in the case of flexible-
sequence tools with changing recipe mix [...] Therefore,
identifying the bottleneck is very difficult or not possible
at all.’

These objections give rise to a serious challenge, but
a solution is feasible. Our tool will provide fine-grained
reporting data with acceptable quality. Also, it is possible
to separate product mixes to create a throughput model for
each single recipe. Consequently, the two basic tasks to
realize this model are flow separation and data evaluation.

In contrast to other approaches, e.g. (Perkinson et al.
1994) and (Wood et al. 1994) we do not distinguish between
transport-bound and process-bound schedules. This means,
all entities are treated the same.

3 DETERMINE MODEL DATA

The model data consisting of a tool configuration and entity
times, is extracted from simple reporting events (baseline
events). Baseline events are generated by tool interfaces
and carry the following information:

2336

Lange, Schmidt, Rose, and Börner

• Tool Identifier
• Piece Identifier
• Recipe Identifier
• Event Name
• Timestamp

Static times as well as process times are determined by the
difference of the timestamps of two events. However, since
process times are flow-specific and static times are focused
on a single entity, the calculation of process times and static
times is strictly separated.

3.1 Checking Input Data

Although baseline events come as a sorted list, the correct
order cannot be guaranteed. Missing events can be found
by subsequent algorithms, but switched events can lead to
serious calculation errors. However, it is guaranteed that
only events with equal timestamps can appear in wrong
order.

A special component checks the event sequence syntac-
tically and corrects it if necessary. This component utilizes
a freely configurable directional graph, which defines all
possible syntactical event interrelations.

3.2 Flow Separation

The separation of flows is an essential part of our approach.
A new candidate flow is evaluated against all known flows
of the concerning tool. We utilize a decision tree with three
stages for this purpose.

Stage One checks, if there is already a flow with the
same length. If there is no such flow, the candidate
flow is a new flow. In case there is such a flow,
the candidate flow is sent to stage two.

Stage Two compares the candidate flow with flows of
equal length. If the candidate flow fits into an
existing flow, the values of the candidate flow are
merged to the old flow. If not, the candidate is
sent to stage three.

Stage Three compares the similarity of the candidate
flow to any of the flows with equal length with a
pattern matching algorithm. On the base of entity
names, this algorithm compares every step from the
candidate with its equivalent from the old flow and
values their similarity. Akin flows are merged, this
means the old flow is modified by adding recent
occurred entities from the candidate flow. If the
candidate is not equal to any of the old flows, it
is characterized as a new flow.

3.3 Determining Process Times

At runtime, an algorithm processes a list of baseline events.
The list is ordered by piece and time. This means, the flow
of each piece is constructed and evaluated sequentially. The
algorithm collects baseline events for creating virtual step
containers, which are connected to a virtual flow container.
In case of a new piece, both, virtual flow container and
virtual step containers are transformed to the cluster tool
data model as stated in Figure 3. Thereby, the flow is also
evaluated (see Section 3.2).

3.4 Determining Static Times

In contrast to the computation of process times, the algo-
rithm for static times processes a list, which is ordered by
entity and time. This means, every sublocation is processed
sequentially. Although for static times it is not neccesarry
to interpret the flow behavior, other issues have to be con-
sidered. Static times can be corrupted.

Figure 4 shows two small Gantt-Charts for two entities
illustrating this corruption effect. In Figure 4a the chamber
has to wait for the robot. This means, the robot is the limiting
resource, whereas the chamber is the negatively affected
resource. The period measured for ETpost at the chamber
is corrupted by the additional waiting time. However, the
time measured for the robot’s ETpost is correct. In Figure
4b we show the case where a robot’s ETpost is corrupted. A
solution to this problem requires the knowledge of limiting
resources, which has to be estimated from an already existing
tool model. But, as the model itself has to be created, this
obviously goes beyond the possibilities a simple list of
baseline events can provide. Consequently, a much simpler
solution is implemented. The approach benefits from the
tool behavior during the run-in and run-out periods, when the
limiting resource does not lead to additional waiting times.
Figure 5 shows an example of a typical run’s static time value
distribution for a sublocation. Here, it is not relevant whether
the static time is ETpre, ETpost or ETswap. To determine the
actual value, the smallest reasonable value has to be found.
But it has to be taken into account, that through missing
baseline events and therefore erroneous parsing outliers may
occur. To eliminate these dangerous outliers, we cut off the
smallest values by using a percentile rule. The size of this
percentile can be set in the configuration. However, a value
of five percent proved to be useful.

4 THROUGHPUT CALCULATION

In (Wood et al. 1994) and (Wood 1996) Wood et al.
introduced a generic model, which is based based on ’Fixed
Throughput Time’ T and ’Incremental Time’ t. T is the
base time, which is independent from lot size. Every piece
increases the whole throughput time by t. The formula

2337

Lange, Schmidt, Rose, and Börner

(a) Robot Limited (b) Chamber Limited

Figure 4: Limiting Resources

Figure 5: Select Representative Static Time Value

proposed by Wood et al. is T HP = min(nL×l
T+l×t ,

1
t), where l

is the lot size in wafers and nL is the number of lots. This
approach distinguishes between handler bottleneck (robot
bottleneck) and module bottleneck (chamber bottleneck)
and also between serial and parallel configuration of the
cluster tool. The approach we use is basically very similar
to the approach of Wood et al. having a fixed time and an
incremental time, but without using the distinction in the
kind of bottleneck or tool configuration.

Figure 6 shows a Gantt chart with four pieces. We can
see that a cluster tool can process multiple pieces simul-
taneously. The processing is done sequentially including
pipelining effects. The time it takes to process a single piece
is defined by the length of the whole process flow. This
time is called First Wafer Time or PT1. Any of the following
pieces leaves the tool with an offset time to the preceeding
piece. This Time is called Process Interval Time or PI. The
Process Interval Time is defined by the bottleneck step of
the flow or process line. In steady state, the throughput
of a process line is simply defined by its slowest compo-
nent. For this simple case we calculate the throughput by
T HP = N

T or T HP = 1
PI , where N is the number of pieces,

which are processed in a time T. Comprising the effect of
the first wafer, we calculate the expected throughput with
T HP = n×l

PT1+(n×l−1)PI . Consequently, only PT1 and PI are
relevant factors. The following subsections will provide

formulas for PT1 and PI lead from the simplest case of a
flow to a general flow.

Figure 6: First Wafer Time (PT1) and Process Interval (PI)

4.1 Simple Flow

For a simple flow, where the steps have only single entities,
which do not re-occur. PT1 and PI are

PT1 = ∑
s=steps

(ETpres +ETprocs +ETposts)

and

PI = max
s=steps

(Ts);Ts =
ETpres +ETprocs +ETposts +ETswaps

Wa f erCapacity
,

where the Wafer Capacity is the one from the entity of the
step.

4.2 Flow with Parallel Entities

As steps can have parallel entities, these have to be taken into
account. PT1 is the time the first piece takes to run through
the process flow. We have to find a representative value for
parallel entities with differing processing times. Like every
piece, the routing of the first piece is controlled by the tool
in runtime. The tool routing strategy can depend on several
unknown factors. Without any additional information, it is
unclear, whether the chosen route is the fastest variant, the
slowest variant or any in between. So for the whole flow, we
simply calculate the average value of all entities of each step.
The resulting error can be reduced with more knowledge
about the specific tool’s routing strategy. Moreover, the
error is less significant for long wafer cascades, since the
effect of PT1 on the whole throughput decreases with an
increasing number of wafers. We calculate

PT1 = ∑
s=steps

(ĒT pres + ĒT procs + ĒT posts)

for a flow with parallel entities.
For steps with parallel entities the Interval Time of a

Step (Ts) is determined by all its entities. The equation for
PI is

PI = max
s=steps

(Ts); Ts =
1

∑
ent=Entities o f s

Fent
,

2338

Lange, Schmidt, Rose, and Börner

where the Entity Throughput Frequency Fent is

Fent =
Wa f erCapacity

ETpresentst
+ETprocsent

+ETpostsent
+ETswapsent

.

4.3 Flow with Parallel Entities and Entity Revisiting

Real flows can also have entities, which occur in multiple
steps of the flow. This revisiting of entities leads to a
higher utilization of the concerning entity. This may create
a significant influence on the throughput behavior. The
following formulas for PT1 and PI consider this issue and
represent the final version of the calculation approach. We
calculate PT1 as in Section 4.1 by

PT1 = ∑
s=steps

(ĒT pres + ĒT procs + ĒT posts).

For the calculation of Ts, the utilization time of every
entity of step s is aggregated over the whole flow. Because
there is no information about piece routing or preferring of
specific entities, the approach assumes that the allocation
of an entity in a flow is the same for each step. To obtain
PI, we calculate

PI = max
s=steps

(Ts); Ts =
1

∑
ent=Entities o f s

Fent

where the Entity Throughput Frequency Fent is

Fent =
Wa f erCapacity

Tent
,

and where the time the entity is busy over all steps of the
flow Tent is

Tent = ∑
st=steps

(ETpresentst
+ETprocsentst

+ETpostsentst
+ETswapsentst

).

5 APPLICATIONS

An automated throughput calculation with recent tool data is
a valuable base for decisions concerning how a cluster tool
works or if another tool configuration has any influence to
the tool’s throughput behavior. A smart change or upgrade
of the tool configuration may lead to a high performance
enhancement at little cost. In addition, this model can
be used to estimate future throughput behavior of cluster
tools for new flows or new recipes. Consequently, a much
higher utilization grade may be possible by planing based
on this model. Furthermore, as a by-product new tool

configurations are detected automatically. This can be of
benefit for observing tool configuration.

By using the information about entity effects to the
whole cluster tool behavior, we can significantly improve our
availability calculation. This also means, we can estimate
whether the tool is stopped by a chamber down event or if
it is only slowed down.

6 IMPLEMENTATION

As the implementation is not focus of the paper, we only
want to provide a brief outline.

We developed a prototype software based on Java EE 5
technologies. This software runs on a JBoss Enterprise
Application Platform (JBoss EAP) and is designed as 3-tier
architecture. The Java Persistence API (JPA) manages
persistent data, which is stored on databases. The business
logic is implemented with Enterprise Java Beans (EJB 3.0).
For the graphical user interface we decided to implement a
web interface, which is based on Java Server Faces (JSF).
In addition, we used the JBoss Seam framework, which
interconnects JPA, EJBs and JSF. Figure 7 shows the web
interface for creating throughput scenarios.

Figure 7: Throughput Model Scenario Screenshot

7 CONCLUSION

We presented an approach for the automated generation
and parameterization of throughput models. We created a
model for cluster tools, which encloses the tool configuration
aspect as well as the material flow aspect. Furthermore,
we presented methods to obtain data to populate the model
and to calculate the specific throughput values. Further
focus will be set on the automated cluster tool availability
calculation utilizing cluster tool data and on combined tool
throughput computation.

2339

Lange, Schmidt, Rose, and Börner

REFERENCES

Dümmler, M. 2004. Modeling and optimization of cluster
tools in semiconductor manufacturing. Ph. D. thesis,
University of Würzburg.

Hopp, W. J., and M. L. Spearman. 2001. Factory physics:
foundations of manufacturing management. Boston:
Addison-Wesley.

Perkinson, T. et al. 1994. Single-wafer cluster tool perfor-
mance: An analysis of throughput. IEEE Transactions
on Semiconductor Manufacturing 7(3): 369-373.

Wood et al. 1994. A generic model for cluster tool through-
put time and capacity. In Proceedings of IEEE/SEMI
Advanced Semiconductor Manufacturing Conference.

Wood, S. 1996. Simple performance models for integrated
processing tools. IEEE Transactions on Semiconductor
Manufacturing, 320–328.

AUTHOR BIOGRAPHIES

JAN LANGE is a Graduand in Information Systems
Technology at the Department of Electrical Engineering at
the Dresden University of Technology. He was previously
a working student for AMD Saxony LLC & Co. KG in the
department of Industrial Engineering. For this department
he is now working for his diploma thesis on the topic of
automated cluster tool throughput calculation. His email
address is <jan.lange@amd.com>.

KILIAN SCHMIDT is a Senior Industrial Engineer at
AMD Saxony LLC & Co. KG in Dresden, Germany, re-
sponsible for equipment capacity analysis and optimization
as well as future manufacturing system approaches. He
obtained a M.S. degree in mechanical engineering from the
University of Stuttgart, Germany in 2003. In his part-time
Ph.D. research at Dresden University of Technology he
currently develops and assesses strategies for fast cycle
time with modeling and simulation. He is the author of
several papers assessing the potential of small lot size
manufacturing in semiconductor front-end production. His
email address is <kilian.schmidt@amd.com>.

ROY BÖRNER is a Software & Application Engineer at
AMD Saxony LLC & Co. KG in Dresden, Germany. He
received a M.Sc. degree in Computer Science from the
University of Applied Sciences Dresden in 2005. Roy is
working on several software projects regarding throughput
controlling and reporting of semiconductor cluster tools.
His email address is <roy.boerner@amd.com>.

OLIVER ROSE holds the Chair for Modeling and Simu-
lation at the Institute of Applied Computer Science of the
Dresden University of Technology, Germany. He received
an M.S. degree in applied mathematics and a Ph.D. degree in

computer science from Würzburg University, Germany. His
research focuses on the operational modeling, analysis and
material flow control of complex manufacturing facilities, in
particular, semiconductor factories. He is a member of IEEE,
INFORMS Simulation Society, ASIM, and GI. His web ad-
dress is <www.simulation-dresden.com> and his
email address is <oliver.rose@tu-dresden.de>.

2340

