

ONLINE CONTROL OF A BATCH PROCESSOR WITH INCOMPATIBLE JOB FAMILIES UNDER
CORRELATED FUTURE ARRIVALS

John Benedict C. Tajan Stanley B. Gershwin

Appa Iyer Sivakumar

N3.2-01-36 Room 8-407
65 Nanyang Drive 77 Massachusetts Avenue

Singapore-MIT Alliance
(Department of Mechanical and Aerospace Engineer-

ing, Nanyang Technological University)

Singapore-MIT Alliance
(Mechanical Engineering Department, Massachusetts

Institute of Technology)
SINGAPORE 637460 Cambridge, MA 02139, USA

ABSTRACT

The oxidation and diffusion ovens in wafer fabrication are
batch processors, where only jobs belonging to identical
job families can be processed together. In this paper, we
compare the performance of a proposed online heuristic
based on Model Predictive Control against a popular look-
ahead method called NACHM. Simulation results show
that the MPC-based heuristic, with properly selected pa-
rameters, can have up to 16.67% shorter mean cycle time
than NACHM under uncorrelated job arrivals.
Under positively correlated job arrivals, the mean cycle
time of jobs passing through the batch processor is almost
always significantly reduced for both the MPC-based pol-
icy and NACHM. The simulation results also suggest that
increased correlation generates less improvement for poli-
cies that foresee events longer into the future, as NACHM
improves at a faster rate than the MPC-based heuristic.
Thus, when the correlation is sufficiently high (0.7) and the
traffic intensity is low (0.5), the MPC-based heuristic,
which considers events that occur farther into the future,
has higher mean cycle time (from 1.92% to 9.47%) than
NACHM.
Controlling processors in front of the batch processor with
the anticipated needs of the batch processor, successive job
arrivals to the batch processor may result in positively cor-
related job families. Our results highlight the potential
benefits of constraining the production of the upstream
processor according to the anticipated needs of the batch
processor.

1 INTRODUCTION

Both the oxidation and diffusion furnaces are batch proces-
sors that can concurrently process more than one job, with
the processing time independent of the number of jobs
processed. However, not all jobs arriving at the batch proc-
essor require identical chemical recipes and furnace tem-

peratures. Thus, not all jobs can be processed together as a
batch. Jobs that can be processed together comprise a job
family.
 When the number of jobs to be processed is finite,
minimizing the mean cycle time of jobs passing through a
single batch processor is an NP-hard problem (Tajan
2008). Thus, online heuristics meant for infinite horizon
problems can also be used for finite horizon problems
where the number of jobs to be scheduled is moderately
large. In this paper, we compare a Model Predictive Con-
trol-based heuristic with NACHM, a popular look-ahead
heuristic, under varying levels of correlation between the
job families of consecutive arrivals.

2 ONLINE CONTROL OF BATCH PROCESSOR
IN WAFER FABRICATION – A REVIEW

In this paper, we only consider the online control of batch
processors where jobs belonging to different job families
cannot be processed together. The processing time is only
dependent on the job family being processed, and not on
the job composition or quantity.
 (Deb and Serfozo 1973) use dynamic programming
formulations for minimizing the average cost per unit time
and the expected discounted cost of a batch processor with
stochastic processing times and Poisson job arrivals to
show the existence of an optimal policy in the form of a
minimum batch size. When the holding cost is linear and
the processing time distribution is exponential, the optimal
minimum batch size can be determined via closed-form
equations. Follow-up work by (Aalto 1998 and Aalto
2000) consider compound Poisson arrival processes. When
the processing time and arrival rate distributions are gen-
eral, the optimal policy is no longer guaranteed to be a
threshold policy. However, (Avramidis, Healy, and Uzsoy
1998) provide a method to determine the optimal threshold
policy (the optimal policy among all threshold policies).

2100 978-1-4244-2708-6/08/$25.00 ©2008 IEEE

Proceedings of the 2008 Winter Simulation Conference
S. J. Mason, R. R. Hill, L. Mönch, O. Rose, T. Jefferson, J. W. Fowler eds.

Tajan, Sivakumar, and Gershwin

 An alternative to threshold policiea are look-ahead
policies, which are heuristics that assume that a limited
number of future job arrivals can be predicted. Dynamic
Batching Heuristic (DBH), by (Glassey and Weng 1991),
assumes a single job family, with processing time P. At
any Time Instance t that the batch processor is available
and only a partial batch is available, DBH is activated.
DBH assumes a planning horizon from t to t+P. Given the
forecasted job arrivals within this horizon, DBH starts a
batch at the time instance t’ within the interval (t, t+P) that
minimizes the total waiting time incurred by jobs at the
batch processor from t to t’.
 Simulation experiments show that DBH outperforms
threshold policies, even with moderate errors in the pre-
dicted arrival time, as long as the traffic intensity is not
low.
 (Fowler, Phillips, and Hogg 1992) suggests a similar
look-ahead called the next arrival control heuristic
(NACH). NACH only considers the first future job arrival.
Furthermore, NACH does not specify a future time in-
stance when the batch processor is to be loaded. Rather,
NACH decides to wait for the next job arrival, where the
process is repeated. When there are moderate prediction
errors, NACH slightly outperforms DBH. (Fowler, Phil-
lips, and Hogg 1992) also extend NACH to the case where
jobs belong to different job families (we call this extension
NACHM). Future knowledge of the first job arrival for
each job family is assumed to be known.
 NACHM outperforms threshold policies, even under
moderate prediction errors. However, the amount of im-
provement declines as the prediction errors become large.
NACHM has been extended to two cases: when there is
more than one batch processor in a particular stage
(Fowler, Hogg, and Phillips 2000), and when the down-
stream processor requires considerable set-up times.
(Solomon, et al. 2002).
 Subsequent look-ahead heuristics include (Weng and
Leachman 1993), which assume jobs have a unit holding
cost, and propose the Minimum Cost Rate (MCR) heuristic
in an attempt to minimize the rate cost is incurred by the
batch processor. (Weng and Leachman 1993) propose a
minimum cost rate (MCR) heuristic for the same problems
in (Fowler, Phillips, and Hogg 1992). MCR, like DBH,
does not postpone decisions; it instead determines the best
time to process a batch at each instance it is executed.
(Robinson, Fowler, and Bard 1995) propose the Rolling
Horizon Cost Rate (RHCR) heuristic, which is a combina-
tion of the cost rate calculations of MCR and the decision
postponement of NACHM. (Robinson, Fowler, and Bard
1995) is also expanded to form the RHCR-S heuristic,
which considers the expected waiting time of jobs in front
of the downstream serial processor.
 (Duenyas and Neale 1997) analyze the problem of
minimizing the average holding cost per unit time of a sin-
gle batch processor with incompatible job families; job

families have exponential processing times. Even when
there are only two job families, each with a Poisson arrival
process, the optimal policy can have a complicated form
and a heuristic policy is proposed. This heuristic can be
easily adapted to reflect knowledge of future arrivals.
 The previously mentioned look-ahead heuristics con-
sider only cycle time-related objective functions; (Gupta,
Sivakumar, and Ganesan 2004) apply look-ahead method
to optimizing earliness/tardiness-related objectives. Instead
of determining analytically the optimal time instance and
batch composition, the authors propose using Conjunctive
Simulated Scheduling to evaluate the options available to
the idle batch processor.

3 PROBLEM STATEMENT

A batch processor can process up to Q jobs simultaneously,
and the processing time is independent of the number of
jobs being processed. There are n jobs to be processed at
the batch processor, where n is unknown. The earliest time
a Job i can be processed is at Time Instance ri. Each Job i
belongs to a Job Family j, where j = 1 to m. Only jobs be-
longing to the same family can be batched together. The
processing time of a batch is dependent only on the job
family that is currently being processed. The objective is to
minimize the mean cycle time for all jobs passing through
the system, with the cycle time of Job i equal to its Com-
pletion Time ci minus its Arrival Time ri. . The batch proc-
essor is assumed to be initially available, and jobs are in-
dexed in increasing order of their release times.

4 ONLINE CONTROL OF A BATCH
PROCESSOR

Because the number of jobs n is unknown, the number of
jobs processed by the batch processor is uncertain. We re-
quire an online algorithm, which is executed regularly,
with only a limited number of decisions made at each exe-
cution. Online algorithms typically have to run much
faster than offline algorithms, as online algorithms are re-
peatedly executed in real time.
 In this section, we discuss two online algorithms: the
MPC-based heuristic we develop, and NACHM, the
benchmark we compare the MPC-based heuristic against.

4.1 NACHM Control Scheme

In NACHM, a decision has to be made when (a) a job ar-
rives, or (b) the batch processor finishes. When a job arri-
val corresponding to Family j occurs, the ‘push logic’ is
used. In the ‘push’ logic, only jobs belonging to Family j
are considered. If the total waiting time incurred if a batch
of Family j jobs are immediately processed is higher than
the waiting time incurred if the processor waits for the next
arrival of Family j job, then the processor waits. If the re-

2101

Tajan, Sivakumar, and Gershwin

verse is true, then the processor processes a batch of Fam-
ily j jobs.
 When the batch processor finishes processing, the
‘pull logic’ is used. The ‘pull’ logic is detailed below:

• If there is at least one full batch, then the full
batch with the weighted shortest processing time
(WSPT) is chosen for processing. The weight of a
particular Job Family i is the total number of jobs
in front of the batch processor that does not be-
long to Job Family i.

• If only partial batches exist, then the ‘push’ logic
is executed for each job family.

• If the ‘push’ logic returns a decision to process for
every job family, then WSPT is used to select
which job family to process. Conversely, if the
‘push’ logic suggests waiting for the next job arri-
val for all job families, the system waits for the
next job arrival.

• If the decisions from the ‘push’ logic functions
are not unanimous for all job families, then the to-
tal waiting time incurred by all jobs if the recom-
mended decision of the ‘push‘ logic is followed
for that job family is computed. The correspond-
ing decision that results with the lowest total wait-
ing time is the output of the ‘pull’ logic.

 We choose NACHM as a benchmark for several rea-
sons:
• The logic behind NACHM is easy to understand.
• The definition of job arrival horizons of NACHM and
the MPC-based heuristic differ. NACHM assumes knowl-
edge of m job arrivals, one job arrival for each family. In
contrast, the MPC-based algorithm takes, at most, the next
L job arrivals, regardless of their job family.
• NACHM considers all job families in making a deci-
sion. In contrast, the MPC-based algorithm may consider
only a subset of job families.
• NACHM only considers the waiting time incurred due
to the first batch, while the MPC-based heuristic considers
the waiting time incurred in emptying the batch processor
queue and horizon.

4.2 Model Predictive Control (MPC)

One possible method of coping with algorithm processing
time constraints is Model Predictive Control (MPC) (Bert-
sekas 2005). At each instance a decision has to be made,
model predictive control optimally solves a deterministic
problem with a shorter horizon. This will output a series of
controls, one control for each instance a decision has to be
made. Only the first control is implemented, the rest are
discarded. This process is repeated at each instance a deci-
sion has to be made.
 To implement MPC, a base method of solving small
instances of the problem is required. (Tajan 2008) provides
two base methods for solving small problem instances: an

integer linear programming model and a dynamic pro-
gramming model. Either model can be easily modified to
be used as a kernel for MPC.

4.3 Development of MPC-based heuristic

From numerical experiments, an increase of five job arri-
vals or one job family corresponds to roughly an order of
magnitude of increase in the computational time required
to solve a finite- horizon problem to optimality, using the
dynamic programming model in Tajan (2008). Thus, MPC
needs to truncate the problem in two dimensions to create
the smaller problem instance: the number of future job ar-
rivals L and the number of job families f. Thus, the MPC-
based heuristic has two parameters and the exact variant
can be distinguished via the parameters (f, L).
 At any Instance t that the batch processor is idle, MPC
predicts the arrivals for the next L jobs into the batch proc-
essor. Assuming that the batch processor can process up to
χ>f job families, then χ – f job families are ignored by the
MPC-based heuristic. Only the f job families whose
batches have the shortest weighted processing times (given
the current queue composition at the batch processor) are
considered. This selection criterion is based on the optimal
policy for a single batch processor with no future arrivals,
which dictate that batches are to be processed according to
the weighed shortest processing time rule (with the number
of jobs inside a batch serving as the batch weight).
 Let the set of job families selected for consideration be
Sf. If, at Time Instance t, only ψ < f job families have jobs
in front of the batch, then the ψ job families with jobs
queued join Sf. We then augment Sf by counting the num-
ber of jobs belonging to a particular job family within the L
future job arrivals. Let fi be the job family with the ith most
jobs arriving within the horizon. Starting from i=1, if

fi Sf ∉ , then ∪ iff fSS = , and the process contin-
ues until i=m, or until |Sf| = f, whichever comes first. Thus,
the smaller problem instance to be solved to optimality has
|Sf| < f job families and a maximum of L future job arrivals.

5 COMPARISON OF CONTROL SCHEMES FOR
DIFFERENT LEVELS OF CORRELATION

In this section, we discuss the manner in which correlation
between successive job arrivals is introduced, before intro-
ducing the experimental setup.

5.1 Experimental model

Figure 1 shows the chosen experimental model. A single
batch processor with a maximum capacity of Q jobs at a
time stores jobs in m = 6 buffers, each buffer correspond-
ing to a job family. The batch processor experiences a sin-
gle job arrival stream; thus, the time between successive

2102

Tajan, Sivakumar, and Gershwin

job arrivals can be described by a single random distribu-
tion. We assume the job arrival stream is a Poisson proc-
ess; the time between successive job arrivals follow an ex-
ponential distribution.

BP with
Capacity Q

1

2

m

Single job arrival
stream for m job
families BP with

Capacity Q

1

2

m

Single job arrival
stream for m job
families

Figure 1: The batch processor BP can process up to Q jobs
belonging to the same family, and experiences a single
random job arrival stream.

5.2 Correlation between job families of successive
job arrivals

When upstream processors do not care about the family
sequence of job arrivals to the batch processor, we assume
zero correlation between the job families of successive job
arrivals. Thus, the job family of a particular job arrival has
a uniform distribution.
 Positive correlation between the job families of suc-
cessive arrivals implies that it is likely to find consecutive
job arrivals to have identical job families. Let there be m
job families. The probability that the job family of x, ax, is
1<z<m equals 1/m, since ax is uniformly distributed from 1
to z. Let y be the job that arrives immediately after x. Let
ψ=P(ay=z|ax=z). ψ is the probability that y belongs to Fam-
ily z if x belongs to Family z. P(ay=g|ax=z, g≠ z) has a uni-
form distribution across the remaining job families, and is
equal to (1- ψ)/(m-1). The correlation coefficient between
the job families of two consecutive jobs (represented as
random variables X and Y) is related to ψ and m by

1
1),(

−
−

=
m

mYXCorr ϕ
.

5.3 Experimental Setup

Two variants of the MPC-based heuristic (f, L) – f being
the job family quantity considered and L being the job arri-
val horizon length - are evaluated, (3, 15) and (4, 10).
Based on empirical experimentation, an increase in one
family or in five jobs results in an increase in magnitude of
the computational time requirement for the Dynamic Pro-
gramming model used by the MPC-based heuristic (Tajan
2008). Thus, the heuristics (3, 15) and (4, 10) have roughly
the same magnitude in computational requirements (based
on a MATLAB implementation). These two heuristics are
compared against NACHM.

 For each simulation run, 2000 jobs are randomly gen-
erated, the cycle time from the first 200 jobs to exit the
system are discarded. This warm-up period is deemed suf-
ficient using Welch’s method (Law and Kelton 2000). The
processing time per job family is evenly distributed be-
tween three to nine time units. The mean time between job
arrivals is determined through the traffic intensity. The
traffic intensity TI is the dimensionless ratio between the
arrival rate and the maximum processing rate. A ratio
above 1.0 indicates that jobs arrive at a faster rate than the
processor can process, which will lead to system instabil-
ity. We assume two values for the traffic intensity, 0.5 and
0.8. If λ is the average arrival rate, then the mean time be-
tween arrivals, 1/ λ, is obtained by:
1/ λ = (average time to process a batch/(traffic intensity *
batch processor capacity)).
 We assume two values (four and eight) for the job
family quantity. Three levels of correlation coefficients
were selected: zero correlation, weak correlation
(Corr(X,Y)=0.25), and strong correlation (Corr(X,Y)=0.7).
 For each set of simulation parameters, ten simulation
experiments are performed. To increase testing power, all
three evaluated heuristics share the same arrival stream.
Table 1 summarizes the various levels varied for each set
of experiments.

Table 1: Experimental Setup Summary

Corr(X,Y) Job family
quantity

Traffic intensity

0, 0.25, 0.7 4, 8 0.5, 0.8

6 DISCUSSION OF RESULTS

In each set of experiments, a paired T-test is used to deter-
mine whether the hypothesized differences in the mean cy-
cle time of the proposed MPC-based heuristics and
NACHM is significantly different from zero. The confi-
dence interval selected is 95%.
 The mean execution time of a single instance of any
heuristic does not exceed 10 seconds. However, both
MPC-based heuristics take considerably longer times than
the NACHM heuristic, due to the need to solve a small dy-
namic programming problem at each instance.

6.1 Uncorrelated Job Families for Consecutive Job
Arrivals

Figure 2 graphically presents the mean cycle time esti-
mates for the three heuristics when job arrivals are uncor-
related. Increasing either the number of job families or the
traffic intensity increases the mean cycle time, regardless
of policy. Both observations are intuitive: increasing the
traffic intensity increases the workload of the processor,
while increasing the number of job families mean that job
composition of a batch become more restrictive.

2103

Tajan, Sivakumar, and Gershwin

 In directly comparing (3,15) with (4,10), (3,15) has a
significantly longer mean cycle time than (4,10) when
there are only four job families. When the number of job
families is increased to eight, the performance of the two
policies cannot be differentiated with 95% confidence
level.

Uncorrelated job arrivals

0

5

10

15

20

25

30

35

(0.5, 4) (0.8, 4) (0.5, 8) (0.8, 8)
Simulation Parameters

C
yc

le
 T

im
e

(3, 15) (4, 10) NACHM

Figure 2: Comparing cycle time for three heuristics when
job families of consecutive job arrivals are uncorrelated.
The simulation parameters are described as tuples, in the
form (TI, job family quantity).

 When there are only four job families, (3, 15) removes
one job family from consideration. This can adversely af-
fect performance. As an example, assume that Job Families
One, Two and Three each have a single job in front of the
batch processor, and Job Family Four has none. However,
the next three job arrivals belong to Job Family Four, and
these three jobs will all arrive very soon. (3, 15) might rec-
ommend processing a small batch of either Family One,
Two or Three, whereas (4, 10) correctly decides to wait for
the next three arrivals of Family Four jobs.
 When the job family quantity is increased to eight, the
effect of one less job family considered is reduced. Firstly,
the probability that a job arrival sequence has a dominant
job family is reduced with a larger number of job families.
Secondly, the probability that a crucial job family is ig-
nored by (3,15) and is not ignored by (4,10) (Event A) is
25% with four job families and 12.5% with eight job fami-
lies.
 Based on comparing (3, 15) and (4, 10), we recom-
mend the following guidelines in selecting the parameters
L and f for the MPC-based heuristic:
• If the number of job families is relatively small, it is
best to select f to be equal to the number of job families, at
the cost of reducing L or relaxing the computational time
constraints.
• If the number of job families is large, then small re-
ductions in f will not have a large adverse effect on the per-
formance of the heuristic.

 In comparing NACHM against both MPC-based heu-
ristics (3, 15) and (4, 10), the mean cycle time for NACHM
is significantly longer than either MPC-based heuristic for
all four parameter sets. Table 2 contains the estimated per-
centage reduction in cycle time if the control scheme is
switched from NACHM to either MPC-based heuristic.
The results suggest that the MPC-based heuristic outper-
forms NACHM when the job families of consecutive job
arrivals are uncorrelated.

Table 2: Paired T-test results for uncorrelated job arrivals
Traffic
Inten-

sity

Job
 Family

Quantity

Estimated %
cycle time re-

duction - (3, 15)

Estimated %
cycle time re-
duction - (4,

10)
0.8 8 4.45% 5.38%
0.8 4 4.2% 11.69%
0.5 8 16.66% 16.19%
0.5 4 1.21% 13.84%

 To be sure that the improvement of the MPC-based
heuristics are not due to their possibly longer horizons, we
perform an auxiliary comparison between the MPC-based
heuristic (4,8) and NACHM when there are eight job fami-
lies. For each traffic intensity (0.5 and 0.8), ten simulation
runs are performed. There does not exist an instance where
(4,8) will have a longer horizon (in terms of the number of
job arrivals) than NACHM. Since the actual number of job
families running through the system is twice that of the
number of job families considered by (4,8) at any instance,
the mean number of future job arrivals considered by (4, 8)
is four, half that of NACHM. However, Table 3 shows that
(4, 8) still has significantly lower mean cycle time than
NACHM. When the traffic intensity is low, (4, 8) has
16.9% lower mean cycle time, and when the traffic inten-
sity is high, 5.17% lower mean cycle time. This experiment
shows that the improved mean cycle time by the MPC-
based heuristics cannot be wholly attributed to a possibly
longer horizon length than NACHM.

Table 3: Comparing (4, 8) with NACH-MM when there are
eight job families

Traffic
Intensity

μ(4,8) μNACHM μNACHM
- μ(4,8)

95% Confi-
dence interval

0.5 23.58 28.39 4.81 (4.35, 5.37)
0.8 29.32 30.92 1.6 (0.72, 2.48)

To the best of the authors’ knowledge, all of previ-

ously proposed look-ahead methods ‘optimize’ only the
waiting time incurred due to the next batch. By ignoring
the remaining batches that need to be processed by the
batch processor, the previously proposed look-ahead poli-
cies do not fully utilize the available information. For ex-
ample, if the current batch processor queue has jobs from
three job families (Figure 3), there must be at least four

2104

Tajan, Sivakumar, and Gershwin

batches that need to be processed by the batch processor,
before the queue is emptied. The MPC-based heuristic will
consider the cycle time incurred for processing all three
batches, while NACHM (and other look-ahead methods)
merely look at the cycle time incurred for the first batch to
be processed. We believe that the MPC-based heuristic has
improved performance over NACHM because of this fur-
ther forward thinking.

Batch
processor

Current Queue

Batch
processor

MPC heuristic output:

Process

then process

then process

NACHM heuristic output:

Wait for incoming

Batch
processor

Current Queue

Batch
processor

Batch
processor

Current Queue

Batch
processor

MPC heuristic output:

Process

then process

then process

NACHM heuristic output:

Wait for incoming

Figure 3: The difference between the two policies is that
the MPC-based heuristic will provide a complete sequence
to empty out the buffer, while NACHM (and other look-
ahead methods) will only consider the best decision with
regards to only the first batch to be processed.

6.2 Correlated Job Families for Consecutive Job
Arrivals

We divide the discussion into two sections. First, we dis-
cuss the effect of increased correlation on the relative per-
formances of the heuristics, then we discuss the effect of
increased correlation on the absolute performances of the
heuristics.

6.2.1 Relative performance of heuristics

Figure 4 and Figure 5 illustrate the mean cycle times of the
three heuristics under increased correlation of job families
for successive job arrivals. (3,15) still has significantly
higher cycle time than (4,10) when there are only four job
families. When there are eight job families, the mean cycle
times generated by (3,15) and (4,10) generally cannot be
distinguished within 95% confidence interval. The only
exception is when the correlation coefficient is high (0.7),
and the traffic intensity was low (0.5), where (4,10) has
superior performance to (3,15). High correlation coeffi-
cients increases the probability that consecutive job arri-
vals will be from the same job family. If (3,15) chooses to
consider only Job Families One, Two and Three, if the next

four job arrivals all belong to Job Family Four, the heuris-
tic is tricked into thinking that there are no job arrivals in
the near future. This might lead to the heuristic recom-
mending that the batch processor should process a batch,
even if waiting for the four jobs from Job Family Four to
arrive reduces average cycle time. Increasing f from three
to four increases the probability that some job families
would be selected according to future job arrivals.

Corr(X,Y)=0.25

0

5

10

15

20

25

30

(0.5, 4) (0.8, 4) (0.5, 8) (0.8, 8)
Simulation Parameters

C
yc

le
 T

im
e

(3, 15) (4, 10) NACHM

Figure 4: Estimated mean cycle time for the three heuris-
tics when Corr (X,Y) = 0.25. NACHM has lower cycle
time than (3,15) for setting (0.5, 4).

Corr(X,Y)=0.7

0

5

10

15

20

25

(0.5, 4) (0.8, 4) (0.5, 8) (0.8, 8)
Simulation Parameters

C
yc

le
 T

im
e

(3, 15) (4, 10) NACHM

Figure 5: Estimated mean cycle time for the three heuris-
tics when Corr (X,Y) = 0.7. NACHM has lower cycle time
than either MPC-based heuristic at low traffic intensity.

However, the results also suggest that (3,15) benefits
more than (4,10) from the introduced correlation when
there are only four job families. This is due to the need of
(3,15) to exclude one job family in its analysis. When
Corr(X,Y) is low, the current WIP levels at the batch proc-
essor (a function of past job arrivals) are less representative
of the future job arrivals expected, than when Corr(X,Y) is
high. Since the MPC-based heuristic uses the current WIP
levels to determine which job family to exclude from its
analysis (for the case of (3,15)), high correlation benefits

2105

Tajan, Sivakumar, and Gershwin

(3,15) more than (4,10), as it makes (3,15) less likely to ig-
nore a crucial job family in its analysis.
 The relative performance of (4,10) (as measured by
the percentage reduction in mean cycle time over
NACHM) generally worsens as the correlation coefficient
is increased. Furthermore, when the traffic intensity is 0.5
and Corr(X,Y)=0.7, NACHM has significantly lower cycle
time than both MPC-based heuristics (3,15) and (4,10).
This effect is magnified when there are more job families,
as some job families are ignored by the MPC-based heuris-
tics, whereas NACHM does not ignore any job family. Ta-
ble 4 shows the expected percentage reduction in the mean
cycle time when switching from NACHM to either MPC-
based heuristic. A negative value indicates that switching
to that particular MPC-based heuristic results in increasing
the mean cycle time, while N.S. means we could not dif-
ferentiate the mean cycle times with 95% confidence level.

Table 4: Estimated percentage cycle time reduction due to
adoption of MPC-based heuristic over NACH-MM when
job arrivals have positively correlated job families
Corr
(X,Y)

Traffic
Intensity

Job
 Family

Quantity

Est. %
reduction
- (3, 15)

Est. %
reduc-

tion - (4,
10)

0.25 0.8 8 6.24% 6.7%
0.25 0.8 4 2.13% 10.32%
0.25 0.5 8 11.70% 11.70%
0.25 0.5 4 -2.59% 11.19%
0.7 0.8 8 7.44% 5.97%
0.7 0.8 4 N.S. 6.6%
0.7 0.5 8 -6.62% -8.76%
0.7 0.5 4 -9.47% -1.92%

6.2.2 Absolute performance of heuristics

We hypothesize that increasing correlation reduces the
mean cycle time, regardless of heuristic. To test this hy-
pothesis, we use a T-test to determine the statistical signifi-
cance of the observed reduction in mean cycle time due to
the increase in correlation. A 95% confidence level is still
used, and the null hypothesis is that the mean cycle times
under job arrivals with varying levels of correlation in their
job families are equal (H0: µ0≠µ1). The alternative hy-
pothesis is H1: µ0>µ1; we ignore the possibility that corre-
lation will increase mean cycle time. Two sets of compari-
sons are performed: comparing uncorrelated with lowly
correlated job families among successive job arrivals, and
comparing lowly correlated with highly correlated job
families among successive job arrivals. Table 5 contains
the estimated reduction in mean cycle time if low correla-
tion between the job families of successive job arrivals
were introduced, Table 6 contains the estimated incre-
mental reduction in cycle time if the correlation was in-
creased to a high level. In both tables, positive values indi-

cate increasing correlation resulted in reduced mean cycle
time.

Table 5: Estimated reduction in mean cycle time as
Corr(X,Y) moves from 0 to 0.25

Heuristic TI

job
family

qty.

Est. % re-
duction in
cycle time

Probabil-
ity null

hypothesis
is true

(3, 15) 0.8 4 0.62% 0.37
(4, 10) 0.8 4 1.22% 0.25

NACHM 0.8 4 2.72% 2.97 x 10-2
(3, 15) 0.8 8 3.85% 3.28 x 10-2
(4, 10) 0.8 8 3.40% 4.64 x 10-2

NACHM 0.8 8 2.02% 2.39 x 10-2
(3, 15) 0.5 4 6.07% 2.49 x 10-8
(4, 10) 0.5 4 6.78% 9.21 x 10-9

NACHM 0.5 4 9.56% 1.56 x 10-11
(3, 15) 0.5 8 9.20% 1.36 x 10-9
(4, 10) 0.5 8 9.70% 2.9 x 10-8

NACHM 0.5 8 14.29% 3.27 x 10-10

Table 6: Estimated reduction in mean cycle time as
Corr(X,Y) moves from 0.25 to 0.7

Heuristic TI job
family

qty.

Est. % re-
duction in
cycle time

Probability
null hy-

pothesis is
true

(3, 15) 0.8 4 10.40% 7.76 x 10-5
(4, 10) 0.8 4 7.16% 2.56 x 10-3

NACHM 0.8 4 10.86% 1.71 x 10-5
(3, 15) 0.8 8 17.45% 5.7 x 10-8
(4, 10) 0.8 8 15.72% 2.1 x 10-6

NACHM 0.8 8 16.37% 1.59 x 10-7
(3, 15) 0.5 4 15.86% 1.04 x 10-10
(4, 10) 0.5 4 9.50% 2.98 x 10-8

NACHM 0.5 4 21.14% 4.83 x 10-15
(3, 15) 0.5 8 27.71% 1.08 x 10-15
(4, 10) 0.5 8 26.24% 5.74 x 10-14

NACHM 0.5 8 40.12% 3.19 x 10-17

In general, the mean cycle time is significantly re-
duced when the amount of correlation between the job
families of successive job arrivals is increased. The only
cases where the T-test failed to find a significant difference
were when the number of job families were low (four), the
traffic intensity was high (0.8), and the correlation coeffi-
cient was increased from 0 to 0.25, for the two MPC-based
heuristics. Furthermore, the cycle time reduction is more
substantial (in terms of percentage reduction) when the
base scenario (Corr(X,Y) = 0) has higher cycle time. Thus,
the reduction in mean cycle time is greater when the num-
ber of job families is high or when the traffic intensity is
low.

2106

Tajan, Sivakumar, and Gershwin

The results also suggest that NACHM will benefit

more than the MPC-based heuristic. The introduction of
correlation causes job arrivals for a particular job family to
come in spurts. This alleviates the problem of estimating
individual job family arrival rates when NACHM selects
its job horizon, since it becomes more likely to see spurts
of job arrivals with the same job family. In addition, the
deterioration due to only optimizing the first batch to be
processed is reduced. If the next X arrivals all belong to
Job Family i, then it is likely that Job Family i would be
the dominant factor in determining the control policy at the
batch processor, whether we optimize the first batch, or un-
til the queue is emptied. This effect is more pronounced
when the traffic intensity is low, since the time instances
between jobs are long. Thus, we get to see greater relative
improvement for NACHM over the MPC-based heuristic
when positive correlation is introduced. At high correlation
coefficients and low traffic intensity, NACHM becomes
superior to the MPC-based heuristics.

If it is possible to increase the job family correlation of
successive job arrivals significantly, then the reduction in
cycle time obtained through this method is generally sig-
nificantly larger than the benefit of using a more sophisti-
cated control policy. This suggests that controlling the ar-
rival pattern of jobs into the batch processor can
conceivably result in larger improvements in the batch
processor performance, even with a simplistic batch proc-
essor control policy.

7 CONCLUSION

We develop an MPC-based heuristic for the infinite hori-
zon problem of minimizing the mean cycle time of a batch
processor with incompatible job families and future job ar-
rivals. The finite horizon problem is strongly NP-Hard,
making heuristics necessary even for problems with mod-
erate size. The MPC-based heuristic (f, L) has two parame-
ters: the number of job families considered f, and the num-
ber of future job arrivals L. When the total number of job
families is low, letting f be equal to the number of job
families, at the expense of shorter L or longer computa-
tional time per iteration, will improve heuristic perform-
ance significantly. When the total number of job families is
high, the exact value of f becomes less crucial.

We compare the performance of the MPC-based heu-
ristic (4,10) against a popular look-ahead heuristic,
NACHM. When the job families of successive job arrivals
are uncorrelated, the MPC-based heuristic has significantly
lower mean cycle time than NACHM, especially when the
job arrival rate is low.

When processors upstream of the batch processor in-
tend to process jobs that can quickly form batches, the job
families of arrivals the batch processor experiences may be
positively correlated. Our experimental results show that
increasing correlation generally causes a significant reduc-

tion in the mean cycle time observed, regardless of the
batch processor heuristic. Furthermore, the experienced
cycle time reduction is typically larger with more job fami-
lies.

In comparing the improvement between the MPC-
based heuristics and NACHM, the results support the hy-
pothesis that increased correlation causes smaller im-
provements for policies that foresee events farther into the
future. When the correlation is sufficiently high, (4, 10)
may even have worse performance than NACHM, for a
limited set of system parameters.

Our results suggest two ways the mean cycle time can
be reduced at the batch processor. First, one can use the
MPC-based heuristic, which outperforms NACHM for a
large proportion of the system parameters evaluated. How-
ever, this heuristic entails larger computational costs, par-
ticularly for larger values of f and L. The second way to re-
duce cycle time is to control the upstream processors, such
that the arrival distribution has positively correlated job
families. Increasing correlation in the job families results
in a significant reduction in mean cycle time for all system
parameters evaluated, regardless of batch processor policy.
Furthermore, for the correlation coefficients evaluated, the
amount of cycle time reduction obtained from increasing
correlation typically dwarfs the magnitude of the cycle
time reduction obtained from switching to the MPC-based
heuristic.

ACKNOWLEDGMENTS

The work presented is sponsored by the Singapore MIT
Alliance (SMA).

REFERENCES

Aalto, S. 1998. Optimal control of batch service queues
with compound Poisson arrivals and finite service ca-
pacity. Mathematical Methods of Operations Research
48:317-335.

Aalto, S. 2000. Optimal control of batch service queues
with finite service capacity and linear holding costs.
Mathematical Methods of Operations Research 51:
263-285.

Avramidis, A. N., K. J. Healy, and R. Uzsoy. 1998. Con-
trol of a batch-processing machine: a computational
approach. International Journal of Production Re-
search 36:3167-3181.

Bertsekas, D. P. 2005. Dynamic programming and optimal
control. 3rd ed. USA: Athena Scientific.

Deb, R. K. and R. F. Serfozo. 1973. Optimal control of
batch service queues. Advances in Applied Probability
5:340-361.

Duenyas, I. and J. J. Neale.1997. Stochastic scheduling of
batch processing machine with incompatible job fami-
lies. Annals of Operations Research 70:191-220.

2107

Tajan, Sivakumar, and Gershwin

Fowler, J. W., G. L. Hogg, and D. T. Phillips. 2000. Con-
trol of multiproduct bulk server diffusion/oxidation
processes. Part 2: Multiple servers. IIE Transactions
32:167-176.

Fowler, J. W., D. T. Phillips, and G. L. Hogg. 1992. Real-
time control of multiproduct bulk-service semiconduc-
tor manufacturing processes. IEEE Transactions on
Semiconductor Manufacturing 5:158-163.

Glassey, C. R., and W. W. Weng. 1991. Dynamic batching
heuristic for simultaneous processing. IEEE Transac-
tions on Semiconductor Manufacturing 4:77-82.

Gupta, A. K., A. I. Sivakumar, and V. K. Ganesan. 2004.
Look ahead batching to minimize Earliness/Tardiness
measures in batch processes. In 2004 IEEE Confer-
ence on Robotics, Automation and Mechatronics
2:1101-1106. Singapore: Institute of Electrical and
Electronics Engineers, Inc.

Law, A. M. and W. D. Kelton. 2000. Simulation modeling
and analysis. 3rd ed. New York: McGraw-Hill, Inc.

Mathirajan, M. and A. I. Sivakumar. 2006. A literature re-
view, classification and simple meta-analysis on
scheduling of batch processors in semiconductor. In-
ternational Journal of Advanced Manufacturing Tech-
nology 29:990-1001.

Robinson, J. K., J. W. Fowler, and J. F. Bard. 1995. The
use of upstream and downstream information in
scheduling semiconductor batch operations. Interna-
tional Journal of Production Research 33:1849-1869.

Solomon, L., J. W. Fowler, M. Pfund, and P. H. Jensen.
2002. The inclusion of future arrivals and downstream
setups into wafer fabrication batch processing deci-
sions. Journal of Electronics Manufacturing 11:149-
159.

Tajan, J.B. 2008. Control of manufacturing systems with
downstream batch processor. PhD. Thesis, School of
Mechanical and Aerospace Engineering, Nanyang
Technological University, Singapore.

Weng, W. W. and R. C. Leachman. 1993. An improved
methodology for real-time production decisions at
batch-process work stations. IEEE Transactions on
Semiconductor Manufacturing 6:219-225.

AUTHOR BIOGRAPHIES

JOHN BENEDICT TAJAN is a post-doctoral fellow for
the School of Information Systems for Singapore Man-
agement University. He received his B.S. in Manufacturing
Engineering and Management from De La Salle Univer-
sity, Philippines, and both his S.M. and PhD. in Innovation
in Manufacturing Systems and Technology from Nanyang
Technological University, under the Singapore-MIT Alli-
ance programme. His current research interests include
control of systems with batch processors and decentralized
methods for resource allocation.

APPA IYER SIVAKUMAR is an Associate Professor in
the School of Mechanical and Aerospace Engineering
(MAE) at the Nanyang Technological University, Singa-
pore and a Faculty Fellow of Singapore - Massachusetts
Institute of Technology (MIT) Alliance (SMA-MST pro-
gramme) He was at Gintic Institute of Manufacturing
Technology, Singapore prior to this appointment. His re-
search interests are in the area of OR, Optimization, Ad-
vanced Manufacturing Systems engineering, Discrete
Event Simulation, Scheduling, Logistics, Supply chain de-
sign, and Research Methodology. He is the Chairman of
the NTU Undergraduate Research Programme (URECA)
and the Chairman of the MAE Engineering Innovation and
Design (EID) programme. He received a Bachelors of En-
gineering in Manufacturing Systems Engineering and a
PhD in Manufacturing Systems Engineering from Univer-
sity of Bradford, UK. He has been the Technical Commit-
tee Chairman of ICCIM and co-edited the proceedings of
the 3rd and 4th International Conference on Computer In-
tegrated Manufacturing (ICCIM ’95 and ICCIM’97).

STANLEY B. GERSHWIN is a Senior Research Scien-
tist at the MIT Department of Mechanical Engineering. He
received the B.S. degree in Engineering Mathematics from
Columbia University, New York, New York, in 1966; and
the M.A. and Ph.D. degrees in Applied Mathematics from
Harvard University, Cambridge, Massachusetts, in 1967
and 1971. He has been previously affiliated with the Bell
Telephone Laboratories, the C. S. Draper Laboratory and
MIT Laboratory for Information and Decision Systems
(LIDS). He was Professor of Manufacturing Engineering at
the Boston University College of Engineering (half time)
in 1986-1987. Dr. Gershwin currently teaches an MIT
course in Manufacturing Systems Analysis (2.852).
Dr. Gershwin is the author of Manufacturing Systems En-
gineering (Prentice-Hall, 1994) and numerous papers in
international journals. His research interests include real-
time scheduling and planning in manufacturing systems;
hierarchical control; dynamic programming in hybrid (dis-
crete and continuous state) systems; decomposition meth-
ods for large scale systems; approximation techniques.
Dr. Gershwin and his students have performed research
projects and consulted for such companies as Boeing, Gen-
eral Motors, Polaroid, Hewlett Packard, Johnson & John-
son, and United Technologies. He is the MIT Group
Leader of the Leaders for Manufacturing Program research
Group 5, "Design and Operation of Manufacturing Sys-
tems." Dr. Gershwin is an IEEE Control Systems Society
Distinguished Lecturer and a Fellow of the IEEE. He is af-
filiated with MIT's Laboratory for Manufacturing and Pro-
ductivity, Leaders for Manufacturing Program, and the
Operations Research Center.

2108

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

