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ABSTRACT

Since the dawn of wafer fabrication and the production of
microelectronic parts a fundamental characteristic of this
environment has been uncertainty in production yields and
in demand for product. The impact of the uncertainty is so
prevalent that even deterministic models in practice have in-
corporated some allowance for uncertainty through features
such as date effective yields, moving average capacity, etc.
In this paper, we propose a simple heuristic approach for
the inventory control problem with stochastic demand and
multiplicative random yield. Our heuristic tries to find the
best candidate within a class of policies which are referred
to in the literature as the linear inflation rule (LIR) policies.
Our approach is computationally fast, easy to implement
and intuitive to understand. Moreover, we find that in a
significant number of instances our heuristic performs better
than several other well-known heuristics that are available
in the literature.

1 INTRODUCTION

Random yield has been recognized as an important phe-
nomenon in inventory management. It is well known that
optimally managing periodic-review inventory control sys-
tems with random yield and stochastic demand is difficult.
(See (Yano and Lee 1995) and (Zipkin 2000)). Thus the lit-
erature has seen several heuristic approaches to this problem.
Perhaps the best known heuristic approaches were proposed
by (Bollapragada and Morton 1999). These heuristics had
several attractive features. First, they are myopic, i.e., in
each period, the quantity ordered is based on a solution to
a single-period problem. Second, many of these heuristic
procedures fall under the class of what (Zipkin 2000) refers
to as the linear inflation rule (LIR) policies. This policy
class is easy to understand and is a generalization of the
well-known base-stock policy that is commonly used in
inventory management. Finally, as shown in (Bollapragada
and Morton 1999), these heuristics perform extremely well

in several reasonable problem instances. (Bollapragada and
Morton 1999) as in our paper, consider the infinite-horizon
average cost criterion.

In a recent paper, (Inderfurth and Transchel 2007) revisit
the same solution procedures used in (Bollapragada and
Morton 1999), and test their performances for a wide range
of problem settings. They point out certain flaws in the
calculations in (Bollapragada and Morton 1999), which
explain the steady deterioration in the myopic heuristics of
(Bollapragada and Morton 1999). Further, they show that
the performance of the heuristics proposed by (Bollapragada
and Morton 1999) is worse than that reported in the original
study, especially when the ratio of the backorder penalty cost
to the holding cost is high. However, they do not provide any
alternate heuristic approach. (Li, Xu, and Zheng 2006) also
examine the heuristics of (Bollapragada and Morton 1999),
but under the discounted-cost criterion. They demonstrate
scenarios where the heuristics do not perform well and point
out certain difficulties associated with implementing some
of the heuristics in (Bollapragada and Morton 1999). They
propose a new heuristic that is dependent on the discount
factor and cannot be adopted to the average cost model.
Thus, finding a good heuristic method for the random yield
problem is an open area of research.

In this paper, we study the periodic-review random yield
problem under the average cost criterion with emphasis on
the class of LIR policies. Our contribution in this paper is
both analytical and computational, and is as follows: (1) We
show certain useful properties of the cost function when the
class of LIR policies are used; in particular, we demonstrate
a convexity property, which is useful in finding the best
parameters for this policy class. (2) We propose the best
candidate in the class of LIR policies as a heuristic for the
random yield problem. This heuristic is intuitive to im-
plement and computationally fast. Numerical experiments
indicates that, for a wide class of problem instances, our
heuristic performs better than other approaches available in
the literature.
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The rest of the paper is organized as follows: In Section
2, we state the problem and the notations used in our analysis.
In Section 3, we demonstrate certain simple properties of
the random yield problem and use these to construct our
heuristic. In Section 4, we present computational results
that demonstrate the performance of our approach. We also
present comparisons with other approaches that exist in the
literature.

2 MODEL

The description of the model is as follows. Let t = 1,2, · · ·
index time periods in a forward manner. Let Dt ≥ 0 be a
nonnegative random variable representing demand in period
t. We assume that the sequence {Dt |t ≥ 1} is independent
and identically distributed (IID), and we denote by D a
generic demand random variable. Let Yt ≥ 0 denote a
nonnegative random variable representing the stochastically
proportional yield factor in period t. The sequence {Yt |t ≥ 1}
is also IID, and we denote by Y a generic yield factor random
variable.

The sequence of events in each period is as follows.
At the beginning of each period t ≥ 1, the manager ob-
serves the beginning inventory level It , and orders Qt . The
replenishment is instantaneous, and the manager receives
Yt ·Qt units. Then, demand Dt is realized. Any excess
inventory incurs the holding cost of h ≥ 0 per unit, and
any excess demand is backlogged at the rate of b≥ 0 per
unit-period. Thus, the cost incurred in period t is given by
h · IN+

t +b · IN−t , where INt = It +Yt ·Qt−Dt is the ending
inventory in period t. Let It+1 = INt .

In this paper, we assume that the manager’s decision
in each period is the order quantity Qt , and his objective is
to minimize the infinite-horizon average-cost of the system.
As mentioned, the optimal order quantity in each period t
depends on the starting inventory level It and does not have a
simple structure ((Henig and Gerchak 1990)). Consequently,
we restrict our attention to a heuristic where orders are placed
in every period by following a linear-control policy which
in the literature is referred to as the linear inflation rule
(LIR) policy. This policy has two parameters θ and β .
Under this policy, the order quantity in each period depends
on the beginning inventory It and is given by

Qt = Q(It) =
{

β · (θ − It) if It ≤ θ ,
0 otherwise.

We say θ is the target inventory level, and β > 0 is the
inflation factor. (Note that if β = 1, then the LIR policy is
the familiar base-stock policy with an order-up-to level of
θ .)

Several control methods proposed as heuristic ap-
proaches to the random yield problem in the literature belong
to the class of LIR policies. In (Bollapragada and Morton

1999), the following two LIR policies have been considered:
(i) MULT METHOD where θ is the b/(b + h)-fractile of
the demand distribution D and β = 1/E[Y ], and (ii) NLH1
METHOD where θ is E[D] plus the b/(b + h)-fractile of
D− (E[D]/E[Y ]) ·Y and β = 1/E[Y ]. (We remark that the
MULT method was originally proposed for the single-period
problem by (Ehrhardt and Taube 1987).) Note that in both
of the above methods, the inflation factor β is set to the
reciprocal of the expected yield factor E[Y ]. Computation
results in (Bollapragada and Morton 1999) and (Inderfurth
and Transchel 2007) show that NLH1 performs reasonably
well when b/(b+h)≤ 0.95. (Zipkin 2000), similar to our
approach, discusses the question of picking the best θ and
β . (To our knowledge, he coined the term “linear inflation
rule”, and first considered the possibility of β being values
other than 1/E[Y ].) He analyzes the behavior of the or-
dering quantity by calculating (approximately) its first two
moments, and then uses a Normal approximation to propose
reasonable values for β and θ . Our approach, as will be
evident, is different.

Let S (θ ,β ) be the inventory system managed by the
LIR policy with parameters θ and β assuming that the
starting inventory level is θ . (Such an assumption on the
starting inventory level has been used in the inventory lit-
erature without random yield, e.g., (Glasserman and Tayur
1995) and (Janakiraman and Roundy 2004). It facilitates
the derivation of analytic results. The analytic results of this
note are based on and enabled by this specific assumption
of the starting inventory level.) Under the infinite-horizon
average cost criterion, the starting inventory level does not
affect the objective function if the inventory levels in the
S (θ ,β ) system, for a given pair of θ and β , converge to a
steady-state distribution. Unfortunately, this condition does
not hold in general for the random yield problem. However,
let us suppose that demands are integer-valued, and consider
a discretized approximate problem where the yield quantity
Yt ·Qt is probabilistically rounded to an integer. Then, for
this approximate problem, if P[D = 0],P[D = 1] > 0 and
P[β ·Y ≥ 1] > 0, then the time to reach the state of having
θ units in inventory after production is finite, and the cost
incurred in these initial periods does not affect the infinite-
horizon average cost. ) We sometimes use the superscript
(θ ,β ) on the variables to denote the inventory system. Thus
for instance, Q(θ ,β )

t denotes the order quantity in period t in
the S (θ ,β ) system. Let C(θ ,β ) be the expected long-run
average of the S (θ ,β ) system, i.e.,

C(θ ,β ) = limsupT→∞

1
T

T

∑
t=1

Ct(θ ,β ) where

Ct(θ ,β ) =
{

h ·E[IN(θ ,β )
t ]+ +b ·E[IN(θ ,β )

t ]−
}

.
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Our heuristic approach seeks to find the optimal choice
of the parameters in the LIR policy such that C(θ ,β ) is
minimized.

3 ANALYSIS

In this section, we discuss how to find values of θ and
β in the LIR policy that yield good approximations to the
random yield problem. In Section 3.1, we show that C(θ ,β )
is convex with respect to θ ; thus, it is easy to find the optimal
choice of θ for any given β . In Section 3.2, we discuss
several candidates for the choice of β .

3.1 Convexity of C(θ ,β ) with Respect to θ : Fixed β

In the following discussion, we first fix the value of β > 0.
(Later, we explore properties of the cost function C(θ ,β )
with respect to both its arguments. Moreover, we discuss
our procedure behind choosing β optimally.) The main
result of this section is to show that C(θ ,β ) is convex with
respect to θ (Lemma 1). The proof of this result is based on
an observation that two inventory systems with the same β

parameter but different θ parameters are translations of each
other. We note that (Henig and Gerchak 1990) demonstrate
convexity of the dynamic programming cost-to-go function
with respect to the order quantity. This however does not
imply our result.

Proposition 1 For any pair of LIR parameters θ

and β , the following statements hold for any sequence of
demand and random yield factor realizations: for each
t ≥ 1, (i) I(θ ,β )

t = I(0,β )
t + θ , (ii) Q(θ ,β )

t = Q(0,β )
t , and (iii)

IN(θ ,β )
t = IN(0,β )

t +θ .

Proof. Recall from the definition of the S (θ ,β ) system
that I(θ ,β )

1 = θ and I(0,β )
1 = 0. In the first period t = 1,

we have I(θ ,β )
1 − I(0,β )

1 = θ . Since θ − I(θ ,β )
1 = 0− I(0,β )

1 , it
follows that Q(θ ,β )

1 = Q(0,β )
1 from the definition of the LIR

policy. Thus,

IN(θ ,β )
1 = I(θ ,β )

1 +Y1 ·Q(θ ,β )
1 −D1

= I(0,β )
1 +θ +Y1 ·Q(0,β )

1 −D1 = IN(0,β )
1 +θ .

Thus, we have proved the required result for t = 1. Since
I(θ ,β )
t+1 = IN(θ ,β )

t and I(θ ,0)
t+1 = IN(θ ,0)

t , the remainder of the
proof follows easily by induction using a similar argument.

Lemma 1 For any fixed β , C(θ ,β ) is convex with
respect to θ .

Proof. For any θ , compare the two inventory systems
S (θ ,β ) and S (0,β ). From Proposition 1, we have
IN(θ ,β )

t = IN(0,β )
t + θ for each t ≥ 1. The single-period

costs in period t satisfy

h · [IN(θ ,β )
t ]+ +b · [IN(θ ,β )

t ]−

= (h+b) · [IN(θ ,β )
t ]+−b · IN(θ ,β )

t

= (h+b) · [IN(0,β )
t +θ ]+−b · IN(0,β )

t −b ·θ ,

which is convex with respect to θ . Thus, C(S,β ) is convex
with respect to S.

Lemma 1 shows that finding the optimal choice of θ

for a given value of β is a convex function minimization
problem. It can be shown that C(θ ,β ) → ∞ as either
θ → ∞ or θ →−∞. Thus, minθ C(θ ,β ) is attained, and
we denote its minimizer by θ ∗(β ). Minimizing this convex
function can be done efficiently, for instance, using bisection
methods, given that there is a fast oracle for evaluating the
cost function C(θ ,β ). Though it is difficult to derive an
analytic expression for C(θ ,β ), one can compute it using
simulation. Thus, one approach to minimize C(·,β ) is
to choose the candidates of θ iteratively using a convex
programming technique, and evaluate the simulated cost for
each θ . We note that extensive numerical simulations seem
to indicate that C(θ ,β ) is in general not jointly convex but
C(θ ∗(β ),β ) is convex in β .

However, the following observation enables us to design
a faster simulation optimization method for obtaining θ ∗(β )
without any explicit search. It shows that the optimal choice
of θ must satisfy a newsvendor-like condition. Thus, one
needs to simulate C(0,β ) exactly once and then choose θ to
satisfy an optimality condition as in the following lemma.
Recall C(θ ,β ) = limsupT→∞

1
T ∑

T
t=1 Ct(θ ,β ).

Lemma 2 For any β and T , a minimizer of
1
T ∑

T
t=1 Ct(·,β ) is given by

inf

{
θ :

1
T

T

∑
t=1

P[IN(0,β )
t +θ ≤ 0] ≤ h/(b+h)

}

Proof. Note that

T

∑
t=1

Ct(θ ,β )

=
T

∑
t=1

h ·E[IN(θ ,β )
t ]+ +b ·E[IN(θ ,β )

t ]−

=
T

∑
t=1

h ·E[IN(θ ,β )
t ]+ (b+h) ·E[IN(θ ,β )

t ]−

=
T

∑
t=1

h ·E[IN(0,β )
t +θ ]+ (b+h) ·E[IN(0,β )

t +θ ]− .
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By differentiating it with respect to θ , we obtain

d
dθ

T

∑
t=1

Ct(θ ,β ) = T ·h− (b+h) ·
T

∑
t=1

P[IN(0,β )
t +θ ≤ 0] .

By setting the above expression to zero, we obtain the
result.

We note that in both MULT and NLH1, β is fixed at
1/E[Y ], and in each case θ assumes a pre-defined ad-hoc
value. Instead, the results of this section show that the
optimal choice of θ can be obtained easily for any fixed
β without much computational effort. We show compu-
tationally that this simple calculation sometimes leads to
significant improvements as compared to MULT and NLH1.

Our approach and analysis in this section are quite gen-
eral and are applicable to other models of random yield. For
example, the results in Lemmas 1 and 2 can be generalized
to the case of a positive replenishment lead-time, regardless
of whether the yield is realized as soon as the order is
placed or at the time of delivery (or sometime in between).
They can be also extended to the case with a finite capacity
on the order quantities, to a serial production system, and
to any yield model where the distribution of the quantity
delivered in period t depends only on the order quantities
{Q1,Q2, . . . ,Qt}. In many such extensions, finding the op-
timal replenishment policy is prohibitively difficult as the
number of states in the dynamic programming formulation
explodes quickly; thus, our approach of optimizing within
the class of LIR policies may be useful in finding an efficient
heuristic.

3.2 Optimizing C(θ ∗(β ),β )

In Section 3.1, we have shown that it is easy to compute
θ ∗(β ) for a given value of β . Minimizing C(θ ,β ) is
equivalent to minimizing C(θ ∗(β ),β ), a single-dimensional
problem with respect to β . While computational results in
Section 4 indicate the convexity of C(θ ∗(β ),β ), we are
unable to prove structural results (such as the convexity or
unimodality of C(θ ∗(β ),β ) with respect to β ).

In this section, we suggest some reasonable choices for
the inflation factor β . Such choices can be either directly
employed, or used as initial solutions for a single-dimension
minimization procedure.
1. CHOICE A: βA = 1/E[Y ]. (We use the subscript A to
distinguish it from other choices.) Both MULT and NLH1
use this value of β . It is the optimal choice if the yield
factor distribution is deterministic. Note that βA does not
depend on the variability of Y or on the demand distribution
D.

2. CHOICE B: Define

βB = sup{β : E[Y · I[ 1
β
≤ Y ]] ≤ b

b+h
·E[Y ]} .

Note that while βA depends solely on the expected value of
the yield distribution Y , βB depends on the distribution of
Y , as well as the ratio between b and h. The choice of β we
introduce here is motivated by the deterministic version of
the demand distribution. Consider a single-period problem
with the starting inventory level I and the known demand D.
The following proposition, which we state without proof,
shows that the optimal policy for this problem is an LIR
policy, where the target inventory level is D and the inflation
factor is given by βB.

Proposition 2 Consider a single-period problem
where D is the known deterministic demand and I is the
starting inventory level. Then, the order quantity minimiz-
ing the expected holding and backlogging cost is given by
max{βB · (D− I), 0}.

The following proposition establishes an upper bound
and a lower bound on βB.

Proposition 3

(i) 1/βB is bounded below by the h/(b + h)-fractile
of Y .

(ii) Suppose that the probability density function of Y is
symmetric and quasi-concave. If b/(b+h)≥ 0.75,
then βB ≥ βA.

Proof. (i) Let Q = inf{Q : E[I[Q≤Y ]]≤ b/(b+h)}. For
any Q < Q, we have E[I[Q≤ Y ]] > b/(b+h), and thus

b
b+h

·E[Y ] < E[I[Q≤ Y ]] ·E[Y ]

≤ E[Y · I[Q≤ Y ]]
E[Y ]

·E[Y ] = E[Y · I[Q≤ Y ]] ,

implying 1/βB≥Q. Since this result holds for any Q < Q,
it follows 1/βB ≥ Q.

(ii) From the definition of βA and βB, it suffices to
show E[Y · I[E[Y ]≤Y ]] ≤ b/(b+h) ·E[Y ] . Let fY denote
the density function of Y . Since Y is nonnegative and
has a symmetric and quasi-concave probability density, the
support of Y is bounded above by 2 ·E[Y ]. Let U be the
uniform distribution on [0, 2 ·E[Y ]]. It is easy to to verify
that E[Y ] = E[U ], and that the CDF of Y coincides with the
CDF of U at E[Y ] and 2 ·E[Y ]. It can also be shown that
the CDF of Y is bounded below by the CDF of U in the
interval (E[Y ], 2 ·E[Y ]). (To see this, suppose by the way
of contradiction that there exists y ∈ (E[Y ], 2 ·E[Y ]) such
that FY (y) < FU (y), where FY and FU denote the CDF’s of
Y and U , respectively. Then, since the derivative of FY is
the density of Y , there exists, by the Mean Value Theorem,
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y′ ∈ (E[Y ],y) such that the density fY of Y satisfies

fY (y′) =
FY (y)−FY (E[Y ])

y−E[Y ]

<
FU (y)−FU (E[Y ])

y−E[Y ]
=

1
2 ·E[Y ]

.

Similarly, there exists exists y′′ ∈ (y,E[Y ]) such that fY (y′′) >
1/(2 ·E[Y ]) > fY (y′). This contradicts the condition that Y
is symmetric and quasi-concave.) Then,

E[Y · I[E[Y ]≤ Y ]] ≤ E [U · I[E[U ]≤U ]]
= 0.75 ·E[U ] = 0.75 ·E[Y ] .

The required result follows since b/(b+h)≥ 0.75.

3. CHOICE AB: βAB = (βA +βB)/2. We combine βA and
βB by taking their average. Numerical results suggest that
this chioce of β performs well; see Section 4.
4. CHOICE Z: Based on the analysis of the first two
moments of the Y , (Zipkin 2000) proposes the follow-
ing choice of β value: βZ = E[Y ]/E[Y 2]. Since E[Y 2] =
Var(Y )+E[Y ]2 and the coefficient of variation for Y satisfies
ρ2

Y = Var(Y )/E[Y ]2, it follows that βZ = [(1+ρ2
Y )·E[Y ]]−1≤

1/E[Y ]= βA. Therefore, under the condition of Proposition
3 (ii), βZ ≤ βA ≤ βAB ≤ βB.
5. CHOICE C: One of the heuristic methods introduced by
(Bollapragada and Morton 1999) is the NLH2 method, which
is not an LIR policy. The ordering quantity as a function
of the beginning inventory level is piece-wise linear. (We
describe this function in Section 4.) One of the non-zero
slopes is 1/E[Y ], and the other one is

βC = E[Y ]−1 ·
[
1− s2 ·ρ2

Y /(ρ2
D +ρ

2
Y )
]−1/2

where s is the b/(b+h)-fractile of D/E[D]−Y/E[Y ], and
ρD and ρY are the coefficients of variation for D and Y ,
respectively. We take this slope as the inflation factor in an
LIR policy.

We note that (Bollapragada and Morton 1999) do not
provide any theoretical justification for this choice except that
their computational experiments show good performance of
NLH2. If βC exists, then the second factor in the definition
of βC is at least 1, implying βC ≥ βA. However, βC may
not be well-defined since the expression inside the square
root operator in the definition of βC may be negative, as
pointed out by (Li, Xu, and Zheng 2006).

4 COMPUTATIONAL RESULTS

In this section, we summarize the computational results
on the performance of LIR policies for the random yield
problem. For several candidates for the inflation factor
proposed in Section 3, we find the best target level. We

also find, numerically, the optimal parameters (θ ∗,β ∗), and
report the performance of the corresponding LIR policy.
We also compare the LIR policies to other heuristics in the
literature.

In our experiments, we fix h = 1 and choose b
such that b/(b + h) is one of six possible values from
{0.85,0.90,0.95,0.97,0.99,0.995}. We use two possible
demand and yield distribution cases: D and Y are either
both normal or both uniform. (When the distributions are
normal, we truncate the random variables in our simulations
such that they are nonnegative.) Since we can replace Y
with Y/E[Y ] without changing the nature of the problem
((Henig and Levin 1992)), we assume E[Y ] = 1. Simi-
larly, we fix E[D] at 20. We let ρY ∈ {0.1,0.2,0.3,0.4}
and ρD ∈ {0.2,0.4}. (Since the variance of Y satisfies
σ2

Y = E[Y ]2 · ρ2
Y , the standard deviation of Y is given by

σY = E[Y ] · ρY . In particular, if Y is uniform, then it
can be shown that Y ∼ Uniform[E[Y ]−∆,E[Y ]+∆] where
∆ =
√

3 ·ρY ·E[Y ] since σ 2
Y = ∆2/3. A similar result holds

for D.) In total, we consider 6 · 2 · 4 · 2 = 96 combina-
tions. Our test scenarios are based on (Bollapragada and
Morton 1999) and (Inderfurth and Transchel 2007); (Bol-
lapragada and Morton 1999) use the b/(b + h) ratios of
{0.85,0.90,0.95} only, and (Inderfurth and Transchel 2007)
consider the uniform distribution case only.

We briefly describe our methodology. To evaluate
C(θ ,β ) for any given θ and β , we simulate the inven-
tory system S (θ ,β ) for T ◦+ T periods, and use the last
T periods to compute the time-average cost for this sample
path. We replicate the experiment N times, and obtain the
mean of the average costs, which we denote by Ĉ(θ ,β ).
We let T ◦ = 2000, T = 5000, and N = 2000.

To find the optimal θ ∗(β ) for any given β , we simulate
S (0,β ) for T ◦+T periods, replicating the experiment N
times. From each replication, we collect the ending inventory
levels INt of the last T periods, i.e., t = T ◦+1, . . . ,T ◦+T ;
thus, there are a total of T ·N samples of ending inventories.
We find θ such that−θ is the h/(b+h)-fractile of the sample
distribution (see Lemma 2). We denote it by θ̂(β ), and
use it as an estimate for θ ∗(β ). Once we obtain θ̂(β ), we
estimate Ĉ(θ̂(β ),β ).

To find the optimal choice of the parameters, we use
MATLAB’s minimization function to find β̂ minimizing
Ĉ(θ̂(β ),β ). Let θ̂ = θ̂(β̂ ). In our computational results,
Ĉ(θ̂(β ),β ) appears to be a convex function of β . As
discussed in Section 3.2, the convexity or the unimodality
of C(θ(·), ·) is an open research question. However, our
experiments indicate that C(θ ,β ) is not jointly convex.

We have used common number variables to reduce the
variance of the simulated results. For each combination
of ρD, ρY and b/(b + h), we have used the same realized
N · (T + T ◦) samples of D and Y to compute the results
for all heuristics. We found that the half-width of the
95% confidence interval for each C(θ(β ),β ) was less than
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approximately 0.20% of the corresponding sample average
Ĉ(θ̂(β ),β ).

We compare the performance of LIR policies with other
heuristics in (Bollapragada and Morton 1999).

• NLH2. The order quantity is a piece-wise linear
function with two non-zero slopes. More precisely,

Q(I) =
E[D]
E[Y ]

+
s ·E[D]− I

E[Y ]
√

1− s2 ·ρ2
Y /(ρ2

D +ρ2
Y )

if I ≤ E[D],

Q(I) = Q(E[D])− (I−E[D])/E[Y ]

if E[D] < I ≤ E[D] + E[Y ]Q(E[D]), and Q(I) =
0 otherwise, where s is the b/(b + h)-fractile of
D/E[D]−Y/E[Y ]. Note that Q(I) is piece-wise
linear, with non-zero slopes being βA and βC. As
discussed in Section 3.2, the above function may
not be well-defined.

• Newsvendor Heuristic (NH). (Bollapragada and
Morton 1999) give the expression for the case
of the normal distribution only. Let ν be the
b/(b+h)-fractile of standard normal distribution.
If I < E[D] · (1+ν ·ρD), then

Q(I) =
E[D]
E[Y ]

·

(1− I
E[D] )+ν

√
(1− I

E[D] )
2ρ2

Y +(1−ν2ρ2
Y )ρ2

D

1−ν2ρ2
Y

;

otherwise, Q(I) = 0. As in NLH2, the Q(·) function
may not be well-defined.
In the case of uniform distribution, we numerically
find Q(I) such that equation (12) of (Bollapragada
and Morton 1999) is satisfied, i.e., P[D ≤ I +Y ·
Q(I)] = b/(b+h).

The computational results are reported in the full version
of this paper. For each combination of ρD, ρY and the
b/(b + h)-ratio, we report compare the cost of the best
LIR policy C(θ̂ , β̂ ) to the optimal costs reported in the
appendix of (Bollapragada and Morton 1999); we caution
that these “optimal costs” correspond to discretized problems
and thus they differ from the exact optimal costs. Overall,
the numerical experiments indicate that the class of LIR
policies perform fairly well.

We also examine the performance of other LIR policies
and non-LIR policies; the cost associated with these policies
are presented in comparison to the cost of the best LIR policy.
A positive number represents a cost worse than the best

LIR policy, and a negative number represents a cost better
than the best LIR policy. As expected, the best LIR policy
outperforms any other LIR policy; the reported costs of
MULT and NLH1 exceed the cost associated with the best
LIR policy on average by 79.2% and 5.0%, respectively.
Compared to the non-LIR methods, the best LIR policy
outperforms NH in all of the cases, and reports worse
results than NLH2 only in three cases; on average, it is
better than NH and NLH2 by 6.5% and 1.4%, respectively.
(We note that NH actually performs quite well when ρY is
small, but its performance deteriorates as ρY increases.) We
stress that both NH and NLH2 are not always well-defined,
and is thus questionable whether these heuristics can be
broadly applicable.

We also observe that while all of βZ , βA, βB and βC
are reasonably good choices of β (having costs exceeding
the best LIR policy by 4.2%, 2.8%, 4.7% and 1.3%, re-
spectively), βAB displays the strongest performance (0.6%).

In summary, we recommend, in all cases, to always use
the LIR heuristic with the optimal value of the parameter
β . However, whenever this is not feasible, a very good
alternative is to always use the LIR policy with the choice
of βAB. Our results indicate that this is consistently a good
approach, independent of service levels and variability.
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