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ABSTRACT

Automated Guided Vehicle (AGV) logistic handling system
are widely adopted when high transportation capacity and
quality of service are the most important characteristics to
reach. A large number of mathematical approaches have
been developed in years to address AGV systems design
and control. Nevertheless, proper performance estimations
have to consider the peculiar aspects of the real environment
in which the AGV system operates. A simple and effective
approach to the stochastic features modelling is the discrete
event simulation of the real system.

This paper presents a conceptual approach that lead the
analyst to set up consistent simulative models to address
AGV systems design and performance estimation when
applications in end-of-line logistics are considered.

1 INTRODUCTION

Recent years have seen a fast-growing attention towards
automation solutions able to improve efficiency in material
handling and transportation. In particular, this paper deals
with internal logistic systems where Automated Guided
Vehicles (AGVs) provide material transport without direct
human guidance. Literature proposes several studies con-
cerning dispatching, routing and scheduling strategies for
AGVs. See Vis (2006) for a comprehensive review on the
design and control of AGVs. The results from these studies
demonstrate that the proper integration of AGV systems
into plant layout leads to significant advantages in terms of
overall efficiency.

Among all the issues which might be addressed, this pa-
per specifically focuses on assessing some key performance
indicators (KPIs) to select the most convenient number of

AGV Two main approaches can be adopted in order to tackle
the assessing problem: the analytical approach (Mantel and
Landeweerd 1995) and the simulative approach (Liu et al.
2004), (Jansen et al. 2001). Nevertheless, the assumption
of deterministic input data is a limit of several models.
Furthermore, the few papers considering stochastic input
data simply include statistical distributions into simulative
models. As an example, Prakash and Chen (1995) incorpo-
rate stochastic part arrival patterns and variable processing
times into a simulation study limited to the representation
of AGV system behaviour.

The contribution of our paper consists in the definition
of a framework to develop a conceptual model that is able to
enlarge the system boundaries under observation in order to
represent not only the fleet of AGVs, but also the operative
environment in which AGVs are employed. In particular,
the aim is to model the system attempting to represent the
actual relation existing between customer demand generation
and production planning. Once the conceptual model has
been defined, simulation is then used to investigate different
scenarios of such a system.

The remaining part of the paper is organized as fol-
lows. Section 2 describes the problem under investigation,
and Section 3 reports about the developed methodological
approach. In Section 4 the application of the proposed
methodology to an actual case study is then illustrated.
Finally, in Section 5 concluding remarks are reported.

2 PROBLEM STATEMENT

The problem analyzed in this paper is representative of a
large number of real industrial facilities that adopt AGV
systems. In particular, companies working in the field of
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food and beverage packaging and tissue production represent
principal target of these systems.

In such companies, the production shop floor is formed
by a number of parallel production lines. Each line con-
tinuously produces products following a specific pattern
imposed by the production management office, while at the
end of each line a pallettizer unit collects products allocating
them on pallets, that becomes unitary loading unit to be
dispatched by the logistic system. The production pattern
is set up following optimization criteria (i.e. reduction of
setup times) together with respecting budget plans derived
from demand forecasting. As a consequence, lines produce
at a constant rate (except when they are jammed or in a setup
phase), but with different production patterns that depend
on scheduling optimization policies and customer demand
fulfillment. The logistic system is then charged to pick up
pallets coming out from lines and to manage them until their
shipment. Thus, a production plant layout usually includes
the following main areas:

• the end of line area (EOLA), which consists of
a number of queues of pallets containing finished
products at the end of each production line;

• the storage area (SA), which is composed by racks
to stock pallets waiting to be transferred into the
loading area;

• the loading area (LA), which is formed by a number
of loading bays in which truck load is prepared by
the AGV system. This load will be subsequently
loaded into trucks by means of manually guided
forklift vehicles.

Pallets flow generated by these production lines is very
strong, thus involving a huge workload on the logistic system
and implying the adoption of a significant number of forklift
vehicles to assure an adequate transportation capacity. This
is one of the main reason that drives toward the adoption of
AGVs instead of manually guided vehicles. Given the high
traffic intensity, it is clear that automated systems can work
in a more coordinated manner than human driven forklifts,
thus avoiding losses in performances due to troubles arising
from heavy vehicles interactions. Manually guided forklifts
are only used in the final truck loading phase, as it requires
human skill for operating in unknown environments.

Transporting pallets directly from end of lines to loading
bays is the best way to manage the production flow typical
of the aforementioned systems. In this manner, pallets
remain in the system for the minimum possible time, i.e.
the time exclusively needed for the transportation phase,
thus involving the minimum workload for the AGV system
itself. Obviously this is possible if and only if, once the
production of a particular kind of product is in progress,
trucks charged to the shipment of the same kind of product
already engaged the loading area.

This situation can happen in several cases, but there
are also periods in which lines are producing some kind of
products when trucks charged to their shipment are not yet
present. Different reasons can drive to this situation:

• production patterns optimized for increasing lines
productivity (i.e. reducing setup times) can antic-
ipate the production of some products;

• delays in trucks arrival due to routing problems;
• internal traffic coordination and interaction prob-

lems generate fluctuations in AGVs service time.
This effect can delay the completion of loads in
some loading areas, thus delaying their availability
for other trucks in queue.

A storage area has to be introduced in order to allows the
AGV system to work even if these discrepancies happen.
This area has to accommodate all of those pallets that
have been produced but cannot be shipped. Obviously, the
presence of the storage area implies a reduction of space
that could be more profitably utilized to deploy additional
production lines. Hence, the production and the AGV
systems have to be designed and managed in such a way as
to reduce to a bare minimum the need and the dimension
of the storage area.

Thus the main issues need to be addressed in designing
shop floor logistic systems are the identification of the
better number of AGVs that guarantee the fulfillment of
KPIs, such as the target transportation capacity together with
minimizing the size of the storage area and the capacity of
the end-of-line buffers. For this purpose, one of the main
aspect to be tackled is the modelling of the mechanisms
that are involved in the generation of production patterns
and shipment arrivals.

3 METHODOLOGICAL APPROACH

The main contribution of this work to the literature consists in
the development of a methodology attempting to reproduce
the behaviour of the integrated production–shipment system
of a generic company producing final goods and shipping
them the most directly possible to its customers.

This situation can be found when the company’s mar-
ket is characterized by highly standardized goods (i.e. stuff
such as drinks, handkerchiefs, kitchen towels, etc.) and,
as a consequence, by high volumes. Thus, the company’s
production floor is conveniently formed by automated pro-
duction lines with high throughput needing high capacity
logistic systems for shipping arrangement.

Given the high production rate of the system, there is a
convenience in shipping goods to the market adopting a just-
in-time approach, thus avoiding the need of large storage
areas. Hence, production plans are set to chase demand
orders at the possible best (by integrating demand forecasts
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Figure 1: Conceptual model of the production pattern gen-
erator.

with orders already received). Also scheduling optimization
is adopted to obtain lines production sequences aiming
at reducing setup times and improving efficiency. Each
short period discrepancy between production and demand is
compensated by accommodating produced goods in limited
storage areas located into the system, or into containers
parked on the yard and waiting for the truck.

In order to support the design of such logistic systems
with a simulative approach, a model able to reproduce the
mechanism at the base of the production planning generation
and its correlation with customers demand is necessary. Such
a model must take into consideration two main aspects:

• the mean flow in the simulative model must be
conservative: on a mid term base, the quantity
produced for each type of good must equal the
quantity of that type shipped out;

• the production pattern generation has to attempt to
reproduce production plans derived from demand
forecasting and line sequencing optimization.

If the first aspect did not held, whether a continuous
increase on storage area utilization or an increasing waiting
time on loading area would happen in the simulative model.

Figure 1 represents the block diagram of the model
proposed in this paper for the generation of production
patterns and shipment arrival, able to adhere to the two
aforementioned aspects.

Customer demands is generated by means of a prob-
abilistic distribution function representative of the market
behaviour. As an example, a unit of demand could corre-
spond to the load of a truck of a specified kind of good.

Once a unit of demand is generated at a generic time t,
two model entities are created at the same time: a production

order and a truck (under the assumption that demand unit
equals truck loading capacity). On one hand, the truck is
delayed of a certain amount of time Γ before enter the
trucks queue at the loading bay. This amount of time can
be considered as made up of a part T , representing all the
deterministic components (i.e. the time needed for the line
to produce demand quantity at its nominal production rate),
and of a part ∆T . The component ∆T introduces stochastic
fluctuations in trucks (demand) arrival time, to represent
the non-perfect knowledge of the future by the production
planning office. It is to point up that the intensity of this
stochastic component is weighted up with respect to the
intensity of demand flow, but there is not a fixed relation
between the production order generated by the demand unit
and its related truck introduced in the model. In deeper detail,
a generic truck can load pallets produced as a consequence
of a production order originally related to another truck,
that, in a figurative sense, could be in late for some reasons.

On the other hand, production orders collected in the
production requests queue are elaborated by the production
scheduler block so as to determine production patterns for
the lines. The production scheduler block has to reproduce
the behaviour of mid term and short term production plan-
ning activities of the company. Hence, it has to generate
production lots to be launched by attempting to aggregate
production orders of the same good and scheduling them
on lines taking into account changeover optimization.

This conceptual model has been applied to the case
study presented in Section 4.

4 CASE STUDY

The case study deals with an actual production plant char-
acterized by the adoption of an AGV system for material
handling in a layout partitioned in the three areas explained
in Section 2, i.e. EOLA, LA and SA. In particular, the
EOLA presents five production line and the LA presents
seven loading bays, where the loading units are stored on
the ground, for further shipment. The AGVs follow a pre-
defined path network and are subject to traffic rules in order
to avoid collisions. A parking area has been included.

The methodology proposed is applied to properly model
the system in order to identify the appropriate number
of AGVs with respect to the following key performance
indicators (KPIs):

• Mean Service Time (Mean ST): the mean time
necessary to perform the cargo arrangement, that
is the mean interval time between the arrival and
departure of a truck;

• Mean EOL queue size (Mean EOL): the average
number of items, i.e. pallets, in the EOLA;
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Figure 2: Simulation model.

• Maximum EOL queue size (Max EOL): the max-
imum number of items, i.e. pallets, registered in
the EOLA during the planning horizon of time;

• Mean SA occupation (Mean SA): the average num-
ber of items, i.e. pallets, stocked in the SA.

• Maximum SA occupation (Max SA): the maximum
number of items, i.e. pallets, registered in the SA
during the planning horizon of time;

The innovative contribution consists, as explained in
detail in Section 3, of expanding the system boundaries
in order to include not only the shop floor, but also the
generation of demand requests and the relative production
patterns (i.e. the sequence of production lots).

To generate the market demand a gaussian probability
function was adopted. This choice is justified by the fact
that companies as the ones considered in that paper have
a market characterized by a number of customers buying
standardized goods, hence, demands of each good tend
to assume gaussian shape. The mean value of such a
gaussian distribution was set to 1 truck request each 321.3
seconds, which is the average time needed by the 5 parallel
lines to produce the amount of pallets to be loaded in a
truck. Product type was assigned by means of a uniform
distribution, ranging from 1 to 7. The standard deviation
of the demand distribution was set to 80 seconds.

The delay of truck arrival (T +∆T , as described in
Section 3) was set to a triangular distribution with values
(29.2,306.6,642.4), causing the possibility to a generic

truck to loose two positions at the most in the truck queue,
which is managed by means of a FIFO policy.

The production orders enter the input production queue
waiting to be allocated to a production line according to
specific planning and scheduling rules. An example of
scheduling rules is the following: since lots of different
products require setups, the objective is to avoid to change
product type on the same production line. Thus, in the case
study the following procedure has been applied every time a
production line finishes a production lot and it is necessary
to choose which order within the input production queue
has to be lunched:

• consider the first ten production orders in the input
production queue;

• if none of the selected order has exceeded a max-
imum waiting time of 1200 seconds:

– compare the kinds of products of the selected
orders with the product of the last lot processed;

– allocate to the line the first order with the same
kind of product, otherwise the first order of
the input production queue.

else, allocate to the line the first order that exceeds
the maximum waiting time.

In order to dimension the AGV system a simulation
model (Figure 2) was built with the software tool FleχsimTM.
Some of the objects included in the simulation model are
the following:
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Figure 3: ANOVA results for Mean EOL and Mean SA.

• five sources from which finished products come
in the model and every source is connected to a
queue in the EOLA where products wait to be
transported;

• seven racks in the LA where the whole charge of
a shipment is collected on the ground;

• five racks in the SA to stock loading units awaiting
trucks arrival;

• the path composed of network nodes connected
from each other and governed by specific traffic
rules to avoid collisions;

• the dwell point where AGVs park waiting a new
mission;

• one dispatcher to assign an available AGV to the
specific mission;

• the fleet of transporters (i.e. AGVs).

Different scenarios were tested by varying two param-
eters:

• the number of the available AGVs: 10, 11 and 12
AGVs were considered;

• the truck loading time, i.e. the time necessary for
the manually guided forklifts to transfer the pallets
arranged in the LA on the trucks: 8, 7.5, 7, 6.5
and 6 minutes were considered.

The first parameter, i.e. the number of AGVs to include in
the system, represents the design variable used to optimize
the system. The variation range of this factor does not
include values lower than 10 AGVs cause the simulation
runs executed with 9 AGVs presented instability phenomena:
the system is not be able to satisfy delivery requests. On the
other hand, the second parameter depends on the number and
the typology of the manually guided forklifts employed. This
latter variable affects the performance of the investigated
system but it is not under the direct control on the part of
the designer.

The simulation campaign consisted of ten model runs for
each of the fifteen scenarios identified by varying the AGVs
number and the truck loading time. Referring to Table 1,
the first two columns identify the different scenarios, whilst
the other columns report the average value of each KPI.

The ANOVA methodology was adopted to assess the
effects of each investigated factor with respect to the KPIs.
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Figure 4: ANOVA results for Max SA.

Table 1: Simulation result for each scenario (Avarage Value)

#AGVS LOADING

TIME

Mean

EOL

Max

EOL

Mean

SA

Max

SA

Mean

ST

10 8.0 0.69 2 1.28 17.20 38.14

10 7.5 0.69 2 1.02 17.00 38.27

10 7.0 0.68 2 0.85 15.80 38.36

10 6.5 0.68 2 0.78 13.60 38.32

10 6.0 0.68 2 0.67 13.00 38.35

11 8.0 0.67 2 1.26 18.20 38.15

11 7.5 0.67 2 1.00 16.50 38.24

11 7.0 0.67 2 0.78 14.90 38.47

11 6.5 0.67 2 0.79 16.40 38.35

11 6.0 0.67 2 0.63 12.40 38.39

12 8.0 0.67 2 1.18 16.10 38.19

12 7.5 0.67 2 0.98 15.30 38.31

12 7.0 0.67 2 0.78 13.70 38.41

12 6.5 0.67 2 0.79 14.50 38.36

12 6.0 0.67 2 0.64 12.50 38.39

Figure 3 and 4 shows factors influence with respect to
responses. Table 2 reports statistical results: the p-values
indicate that for the Mean EOL both the two main effects
(AGVs number and truck loading time) and their interaction
are significant, for both the Mean SA and the Max SA just
the truck loading time is significant.

As depicted in Figure 3, the factor which mainly affects
the response of the system in term of Mean EOL is the
number of AGVs. In particular an improvement is observed

Table 2: ANOVA results (TLT: Truck Loading Time)

KPI Factor p–Value
Mean EOL #AGVs < 0.05

Mean EOL TLT < 0.05

Mean EOL #AGVs∗TLT < 0.05

Mean SA #AGVs 0.37

Mean SA TLT < 0.05

Mean SA #AGVs∗TLT 0.98

Max SA #AGVs 0.12

Max SA TLT < 0.05

Max SA #AGVs∗TLT 0.63

by passing from 10 to 11 AGVs, while a further increase
of a unit in the number of AGVs is much less relevant.

On the other side, Mean SA mainly depends on the
truck loading time, as shown in Figure 3. The more rapidly
the cargo is transferred on the truck, the more rapidly the
loading bay becomes empty and available for a new cargo
arrangement. Thus, the necessity to stock pallets in the SA
is reduced.

Figure 4 shows that the maximum number of pallets
stocked in the SA is slightly influenced by the AGVs number,
whilst it is heavily affected by the truck loading time factor.
The maximum number of pallets in the EOLA is equal to 2
in all the simulated scenarios. This behavior demonstrates
that even 10 AGVs are sufficient to cover pallets handling
requirements.

Finally, Figure 5 shows that the surface representing
the mean value of the service time (Mean ST) is quite flat
and slightly sensitive to both the number of AGVs and the
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truck loading time. This means that the AGV system does
not represent a bottleneck in all the simulated scenarios. On
the contrary, it is not possible to satisfy the delivery requests
if only 9 AGVs are employed, as proved by a continuous
increase in the number of pallets stocked in the EOLA and
in the SA.

In conclusion, the simulated delivery requests can be
satisfied in all the considered scenarios, demonstrating that
a fleet of 10 AGVs is adequate enough to serve the whole
logistic system. The number of AGVs affects significantly
only one of the assessed KPIs, the Mean EOL, as shown in
Table 2. Moreover, improvements achievable in the Mean
EOL by increasing the number of AGVs are quite negligible:
the average queue size in the EOLA is reduced only by
2% when 12 AGVs instead of 10 AGVs are adopted in the
system. Thus, the choice of adopting more than 10 AGVs
should not be economically justified. Another aspect to be
adressed is the effect of the truck loading time on the Max
SA parameter: as shown in Figure 4 this is the only factor
that significantly affects the occupation of the SA.

5 CONCLUSIONS

In this paper a framework for the utilization of simulation
tools is presented in order to analyse a logistic system
where AGVs are adopted to transport finished products from
the production lines to the loading area where shipment is
performed. The methodological approach proposed attempts
to consider in the system modelization also the stochastical
aspects and variability of customer demand and production
scheduling. The framework has been applied to a real logistic
system and the results emerging from the case study have
been presented and discussed.
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