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ABSTRACT

In today’s competitive semiconductor business environment,
wafer manufacturers are facing continuous pressure to ac-
curately predict cycle time and tool utilization, gauge the
impact of changes in capacity available, assess the impact of
changes in product mix and quantity, and determine action
plans to improve operational performance. Discrete Event
Simulation (DES) is a widely used approach to perform such
an analysis. However, DES has some inherent shortcomings
for these planning tasks. Analytical models, like queueing
networks, have much shorter response times and additional
advantages compared to DES. But due to the complexity
of semiconductor manufacturing systems (SMS) queueing
models were not able to model all the peculiarities of those.
This paper provides an overview of the main features of
the IBM Enterprise Production planning and Optimization
System (EPOS), a queueing network based system, which
closes this gap. EPOS has been in use in the 300mm fab-
rication of IBM in Fishkill for more than 2 years and has
turned out to be an invaluable tool to analyze the trade-offs
of cycle time and capacity within this complex environment.

1 INTRODUCTION

In today’s competitive semiconductor business environment,
wafer manufacturers are facing continuous pressure to ac-
curately predict cycle time and tool utilization, gauge the
impact of changes in capacity available, assess the impact of
changes in product mix and quantity, and determine action
plans to improve operational performance. It is a cutting

edge industry where pricing premiums are placed on the
latest technology and being first to market often leads to
more market share and higher revenue. Furthermore, the
competitive market allows the customer to choose a sup-
plier not only based on price and quality but also on lead
time. Reduced cycle time is also highly desirable in order
to enable faster yield learning, resulting in an increase in
good chips per wafer earlier in a development cycle. Thus
responsiveness is a key to success. And, if possible, this
has to be considered already as early as possible in the fab
design.

The biggest challenge in gauging and improving op-
erational performance is the nature of the semiconductor
manufacturing process itself – characterized by complex
reentrant flows, large variations in raw process times, dif-
ferences in batch sizes for tool sets, cascading tool sets, and
a rich set of complexity in the tools themselves. This results
in a significant portion of lead time being non-productive
queue time (waiting to be serviced) and a well known trade-
off between reducing cycle time and increasing equipment
utilization sometimes known as the operating curve.

These challenging characteristics have limited the abil-
ity of the modeling community over the past 40 years to
provide fab planners modeling software that meets their
requirements for the speed of execution, ease of use, and
accuracy to answer the key business question about gauging
and improving operation performance.

Fab level discrete event simulations (DES) have been
tried but model maintenance requirements, runtime con-
straints, and the limitation of only being able to investigate
one scenario at a time have limited any real application
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to very high level aggregated runs with limited accuracy.
Apart from the run time issue, there are other inherent dis-
advantages of DES that limit its applicability to capacity
planning of semiconductor manufacturing systems (SMS).
By DES one can only arrive at meaningful results for the
highest utilized tool as bottleneck. Further bottlenecks be-
come visible after the most utilized tool is resolved and
additional capacity is added to modeled resources. Further-
more, the DES run is not able to calculate the percentage
of overload. This can only be figured out in a laborious
and time consuming iteration of simulation runs. But espe-
cially in the case of the tactical capacity planning regarding
the demand for a year in the future and new technologies
the capacity planner needs that information and wants to
perform what-if analysis quickly.

Optimization methods have been successful in handling
cascading for tool planning, like in IBM’s 200mm fab in
Burlington, Vermont (Bermon and Hood 1999), but are
unable to determine cycle time.

From this perspective analytical models based on queue-
ing theory are the appropriate choice. They are able to
provide the capacity analysis results including bottleneck
overload percentage etc. and integrate this with the corre-
sponding cycle time calculations. As pointed out in (Shan-
thikumar et al. 2007) analytical modeling systems using
various queueing models (solutions) have proved insuffi-
cient of adequately capturing the complexity of SMSs in
the past.

In this paper the EPOS system of IBM is presented
which closes this gap and allows for this type of modeling.
EPOS is a queueing network based simulation system for
tactical and operational production planning and production
management which can be integrated with the fab MES
to capture routes, tools, raw process times, rework rates,
and WIP. The maintenance of input planning parameters is
supported by a continuous statistical monitoring feedback
loop within the fab reporting system.

EPOS is based on advanced queueing theory algo-
rithms developed by IBM and is currently implemented
and running in IBM’s 300mm fab in East Fishkill, NY.
These algorithms take into account typical manufacturing
characteristics of semiconductor fabs, like batch process-
ing, process and downtime variability, rework, sampling and
scrap rates, and varying product lot sizes. They use open
queueing networks in order to build the models. These net-
works include an approximation of GX/G(b,b)/c which is
based on an application of the renewal counting process and
on diffusion approximation. The accuracy of the approxi-
mation has been shown - besides the practical experience -
by a comprehensive comparison of the analytical outcome
with the corresponding discrete event simulation results.

The rest of this paper is structured as follows: Section
2 describes the queueing model characteristics and how
they meet the requirements of SMSs. The WIP movement

prediction based on fluid models is discussed in the third
section. In section 4 we present the implementation of
the queueing model as system into the IT landscape of
the 300mm line, the established business process and the
results gained in IBM’s fab in East Fishkill. Finally section
5 provides the conclusion and remarks on future work.

2 QUEUEING MODEL CHARACTERISTICS

2.1 General Model Characteristics

In SMSs batch processing is a widely spread, especially for
tools like furnaces and wet cleaning equipment. This special
way of performing an operation requires special queueing
models taking into account that wafers to be collected up
to a certain number (called batch size). Wafers are not
only performed in batches but they are also moved as lots,
so called Front Opening Unified Pods (FOUPs), between
subsequent operations. The filling degree of the FOUPs
does not need to be equal. It depends on the product group
and other parameters. Thus the arrival stream of wafers
at an equipment could be composed of FOUPs carrying a
different number of wafers. These FOUPs could be grouped
into batches which could be bigger, equal or smaller than
the incoming lot sizes. From a modeling perspective this
means that the arrival stream has to be modeled as bulks
with an arbitrarily distributed size. The service process on
the other hand has to be modeled as batch process too.
For a general introduction into queueing systems with bulk
arrivals and batch service refer to (Chaudhry and Templeton
1983). Thus the key is to model the way of batch processing
and batch creation of different incoming lots appropriately.
There are some approximations for batch processing in the
literature, like (Bitran and Tirupati 1989) and (Chiamsiri
and Leonard 1981). The later one provides a model with
bulk arrivals and batch service for the (1,b)-rule based on
a diffusion approximation. But in this model a wafer can
join a running process as long as the process batch is not
filled up to its maximum, which is usually not the case
on the real shop floor. Bitran and Tirupati on the other
hand focus only on the departures at batch processing work
stations. In EPOS we have implemented a server queue with
generally distributed interarrival times IX of arriving bulks
of an arbitrarily distributed size X . The service process is
modeled with generally distributed service times S taking
place with a fixed batch size b, listed as GX/G(b,b)-queue.
Let be λ X = 1/E(IX ) and µ = 1/E(S).

For a GX/G(b,b)/1-queue Zisgen has developed in
(Zisgen 1999) a diffusion approximation yielding to the
following formula for the average number of wafers E(Q)
waiting in queue

E(Q) = ρ

[
ρ̃ ρ̂

1− ρ̂
+ ρ̃b− E(X)

b
ρ̃ ρ̂

1− ρ̂
+ ρ̃b− b−1

2

]
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where ρ̂ = eγ with

γ =
2β

α
=

2(λ X E(X)−µb)
(Var(X)+E(X)2C2(IX ))λ +b2C2(S)µ

and

ρ̃ =
1
γ

2Λ

γα
R(ρ̂b−1− ρ̂)

and R is the probability of having less than b wafers in
the system and Λ the time needed to fill the system up
to b wafers. Furthermore C2(S) is the squared coefficient
of variation of the service time S and C2(IX ) the squared
coefficient of variation of the interarrival time IX .

In the multiple server queue Hanschke (Hanschke 2006)
has shown an approximation for the average number of
wafers in GX/G(b,b)/c queue by modifying the Allan
Cuneen approximation by a modulation of the batch ar-
rival stream at the GX/G(b,b)/c queue applying renewal
theory. Let Ib be the arrival rate of a complete batch at the
server and λ b = 1/E(Ib). This yields to

E(Q) =
ρ2b(C2(Ib)+C2(S))

2(1−ρ)
,

where ρ = λ b/µ and

C2(Ib) = E(X)(C2(X)+C2(I))/b .

The fixed batch size has the shortcoming that in the
reality on the shop floor batches are not necessarily filled
up to their maximum. In some case technical constraints
might yield to a lower filling level, e.g. sometimes the
number of wafers within the FOUPs locked at the load
ports of a Furnace is less than the maximum batch size of
the furnace. Or sometimes one has to wait unreasonably
long to fill up a batch to its maximum since the products
to be grouped together have only low volumes or due to
some other incidents on the shop floor causing that lots that
would fit into the batching pattern will not show up soon.
Therefore EPOS adjusts the fixed batch size b to a so called
effective batch size be f f which is calculated dynamically
on the basis of a maximum waiting time for batches to be
filled up or due to other tool parameters, like the number
of buffer slots (refer to 2.5) and FOUP filling degrees per
product. This adjusted effective batch size is then used as
b in the queueing formula and thus the capacity as well as
the lead time calculation is adjusted.

2.2 Multiple Server Queues and Chamber Tools

In general one-of-a-kind equipments are the exception on
the shop floor of a SMS. In the opposite, usually equivalent
or similar equipments are grouped together in a sector.

These equipments interact as alternates. Alternate tools
require a queueing model based on multiple-server queues.
Therefore Conners et.al. provide in (Conners et al. 1996)
a model based on tool groups assuming to consist only of
identical tools. But often within a tool group not all tools
are qualified to perform the same operation which requires a
more flexible approach in order to get the correct utilizations
and queues. Therefore in EPOS tools are modeled as
GX/G(b,b)/1 queues if their set of operations is unique
or as GX/G(b,b)/c server server queues, where c is the
number of identical servers at the multi-server queue. In the
later case the concept of batch processing with bulk arrivals
was extended to the multiple-server case by exchanging ρ

by Erlang’s loss formula

Pc =
(cρ)c

c!
1

1−ρ

∑
c−1
k=0

(cρ)k

k! +
(

(cρ)c

c!
1

1−ρ

)
as an approximation of the probability that all server

are busy.
This replacement yields to

E(Q) =
ρPcb(C2(Ib)+C2(S))

2(1−ρ)
.

Some process equipment consists of multiple chambers.
These chambers are either processing the wafers in parallel
and are acting more or less as equivalent servers within a
tool. Or these chambers differ from each other and have
different operations assigned to them. In the later case
EPOS handles each chamber as an independent server and
is considered as an individual tool. In the case that the
chambers are identical there are specific tool types in EPOS
used to cover these specialities (refer to section 2.5).

2.3 Multi Product- Multi-Class Open Queueing network

The major goal of the development of EPOS was the in-
tegration of capacity planning and cycle time planning for
the entire fab and not only for isolated equipments.

In order to cover that goal the fabrication is considered
as an open queueing network. A decomposition approach,
enhanced on the basis of (Pujolle and Ai 1986) and (Gelenbe
and Pujolle 1987), is used to determine the queuelengths for
each equipment in the network. Cycle time as an additional
performance measurement is derived by Little’s rule (refer
to (Little 1961)). Let be S the service time at a work station
and I the interarrival time. The needed traffic rates and the
traffic variability are calculated on the basis of the following
approximation of the interdeparture times

2069



Zisgen, Meents, Wheeler, and Hanschke

Db =

{
S with probability ρ

I∗+S with probability 1−ρ

where I∗ is the time required to allocate a batch of size
b, which yields the mean interdeparture time

E(Db) = E(I∗)

and the squared coefficient of variation of the interde-
parture times

C2(Db) = ρ
2C2(S)+(1−ρ)ρ +(1−ρ)C2(I∗) .

Splitting this departure process and superpositioning
the interarrival process per workcenter yields to a linear
system of equations for the mean interarrival times per
FOUP E(IX ) and to a linear system of equations for the
corresponding squared coefficient of variation C2(IX ). For
details refer to (Hanschke and Zisgen 2005).

By this the queueing network in EPOS models the traffic
of FOUPs and not that of individual wafer movement.

2.4 Load Balancing and Routing Probabilities

Unlike other approaches, like those in Conners et. al.
(Conners et al. 1996), EPOS is modeling individual tools
instead of tool groups. The main difference is that in the
case of tool groups the assumption is that all tools within a
tool group are enabled to perform exactly the same set of
operations.

But usually all the equipments on the shop floor have
their own set of operations they are capable to perform,
e.g. due to different process qualifications or customer
requirements. This impacts directly the capacity and other
performance indicators of these equipments. Therefore in
EPOS each tool can have an individual set of operations
assigned to. Sometimes even individual chambers in a tool
have a distinct set of operations. In this case a chamber is
modeled as a separate tool. But this flexibility raises up the
question of how to appoint the routing probabilities which
are a pre-requisite in order to calculate the queue-lengths per
equipment in the queueing network. Obviously these routing
probabilities have a significant impact on the performance
and have to be chosen appropriately. This is done in EPOS
by a linear program which minimizes the sum of mutual
utilization differences by choosing the appropriate routing
probabilities with respect to the given tool dedications. Thus
the load of tools within a class is most balanced, whereby
a class of tools is defined as a set of tools which share at
least on process step with at least one other tool in the class.
(Kramer and Meents 2001). This approach is justified by

the goal of the operations management of the fab to avoid
utilization peaks for certain tools and thus keeping the lead
time and the x-factor for the overall fab as low as possible.

2.4.1 Main Flow and Rework Steps

The routing is defined as a sequence of operations which
can be performed at one or several alternative tools. In
the case that rework is needed a lot (FOUP) is allowed to
branch off the main flow and to proceed with a sequence
of rework operations before it re-enters the main flow at a
well-defined point. A FOUP can be sent to rework multiple
times. The rework rates are gathered from the history tables
in the MES (refer to section 4.1).

2.4.2 Scrap

Srap can occur in different types, like lot scrap, wafer scrap
and bad dies marked in the wafer map. Bad dies do not have
any impact on cycle time since the wafer has to processed
anyhow. All other scrap rates are converted to lot scrap,
allowing product lot sizes to be treated as fixed values. By
doing this, different products can have different FOUP sizes
in EPOS, but lot sizes do not decrease over the length of
the product route. Obviously this is the most seldom scrap
event but by this approach the lot sizes can be supposed to
be fixed. But different products can have different FOUP
sizes in EPOS. The scrap rates are also gathered from the
MES (refer to section 4.1).

2.5 Tool Type Modeling

Having defined the traffic equations and the general way
of handling the batch processing above the next step is
to decompose the network into single tools and to find
appropriate tool models for each tool type usually found
on a semiconductor shop floor. Because of the variety
of process equipment on the shop floor of a SMS, like
furnace, lithography equipment, wet cleaner, etch tools,
etc., one can not lump all these types together and model
them with one specific server queue type. Therefore in
EPOS we have defined a set of tool types from a queueing
modeling point of view. Currently there are four general
tool types defined and implemented which are capable to
model all the equipment installed on the shop floor in the
fab in East Fishkill, NY. The tool types are

1. Lot based equipment
2. Pipeline equipment
3. Batching equipment
4. Metrology equipment

Based on the specific tool type characteristics which
have to be taken into account the mean process cycle time
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E(S) of the corresponding queue server is adjusted. The
process time in EPOS is split into a mean fixed time E(F)
per batch and a mean variable time E(V ) per wafer. The
fixed time could be the time which is needed to setup the
tool or the chamber into the right state done up-front the
process. The variable time is the process time needed per
wafer. Thus EPOS can consider dependencies caused by
the different filling degree of FOUPs or batch sizes. The
mean process time per batch is computed as

E(S) = E(F)+E(V ) ·b ,

where b is the number of wafers in the processed batch.

2.5.1 Lot based equipment

Lot based tools are the most common ones on the shop
floor. These tools perform all the wafers of an arriving
FOUP at a time. They can have κ equal chambers which
can process batches independently at the same speed. In
the case that the number of wafers in an arriving FOUP L,
is greater than b ·κ the FOUP has to be split and processed
in [L/(b ·κ)] runs. Vice versa if L < b ·κ lots can be mixed
in the tool in the manner that wafers of a FOUP arriving at
a busy but not fully loaded equipment can get started. The
variable process time Vt is adjusted accordingly.

2.5.2 Pipeline equipment

Pipeline tools process wafers in a sequence of different
process steps, e.g. a sequence of several chemical baths
the wafers have to stay in for a different period of time.
A subsequent wafer can be released into the tool while the
first one is still in the tool but not before a trigger time t
has passed. The trigger time is usually the cycle time of the
longest process step. Pipeline tools are modeled as tandem
queues. The first queue gets the trigger time assigned as
cycle time. Since there is no queue between the two servers
of the tandem the second queue is modeled as an infinite
server with its cycle time being the sum of the remaining
process step’s process time. In order to get full FOUPs
departing the tandem queue the second server has the batch
size of the FOUP.

2.5.3 Batching equipment

Batching equipments, like furnace tools, are usually batch
tools where the batch size is a multiple of a lot or FOUP
size. Unfortunately batches can not always be filled up to
the maximum batch size due to special constraints. E.g. the
number of internal buffer slots could constrain the batch
size. Furthermore in cases of low volume products it might
happen that one has to wait a long time until enough FOUPs
carrying that product have shown up to fill up a batch to

its maximum. Therefore an effective batch size be f f is
calculated based on the following parameters

• Number of buffer slots p
• Maximum waiting time to fill up a batch

2.5.4 Metrology equipment

Metrology tools often work on a sample basis. There are
two kinds of samples, lot samples and wafer samples. In
the first case lots get picked for sampling with a sample
rate sr and in the later case a sample number sn of wafers
out of one lot is chosen for the measurement.

2.6 Machine outages

Especially in semiconductor fabrication machine outages
can not be neglected. In EPOS those outages get incorpo-
rated into the mean service time at a tool via the availabil-
ity of that tool in an analogous manner to (Gaver 1962).
The availability is defined as R = MT BF/(E(D)+MT BF),
where E(D) is the mean down time and MTBF the mean
time between failures of the tool. Supposing that the time
between to outages is exponentially distributed with param-
eter ω = 1/MT BF . This yields to the mean completion
time of the tool E(C) = E(S)/R. Accordingly the squared
coefficient of the completion time is

C2(C) = C2(S)+
R(1−R)E(D)(1+C2(D))

E(S)
.

3 WIP MOVEMENT PREDICTION BY FLUID
MODELS

The queueing networks used in EPOS are based on the
assumption that the system is in a stationary state. This
assumption has been proofed reasonable in the daily business
process for mid and long term planning. However, these
models have their shortcomings in the context of short term
forecasts taking into account the current state of the shop
floor. In the operational business of running a semiconductor
fab the planners have to answer questions like how the WIP
will move downstream based on actual WIP positions in the
fab or how fast WIP bubbles can be worked off. In order to
tackle these operational planning issue a fluid model based
algorithm was developed. By choosing a fluid model based
approach the existing queueing model can be used as basis
for the fluid model.

The fluid model is on the same level of granularity
as the queueing model or even more granular. E.g. tool
dedications on chamber level taken into account. By their
nature operational questions require short response times.
In order to keep the runtime short the scheduling of the
fluids is rule-based instead of using time consuming linear
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programming, like in (Conners et al. 1994). Furthermore, in
practice it is often more than difficult to get the appropriate
cost to parameterize the objective function for the linear
programs. The rules implemented allow prioritization on
EC-Level (or job class) as well as thresholds for specific
throughputs per product or for WIP levels in general. To
setup the fluid model the current WIP positions are fetched
from the Manufacturing Execution System (MES) and fed
into EPOS. This snap shot includes also prioritization in-
formation of each lot and some additional information for
selecting certain lots. This queried information can be
adopted or changed manually by the EPOS user interface,
e.g. to perform what/if-scenarios. The fluid model approach
is a pure deterministic approach. Therefore it is used to
conduct short term analysis only. But since the runtime of
the model is pretty fast and since the tight integration of
EPOS into the IT systems allows to create the model in a
short period of time fluid model runs can be set up quickly
whenever the conditions on the shop floor have changed
significantly. Thus the lack of randomness in the model
can be overcome by repeating iterations. For details refer
to (Meents and Zisgen 2004).

4 IMPLEMENTATION

4.1 IT Infrastructure

In addition to the challenges involved in mathematically
modeling a complex SMS, there is also the non-trivial chal-
lenge of handling the massive amount of data required to feed
the model. It is of course important to initialize the model
by populating it with data from the manufacturing line, but it
is also crucial to update model parameters to reflect process
and equipment changes to ensure accuracy. This can only
be achieved by embedding the mathematic modeling system
into the overall IT landscape of the manufacturing facility.
With tight integration between the simulation model and
the fab MES (SiView in IBM 300mm), a large amount of
data, such as process times, tool assignments, etc., can be
automatically generated and maintained. Still, the engineer-
ing community may prefer to review and manually enter
some modeling parameters. Also, for expected performance
improvements or capital strategies, model adjustments for
future time periods may be required. For this manual data
editing, the EPOS Graphic User Interface can be used to
conveniently navigate to the desired parameters and make
individual record or mass updates. In the EPOS installation
at IBM’s 300mm fab in East Fishkill, NY, approximately
80% of the nearly 250,000 records in the model are automat-
ically generated and maintained, while the remaining 20%
are manually updated. Simulation results are available as
dynamic web reports in the IBM Intranet and can be used by
this easily for analysis, meetings, or management reviews.

Figure 1 shows the data flow for EPOS implemented in
IBM’s 300mm fab.

Figure 1: Planning process data flow

4.2 Inegration into the business process of production
planning

Along with integration into the IT environment, it is also
essential to have the modeling system and analysis results
be integrated into fab operations and business processes.
For management of model inputs, the Java-based GUI for
EPOS allows the user community to edit data in a password
protected, secure environment. Each user has a unique ID
and permission settings, allowing easy change tracking and
access control. On the model output side, all simulation
results are output to a queryable database, and many standard
dynamic web reports are available for analysis and reporting.
Figure 2 represents a flow chart illustrating the processes
around parameter control, simulation modeling, and results
analysis.

Figure 2: EPOS capacity planning process

4.3 Observed Benefits

At IBM’s 300mm wafer fab, the EPOS system has com-
pletely replaced legacy spreadsheet-based models and been
used as the exclusive fab planning system for more than 2
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years. The implementation has brought about a paradigm
shift in the general understanding of the trade-offs between
capacity utilization and fab cycle time and armed the plan-
ning community with analysis capabilities that were pre-
viously not possible. Today, capital investment strategies
are made not only by focusing on tools which are heavily
utilized, but also considering second tier tools which may
have a large contribution to overall cycle time due to high
variability or multiple mask levels. In many cases, equip-
ment which ordinarily would have been purchased due to
utilization forecasts that are higher than an arbitrary thresh-
old, have been supplanted with the purchase of tools which
were less utilized, but had a higher contribution to overall
fab cycle time, and were less expensive. This shift in capital
strategy to focusing on impact to cycle time using EPOS
rather than only the most highly utilized tools has already
saved multi millions of dollars in capital costs. In addition
to capacity planning, EPOS is used to easily and quickly
forecast fab WIP levels and product lead times for a given
product mix and volume. This is particularly important in
an environment with high product differentiation and sen-
sitivity to mix changes. Today, with a given volume plan,
the East Fishkill model has been able to consistently predict
average fab WIP and x-factor to within 10 percent.

Because the model is analytic in nature, unlike a DES,
optimization techniques can also be applied to quickly guide
decisions concerning fab loading strategies. For instance,
given product margin data, the system can be used to deter-
mine the most profitable mix and volume which can be fed
back through the MRP system or supply chain organization.
Another advantage of the analytic model is the ability to
automatically generate an empirical plot of wafer starts vs.
product cycle time, or fab operating curve, with just one
simulation run. This capability can be used both tactically
and strategically for determining the maximum fab loading,
while not exceeding a desired product cycle time. The
graph in Figure 3 shows an operating curve for the entire
fab created by EPOS. This type of trade-off analysis is
commonly used by fab management in determining factory
operating policies over different time horizons.

Figure 3: Fab operating curve by EPOS

5 CONCLUSION

The queueing models of EPOS are capable to model the
key characteristics of real-world SMS. These models have
improved the accuracy of queueing analysis in a semicon-
ductor environment. With that queueing models become
applicable in this state space. EPOS is in invaluable tool in
IBM’s 300mm fab to model its capability and quickly ana-
lyze trade-offs between cycle time and capacity. Its success
enlarges the applicability of queueing theory for perfor-
mance analysis to a more universal class of manufacturing
lines.
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