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ABSTRACT 

The oxidation and diffusion ovens in wafer fabrication are 
batch processors, where only jobs belonging to identical 
job families can be processed together. In this paper, we 
compare the performance of a proposed online heuristic 
based on Model Predictive Control against a popular look-
ahead method called NACHM. Simulation results show 
that the MPC-based heuristic, with properly selected pa-
rameters, can have up to 16.67% shorter mean cycle time 
than NACHM under uncorrelated job arrivals.  
Under positively correlated job arrivals, the mean cycle 
time of jobs passing through the batch processor is almost 
always significantly reduced for both the MPC-based pol-
icy and NACHM. The simulation results also suggest that 
increased correlation generates less improvement for poli-
cies that foresee events longer into the future, as NACHM 
improves at a faster rate than the MPC-based heuristic. 
Thus, when the correlation is sufficiently high (0.7) and the 
traffic intensity is low (0.5), the MPC-based heuristic, 
which considers events that occur farther into the future, 
has higher mean cycle time (from 1.92% to 9.47%) than 
NACHM.  
Controlling processors in front of the batch processor with 
the anticipated needs of the batch processor, successive job 
arrivals to the batch processor may result in positively cor-
related job families. Our results highlight the potential 
benefits of constraining the production of the upstream 
processor according to the anticipated needs of the batch 
processor. 

1 INTRODUCTION 

Both the oxidation and diffusion furnaces are batch proces-
sors that can concurrently process more than one job, with 
the processing time independent of the number of jobs 
processed. However, not all jobs arriving at the batch proc-
essor require identical chemical recipes and furnace tem-

peratures. Thus, not all jobs can be processed together as a 
batch. Jobs that can be processed together comprise a job 
family.  
 When the number of jobs to be processed is finite, 
minimizing the mean cycle time of jobs passing through a 
single batch processor is an NP-hard problem (Tajan 
2008). Thus, online heuristics meant for infinite horizon 
problems can also be used for finite horizon problems 
where the number of jobs to be scheduled is moderately 
large. In this paper, we compare a Model Predictive Con-
trol-based heuristic with NACHM, a popular look-ahead 
heuristic, under varying levels of correlation between the 
job families of consecutive arrivals. 

2 ONLINE CONTROL OF BATCH PROCESSOR 
IN WAFER FABRICATION – A REVIEW 

In this paper, we only consider the online control of batch 
processors where jobs belonging to different job families 
cannot be processed together. The processing time is only 
dependent on the job family being processed, and not on 
the job composition or quantity.  
 (Deb and Serfozo 1973) use dynamic programming 
formulations for minimizing the average cost per unit time 
and the expected discounted cost of a batch processor with 
stochastic processing times and Poisson job arrivals to 
show the existence of an optimal policy in the form of a 
minimum batch size. When the holding cost is linear and 
the processing time distribution is exponential, the optimal 
minimum batch size can be determined via closed-form 
equations. Follow-up work by  (Aalto 1998 and Aalto 
2000) consider compound Poisson arrival processes. When 
the processing time and arrival rate distributions are gen-
eral, the optimal policy is no longer guaranteed to be a 
threshold policy. However, (Avramidis, Healy, and Uzsoy 
1998) provide a method to determine the optimal threshold 
policy (the optimal policy among all threshold policies). 
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 An alternative to threshold policiea are look-ahead 
policies, which are heuristics that assume that a limited 
number of future job arrivals can be predicted. Dynamic 
Batching Heuristic (DBH), by (Glassey and Weng 1991), 
assumes a single job family, with processing time P. At 
any Time Instance t that the batch processor is available 
and only a partial batch is available, DBH is activated. 
DBH assumes a planning horizon from t to t+P. Given the 
forecasted job arrivals within this horizon, DBH starts a 
batch at the time instance t’ within the interval (t, t+P) that 
minimizes the total waiting time incurred by jobs at the 
batch processor from t to t’.  
 Simulation experiments show that DBH outperforms 
threshold policies, even with moderate errors in the pre-
dicted arrival time, as long as the traffic intensity is not 
low. 
 (Fowler, Phillips, and Hogg 1992) suggests a similar 
look-ahead called the next arrival control heuristic 
(NACH). NACH only considers the first future job arrival. 
Furthermore, NACH does not specify a future time in-
stance when the batch processor is to be loaded. Rather, 
NACH decides to wait for the next job arrival, where the 
process is repeated. When there are moderate prediction 
errors, NACH slightly outperforms DBH. (Fowler, Phil-
lips, and Hogg 1992) also extend NACH to the case where 
jobs belong to different job families (we call this extension 
NACHM). Future knowledge of the first job arrival for 
each job family is assumed to be known.  
 NACHM outperforms threshold policies, even under 
moderate prediction errors. However, the amount of im-
provement declines as the prediction errors become large. 
NACHM has been extended to two cases: when there is 
more than one batch processor in a particular stage 
(Fowler, Hogg, and Phillips 2000), and when the down-
stream processor requires considerable set-up times. 
(Solomon, et al. 2002). 
 Subsequent look-ahead heuristics include (Weng and 
Leachman 1993), which assume jobs have a unit holding 
cost, and propose the Minimum Cost Rate (MCR) heuristic 
in an attempt to minimize the rate cost is incurred by the 
batch processor. (Weng and Leachman 1993) propose a 
minimum cost rate (MCR) heuristic for the same problems 
in (Fowler, Phillips, and Hogg 1992). MCR, like DBH, 
does not postpone decisions; it instead determines the best 
time to process a batch at each instance it is executed. 
(Robinson, Fowler, and Bard 1995) propose the Rolling 
Horizon Cost Rate (RHCR) heuristic, which is a combina-
tion of the cost rate calculations of MCR and the decision 
postponement of NACHM. (Robinson, Fowler, and Bard 
1995) is also expanded to form the RHCR-S heuristic, 
which considers the expected waiting time of jobs in front 
of the downstream serial processor.  
 (Duenyas and Neale 1997) analyze the problem of 
minimizing the average holding cost per unit time of a sin-
gle batch processor with incompatible job families; job 

families have exponential processing times. Even when 
there are only two job families, each with a Poisson arrival 
process, the optimal policy can have a complicated form 
and a heuristic policy is proposed. This heuristic can be 
easily adapted to reflect knowledge of future arrivals. 
 The previously mentioned look-ahead heuristics con-
sider only cycle time-related objective functions; (Gupta, 
Sivakumar, and Ganesan 2004) apply look-ahead method 
to optimizing earliness/tardiness-related objectives. Instead 
of determining analytically the optimal time instance and 
batch composition, the authors propose using Conjunctive 
Simulated Scheduling to evaluate the options available to 
the idle batch processor. 

3 PROBLEM STATEMENT 

A batch processor can process up to Q jobs simultaneously, 
and the processing time is independent of the number of 
jobs being processed. There are n jobs to be processed at 
the batch processor, where n is unknown. The earliest time 
a Job i can be processed is at Time Instance ri. Each Job i  
belongs to a Job Family j, where j = 1 to m. Only jobs be-
longing to the same family can be batched together. The 
processing time of a batch is dependent only on the job 
family that is currently being processed. The objective is to 
minimize the mean cycle time for all jobs passing through 
the system, with the cycle time of Job i equal to its Com-
pletion Time ci minus its Arrival Time ri. . The batch proc-
essor is assumed to be initially available, and jobs are in-
dexed in increasing order of their release times.  

4 ONLINE CONTROL OF A BATCH 
PROCESSOR 

Because the number of jobs n is unknown, the number of 
jobs processed by the batch processor is uncertain. We re-
quire an online algorithm, which is executed regularly, 
with only a limited number of decisions made at each exe-
cution.  Online algorithms typically have to run much 
faster than offline algorithms, as online algorithms are re-
peatedly executed in real time. 
 In this section, we discuss two online algorithms: the 
MPC-based heuristic we develop, and NACHM, the 
benchmark we compare the MPC-based heuristic against. 

4.1 NACHM Control Scheme 

In NACHM, a decision has to be made when (a) a job ar-
rives, or (b) the batch processor finishes. When a job arri-
val corresponding to Family j occurs, the ‘push logic’ is 
used. In the ‘push’ logic, only jobs belonging to Family j 
are considered. If the total waiting time incurred if a batch 
of Family j jobs are immediately processed is higher than 
the waiting time incurred if the processor waits for the next 
arrival of Family j job, then the processor waits. If the re-
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verse is true, then the processor processes a batch of Fam-
ily j jobs.  
 When the batch processor finishes processing, the 
‘pull logic’ is used. The ‘pull’ logic is detailed below:  

• If there is at least one full batch, then the full 
batch with the weighted shortest processing time 
(WSPT) is chosen for processing. The weight of a 
particular Job Family i is the total number of jobs 
in front of the batch processor that does not be-
long to Job Family i.  

• If only partial batches exist, then the ‘push’ logic 
is executed for each job family.  

• If the ‘push’ logic returns a decision to process for 
every job family, then WSPT is used to select 
which job family to process. Conversely, if the 
‘push’ logic suggests waiting for the next job arri-
val for all job families, the system waits for the 
next job arrival.  

• If the decisions from the ‘push’ logic functions 
are not unanimous for all job families, then the to-
tal waiting time incurred by all jobs if the recom-
mended decision of the ‘push‘ logic is followed 
for that job family is computed. The correspond-
ing decision that results with the lowest total wait-
ing time is the output of the ‘pull’ logic. 

 We choose NACHM as a benchmark for several rea-
sons: 
• The logic behind NACHM is easy to understand.  
• The definition of job arrival horizons of NACHM and 
the MPC-based heuristic differ. NACHM assumes knowl-
edge of m job arrivals, one job arrival for each family. In 
contrast, the MPC-based algorithm takes, at most, the next 
L job arrivals, regardless of their job family.  
• NACHM considers all job families in making a deci-
sion. In contrast, the MPC-based algorithm may consider 
only a subset of job families. 
• NACHM only considers the waiting time incurred due 
to the first batch, while the MPC-based heuristic considers 
the waiting time incurred in emptying the batch processor 
queue and horizon.  

4.2 Model Predictive Control (MPC) 

One possible method of coping with algorithm processing 
time constraints is Model Predictive Control (MPC) (Bert-
sekas 2005). At each instance a decision has to be made, 
model predictive control optimally solves a deterministic 
problem with a shorter horizon. This will output a series of 
controls, one control for each instance a decision has to be 
made. Only the first control is implemented, the rest are 
discarded. This process is repeated at each instance a deci-
sion has to be made.  
 To implement MPC, a base method of solving small 
instances of the problem is required. (Tajan 2008) provides 
two base methods for solving small problem instances: an 

integer linear programming model and a dynamic pro-
gramming model. Either model can be easily modified to 
be used as a kernel for MPC. 

4.3 Development of MPC-based heuristic 

From numerical experiments, an increase of five job arri-
vals or one job family corresponds to roughly an order of 
magnitude of increase in the computational time required 
to solve a finite- horizon problem to optimality, using the 
dynamic programming model in Tajan (2008). Thus, MPC 
needs to truncate the problem in two dimensions to create 
the smaller problem instance: the number of future job ar-
rivals L and the number of job families f. Thus, the MPC-
based heuristic has two parameters and the exact variant 
can be distinguished via the parameters (f, L). 
 At any Instance t that the batch processor is idle, MPC 
predicts the arrivals for the next L jobs into the batch proc-
essor. Assuming that the batch processor can process up to 
χ>f job families, then χ – f job families are ignored by the 
MPC-based heuristic. Only the f job families whose 
batches have the shortest weighted processing times (given 
the current queue composition at the batch processor) are 
considered. This selection criterion is based on the optimal 
policy for a single batch processor with no future arrivals, 
which dictate that batches are to be processed according to 
the weighed shortest processing time rule (with the number 
of jobs inside a batch serving as the batch weight).   
 Let the set of job families selected for consideration be 
Sf. If, at Time Instance t, only ψ < f job families have jobs 
in front of the batch, then the ψ job families with jobs 
queued join Sf. We then augment Sf by counting the num-
ber of jobs belonging to a particular job family within the L 
future job arrivals. Let fi be the job family with the ith most 
jobs arriving within the horizon. Starting from i=1, if 

fi Sf ∉ , then  ∪ iff fSS = , and the process contin-
ues until i=m, or until |Sf| = f, whichever comes first. Thus, 
the smaller problem instance to be solved to optimality has 
|Sf| < f job families and a maximum of L future job arrivals. 

5 COMPARISON OF CONTROL SCHEMES FOR 
DIFFERENT LEVELS OF CORRELATION 

In this section, we discuss the manner in which correlation 
between successive job arrivals is introduced, before intro-
ducing the experimental setup. 

5.1 Experimental model 

Figure 1 shows the chosen experimental model. A single 
batch processor with a maximum capacity of Q jobs at a 
time stores jobs in m = 6 buffers, each buffer correspond-
ing to a job family. The batch processor experiences a sin-
gle job arrival stream; thus, the time between successive 
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job arrivals can be described by a single random distribu-
tion. We assume the job arrival stream is a Poisson proc-
ess; the time between successive job arrivals follow an ex-
ponential distribution.  

BP with 
Capacity Q

1

2

m

Single job arrival 
stream for m job 
families BP with 

Capacity Q

1

2

m

Single job arrival 
stream for m job 
families

 
 

Figure 1: The batch processor BP can process up to Q jobs 
belonging to the same family, and experiences a single 
random job arrival stream. 

5.2 Correlation between job families of successive 
job arrivals 

When upstream processors do not care about the family 
sequence of job arrivals to the batch processor, we assume 
zero correlation between the job families of successive job 
arrivals. Thus, the job family of a particular job arrival has 
a uniform distribution.  
 Positive correlation between the job families of suc-
cessive arrivals implies that it is likely to find consecutive 
job arrivals to have identical job families. Let there be m 
job families. The probability that the job family of x, ax, is 
1<z<m equals 1/m, since ax is uniformly distributed from 1 
to z. Let y be the job that arrives immediately after x. Let 
ψ=P(ay=z|ax=z). ψ is the probability that y belongs to Fam-
ily z if x belongs to Family z. P(ay=g|ax=z, g≠ z) has a uni-
form distribution across the remaining job families, and is 
equal to (1- ψ)/(m-1). The correlation coefficient between 
the job families of two consecutive jobs (represented as 
random variables X and Y) is related to ψ and m by 

1
1),(

−
−

=
m

mYXCorr ϕ
.  

5.3 Experimental Setup  

Two variants of the MPC-based heuristic (f, L) – f being 
the job family quantity considered and L being the job arri-
val horizon length - are evaluated, (3, 15) and (4, 10). 
Based on empirical experimentation, an increase in one 
family or in five jobs results in an increase in magnitude of 
the computational time requirement for the Dynamic Pro-
gramming model used by the MPC-based heuristic (Tajan 
2008). Thus, the heuristics (3, 15) and (4, 10) have roughly 
the same magnitude in computational requirements (based 
on a MATLAB implementation). These two heuristics are 
compared against NACHM. 

 For each simulation run, 2000 jobs are randomly gen-
erated, the cycle time from the first 200 jobs to exit the 
system are discarded. This warm-up period is deemed suf-
ficient using Welch’s method (Law and Kelton 2000). The 
processing time per job family is evenly distributed be-
tween three to nine time units. The mean time between job 
arrivals is determined through the traffic intensity. The 
traffic intensity TI is the dimensionless ratio between the 
arrival rate and the maximum processing rate. A ratio 
above 1.0 indicates that jobs arrive at a faster rate than the 
processor can process, which will lead to system instabil-
ity. We assume two values for the traffic intensity, 0.5 and 
0.8. If λ is the average arrival rate, then the mean time be-
tween arrivals, 1/ λ, is obtained by: 
1/ λ = (average time to process a batch/(traffic intensity * 
batch processor capacity)). 
 We assume two values (four and eight) for the job 
family quantity. Three levels of correlation coefficients 
were selected: zero correlation, weak correlation 
(Corr(X,Y)=0.25), and strong correlation (Corr(X,Y)=0.7). 
 For each set of simulation parameters, ten simulation 
experiments are performed. To increase testing power, all 
three evaluated heuristics share the same arrival stream. 
Table 1 summarizes the various levels varied for each set 
of experiments.  

 
Table 1:  Experimental Setup Summary 

Corr(X,Y) Job family 
quantity 

Traffic intensity 

0, 0.25, 0.7 4, 8 0.5, 0.8 

6 DISCUSSION OF RESULTS 

In each set of experiments, a paired T-test is used to deter-
mine whether the hypothesized differences in the mean cy-
cle time of the proposed MPC-based heuristics and 
NACHM is significantly different from zero. The confi-
dence interval selected is 95%.  
 The mean execution time of a single instance of any 
heuristic does not exceed 10 seconds. However, both 
MPC-based heuristics take considerably longer times than 
the NACHM heuristic, due to the need to solve a small dy-
namic programming problem at each instance.  

6.1 Uncorrelated Job Families for Consecutive Job 
Arrivals 

Figure 2 graphically presents the mean cycle time esti-
mates for the three heuristics when job arrivals are uncor-
related. Increasing either the number of job families or the 
traffic intensity increases the mean cycle time, regardless 
of policy. Both observations are intuitive: increasing the 
traffic intensity increases the workload of the processor, 
while increasing the number of job families mean that job 
composition of a batch become more restrictive.  
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 In directly comparing (3,15) with (4,10), (3,15) has a 
significantly longer mean cycle time than (4,10) when 
there are only four job families. When the number of job 
families is increased to eight, the performance of the two 
policies cannot be differentiated with 95% confidence 
level.  
 

Uncorrelated job arrivals
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Figure 2: Comparing cycle time for three heuristics when 
job families of consecutive job arrivals are uncorrelated. 
The simulation parameters are described as tuples, in the 
form (TI, job family quantity).  
 
 When there are only four job families, (3, 15) removes 
one job family from consideration. This can adversely af-
fect performance. As an example, assume that Job Families 
One, Two and Three each have a single job in front of the 
batch processor, and Job Family Four has none. However, 
the next three job arrivals belong to Job Family Four, and 
these three jobs will all arrive very soon. (3, 15) might rec-
ommend processing a small batch of either Family One, 
Two or Three, whereas (4, 10) correctly decides to wait for 
the next three arrivals of Family Four jobs.  
 When the job family quantity is increased to eight, the 
effect of one less job family considered is reduced. Firstly, 
the probability that a job arrival sequence has a dominant 
job family is reduced with a larger number of job families. 
Secondly, the probability that a crucial job family is ig-
nored by (3,15) and is not ignored by (4,10) (Event A) is 
25% with four job families and 12.5% with eight job fami-
lies.  
 Based on comparing (3, 15) and (4, 10), we recom-
mend the following guidelines in selecting the parameters 
L and f for the MPC-based heuristic: 
• If the number of job families is relatively small, it is 
best to select f to be equal to the number of job families, at 
the cost of reducing L or relaxing the computational time 
constraints. 
• If the number of job families is large, then small re-
ductions in f will not have a large adverse effect on the per-
formance of the heuristic.  

 In comparing NACHM against both MPC-based heu-
ristics (3, 15) and (4, 10), the mean cycle time for NACHM 
is significantly longer than either MPC-based heuristic for 
all four parameter sets. Table 2 contains the estimated per-
centage reduction in cycle time if the control scheme is 
switched from NACHM to either MPC-based heuristic. 
The results suggest that the MPC-based heuristic outper-
forms NACHM when the job families of consecutive job 
arrivals are uncorrelated.  

 
Table 2: Paired T-test results for uncorrelated job arrivals 
Traffic 
Inten-

sity 

Job 
 Family 

Quantity 

Estimated % 
cycle time re-

duction - (3, 15) 

Estimated % 
cycle time re-
duction - (4, 

10) 
0.8 8 4.45% 5.38% 
0.8 4 4.2% 11.69% 
0.5 8 16.66% 16.19% 
0.5 4 1.21% 13.84% 

 
 To be sure that the improvement of the MPC-based 
heuristics are not due to their possibly longer horizons, we 
perform an auxiliary comparison between the MPC-based 
heuristic (4,8) and NACHM when there are eight job fami-
lies. For each traffic intensity (0.5 and 0.8),  ten simulation 
runs are performed. There does not exist an instance where 
(4,8) will have a longer horizon (in terms of the number of 
job arrivals) than NACHM. Since the actual number of job 
families running through the system is twice that of the 
number of job families considered by (4,8) at any instance, 
the mean number of future job arrivals considered by (4, 8) 
is four, half that of NACHM. However, Table 3 shows that 
(4, 8) still has significantly lower mean cycle time than 
NACHM. When the traffic intensity is low, (4, 8) has 
16.9% lower mean cycle time, and when the traffic inten-
sity is high, 5.17% lower mean cycle time. This experiment 
shows that the improved mean cycle time by the MPC-
based heuristics cannot be wholly attributed to a possibly 
longer horizon length than NACHM. 
 
Table 3: Comparing (4, 8) with NACH-MM when there are 
eight job families 

Traffic 
Intensity 

μ(4,8) μNACHM μNACHM  
- μ(4,8) 

95% Confi-
dence interval 

0.5 23.58 28.39 4.81 (4.35, 5.37) 
0.8 29.32 30.92 1.6 (0.72, 2.48) 

 
To the best of the authors’ knowledge, all of previ-

ously proposed look-ahead methods ‘optimize’ only the 
waiting time incurred due to the next batch. By ignoring 
the remaining batches that need to be processed by the 
batch processor, the previously proposed look-ahead poli-
cies do not fully utilize the available information. For ex-
ample, if the current batch processor queue has jobs from 
three job families (Figure 3), there must be at least four 
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batches that need to be processed by the batch processor, 
before the queue is emptied. The MPC-based heuristic will 
consider the cycle time incurred for processing all three 
batches, while NACHM (and other look-ahead methods) 
merely look at the cycle time incurred for the first batch to 
be processed. We believe that the MPC-based heuristic has 
improved performance over NACHM because of this fur-
ther forward thinking.   

  

Batch 
processor

Current Queue

Batch 
processor

MPC heuristic output:

Process

then process

then process

NACHM heuristic output:

Wait for incoming

Batch 
processor

Current Queue

Batch 
processor

Batch 
processor

Current Queue

Batch 
processor

MPC heuristic output:

Process

then process

then process

NACHM heuristic output:

Wait for incoming
 

 
Figure 3: The difference between the two policies is that 
the MPC-based heuristic will provide a complete sequence 
to empty out the buffer, while NACHM (and other look-
ahead methods) will only consider the best decision with 
regards to only the first batch to be processed. 

6.2 Correlated Job Families for Consecutive Job 
Arrivals 

We divide the discussion into two sections. First, we dis-
cuss the effect of increased correlation on the relative per-
formances of the heuristics, then we discuss the effect of 
increased correlation on the absolute performances of the 
heuristics.  

6.2.1 Relative performance of heuristics 

Figure 4 and Figure 5 illustrate the mean cycle times of the 
three heuristics under increased correlation of job families 
for successive job arrivals. (3,15) still has significantly 
higher cycle time than (4,10) when there are only four job 
families. When there are eight job families, the mean cycle 
times generated by (3,15) and (4,10) generally cannot be 
distinguished within 95% confidence interval. The only 
exception is when the correlation coefficient is high (0.7), 
and the traffic intensity was low (0.5), where (4,10) has 
superior performance to (3,15). High correlation coeffi-
cients increases the probability that consecutive job arri-
vals will be from the same job family. If (3,15) chooses to 
consider only Job Families One, Two and Three, if the next 

four job arrivals all belong to Job Family Four, the heuris-
tic is tricked into thinking that there are no job arrivals in 
the near future. This might lead to the heuristic recom-
mending that the batch processor should process a batch, 
even if waiting for the four jobs from Job Family Four to 
arrive reduces average cycle time. Increasing f from three 
to four increases the probability that some job families 
would be selected according to future job arrivals. 
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Figure 4: Estimated mean cycle time for the three heuris-
tics when Corr (X,Y) = 0.25. NACHM has lower cycle 
time than (3,15) for setting (0.5, 4). 
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Figure 5: Estimated mean cycle time for the three heuris-
tics when Corr (X,Y) = 0.7. NACHM has lower cycle time 
than either MPC-based heuristic at low traffic intensity.  
 

However, the results also suggest that (3,15) benefits 
more than (4,10) from the introduced correlation when 
there are only four job families. This is due to the need of 
(3,15) to exclude one job family in its analysis. When 
Corr(X,Y) is low, the current WIP levels at the batch proc-
essor (a function of past job arrivals) are less representative 
of the future job arrivals expected, than when Corr(X,Y) is 
high. Since the MPC-based heuristic uses the current WIP 
levels to determine which job family to exclude from its 
analysis (for the case of (3,15)), high correlation benefits 
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(3,15) more than (4,10), as it makes (3,15) less likely to ig-
nore a crucial job family in its analysis. 
 The relative performance of (4,10) (as measured by 
the percentage reduction in mean cycle time over 
NACHM) generally worsens as the correlation coefficient 
is increased. Furthermore, when the traffic intensity is 0.5 
and Corr(X,Y)=0.7, NACHM has significantly lower cycle 
time than both MPC-based heuristics (3,15) and (4,10). 
This effect is magnified when there are more job families, 
as some job families are ignored by the MPC-based heuris-
tics, whereas NACHM does not ignore any job family. Ta-
ble 4 shows the expected percentage reduction in the mean 
cycle time when switching from NACHM to either MPC-
based heuristic. A negative value indicates that switching 
to that particular MPC-based heuristic results in increasing 
the mean cycle time, while N.S. means we could not dif-
ferentiate the mean cycle times with 95% confidence level.   
 
Table 4: Estimated percentage cycle time reduction due to 
adoption of MPC-based heuristic over NACH-MM when 
job arrivals have positively correlated job families  
Corr 
(X,Y) 

Traffic  
Intensity 

Job 
 Family 

Quantity 

Est. %  
reduction 
- (3, 15) 

Est. %  
reduc-

tion - (4, 
10) 

0.25 0.8 8 6.24% 6.7% 
0.25 0.8 4 2.13% 10.32% 
0.25 0.5 8 11.70% 11.70% 
0.25 0.5 4 -2.59% 11.19% 
0.7 0.8 8 7.44% 5.97% 
0.7 0.8 4 N.S. 6.6% 
0.7 0.5 8 -6.62% -8.76% 
0.7 0.5 4 -9.47% -1.92% 

6.2.2 Absolute performance of heuristics 

We hypothesize that increasing correlation reduces the 
mean cycle time, regardless of heuristic. To test this hy-
pothesis, we use a T-test to determine the statistical signifi-
cance of the observed reduction in mean cycle time due to 
the increase in correlation. A 95% confidence level is still 
used, and the null hypothesis is that the mean cycle times 
under job arrivals with varying levels of correlation in their 
job families are equal (H0: µ0≠µ1). The alternative hy-
pothesis is H1: µ0>µ1; we ignore the possibility that corre-
lation will increase mean cycle time. Two sets of compari-
sons are performed: comparing uncorrelated with lowly 
correlated job families among successive job arrivals, and 
comparing lowly correlated with highly correlated job 
families among successive job arrivals. Table 5 contains 
the estimated reduction in mean cycle time if low correla-
tion between the job families of successive job arrivals 
were introduced, Table 6 contains the estimated incre-
mental reduction in cycle time if the correlation was in-
creased to a high level. In both tables, positive values indi-

cate increasing correlation resulted in reduced mean cycle 
time. 
 
Table 5: Estimated reduction in mean cycle time as 
Corr(X,Y) moves from 0 to 0.25  

Heuristic TI 
 

job 
family 

qty. 

Est. % re-
duction in 
cycle time 

Probabil-
ity  null 

hypothesis 
is true 

(3, 15) 0.8 4 0.62% 0.37 
(4, 10) 0.8 4 1.22% 0.25 

NACHM 0.8 4 2.72% 2.97 x 10-2 
(3, 15) 0.8 8 3.85% 3.28 x 10-2 
(4, 10) 0.8 8 3.40% 4.64 x 10-2 

NACHM 0.8 8 2.02% 2.39 x 10-2 
(3, 15) 0.5 4 6.07% 2.49 x 10-8 
(4, 10) 0.5 4 6.78% 9.21 x 10-9 

NACHM 0.5 4 9.56% 1.56 x 10-11 
(3, 15) 0.5 8 9.20% 1.36 x 10-9 
(4, 10) 0.5 8 9.70% 2.9 x 10-8 

NACHM 0.5 8 14.29% 3.27 x 10-10 
 
Table 6: Estimated reduction in mean cycle time as 
Corr(X,Y) moves from 0.25 to 0.7 

Heuristic TI job 
family 

qty. 

Est. % re-
duction in 
cycle time  

Probability  
null hy-

pothesis is 
true 

(3, 15) 0.8 4 10.40% 7.76 x 10-5 
(4, 10) 0.8 4 7.16% 2.56 x 10-3 

NACHM 0.8 4 10.86% 1.71 x 10-5 
(3, 15) 0.8 8 17.45% 5.7 x 10-8 
(4, 10) 0.8 8 15.72% 2.1 x 10-6 

NACHM 0.8 8 16.37% 1.59 x 10-7 
(3, 15) 0.5 4 15.86% 1.04 x 10-10 
(4, 10) 0.5 4 9.50% 2.98 x 10-8 

NACHM 0.5 4 21.14% 4.83 x 10-15 
(3, 15) 0.5 8 27.71% 1.08 x 10-15 
(4, 10) 0.5 8 26.24% 5.74 x 10-14 

NACHM 0.5 8 40.12% 3.19 x 10-17 
 

In general, the mean cycle time is significantly re-
duced when the amount of correlation between the job 
families of successive job arrivals is increased. The only 
cases where the T-test failed to find a significant difference 
were when the number of job families were low (four), the 
traffic intensity was high (0.8), and the correlation coeffi-
cient was increased from 0 to 0.25, for the two MPC-based 
heuristics. Furthermore, the cycle time reduction is more 
substantial (in terms of percentage reduction) when the 
base scenario (Corr(X,Y) = 0) has higher cycle time. Thus, 
the reduction in mean cycle time is greater when the num-
ber of job families is high or when the traffic intensity is 
low.  
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The results also suggest that NACHM will benefit 

more than the MPC-based heuristic. The introduction of 
correlation causes job arrivals for a particular job family to 
come in spurts. This alleviates the problem of estimating 
individual job family arrival rates when NACHM selects 
its job horizon, since it becomes more likely to see spurts 
of job arrivals with the same job family. In addition, the 
deterioration due to only optimizing the first batch to be 
processed is reduced. If the next X arrivals all belong to 
Job Family i, then it is likely that Job Family i would be 
the dominant factor in determining the control policy at the 
batch processor, whether we optimize the first batch, or un-
til the queue is emptied. This effect is more pronounced 
when the traffic intensity is low, since the time instances 
between jobs are long. Thus, we get to see greater relative 
improvement for NACHM over the MPC-based heuristic 
when positive correlation is introduced. At high correlation 
coefficients and low traffic intensity, NACHM becomes 
superior to the MPC-based heuristics.  

If it is possible to increase the job family correlation of 
successive job arrivals significantly, then the reduction in 
cycle time obtained through this method is generally sig-
nificantly larger than the benefit of using a more sophisti-
cated control policy. This suggests that controlling the ar-
rival pattern of jobs into the batch processor can 
conceivably result in larger improvements in the batch 
processor performance, even with a simplistic batch proc-
essor control policy. 

7 CONCLUSION 

We develop an MPC-based heuristic for the infinite hori-
zon problem of minimizing the mean cycle time of a batch 
processor with incompatible job families and future job ar-
rivals. The finite horizon problem is strongly NP-Hard, 
making heuristics necessary even for problems with mod-
erate size. The MPC-based heuristic (f, L) has two parame-
ters: the number of job families considered f, and the num-
ber of future job arrivals L. When the total number of job 
families is low, letting f be equal to the number of job 
families, at the expense of shorter L or longer computa-
tional time per iteration, will improve heuristic perform-
ance significantly. When the total number of job families is 
high, the exact value of f becomes less crucial.  

We compare the performance of the MPC-based heu-
ristic (4,10) against a popular look-ahead heuristic, 
NACHM. When the job families of successive job arrivals 
are uncorrelated, the MPC-based heuristic has significantly 
lower mean cycle time than NACHM, especially when the 
job arrival rate is low.  

When processors upstream of the batch processor in-
tend to process jobs that can quickly form batches, the job 
families of arrivals the batch processor experiences may be 
positively correlated. Our experimental results show that 
increasing correlation generally causes a significant reduc-

tion in the mean cycle time observed, regardless of the 
batch processor heuristic. Furthermore, the experienced 
cycle time reduction is typically larger with more job fami-
lies.  

In comparing the improvement between the MPC-
based heuristics and NACHM, the results support the hy-
pothesis that increased correlation causes smaller im-
provements for policies that foresee events farther into the 
future. When the correlation is sufficiently high, (4, 10) 
may even have worse performance than NACHM, for a 
limited set of system parameters.   

Our results suggest two ways the mean cycle time can 
be reduced at the batch processor. First, one can use the 
MPC-based heuristic, which outperforms NACHM for a 
large proportion of the system parameters evaluated. How-
ever, this heuristic entails larger computational costs, par-
ticularly for larger values of f and L. The second way to re-
duce cycle time is to control the upstream processors, such 
that the arrival distribution has positively correlated job 
families. Increasing correlation in the job families results 
in a significant reduction in mean cycle time for all system 
parameters evaluated, regardless of batch processor policy. 
Furthermore, for the correlation coefficients evaluated, the 
amount of cycle time reduction obtained from increasing 
correlation typically dwarfs the magnitude of the cycle 
time reduction obtained from switching to the MPC-based 
heuristic. 
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