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ABSTRACT 

Scheduling is a crucial activity in semiconductor manufac-
turing industry. Effective scheduling in its operations leads 
to improvement in the efficiency and utilization of its 
equipment. Job Shop Scheduling is an NP-hard problem 
which is closely related to some of the scheduling activities 
in this industry. This paper presents an improved Bee Col-
ony Optimization algorithm with Big Valley landscape ex-
ploitation as a biologically inspired approach to solve the 
Job Shop Scheduling problem. Experimental results com-
paring our proposed algorithm with Shifting Bottleneck 
Heuristic, Tabu Search Algorithm and Bee Colony Algo-
rithm with Neighborhood Search on Taillard JSSP bench-
mark show that it is comparable to these approaches.  

1 INTRODUCTION 

Semiconductor manufacturing industry is a complex yet 
dynamic business. Some major activities in the semicon-
ductor production are wafer fabrication, wafer probe, 
product assembly and final testing. These activities are 
highly capital intensive and need to be performed in an un-
predictable environment, as the activities are sensitive to 
disruption factors such as frequent facilities maintenance, 
rework, machine downtime etc. To compete in a versatile 
environment where the product life cycle is considerably 
short, semiconductor manufacturers are trying different 
methods to improve productivity and minimize the cycle 
time of their products. Solutions to such problems play an 
important role in ensuring that scarce resources are allo-
cated effectively to competing activities, so as to maximize 
their utilization and efficiency. 
 Job Shop Scheduling Problem (JSSP) is closely related 
to activities in semiconductor manufacturing industry such 
as part routing, part processing operations and coordination 
of part handling as discussed by Gupta and Sivakumar 
(2006), and Cavalieri et al. (1999).  It is NP-hard in nature 
(Lenstra et al. 1977). In a typical JSSP, a sequential job al-

location on resources (machines) that optimizes a particu-
lar objective function is to be determined. While many al-
gorithms exist to solve the JSSP (Blazewicz et al. 1996, 
Lee et al. 1997), the Bee Colony Optimization (BCO) algo-
rithm has recently been adapted (Chong et al. 2006, Chong 
et al. 2007). The bee inspired algorithms are generalized 
from the foraging behaviors of bees where waggle dance is 
used as a communication medium to attract other bees to a 
food source. When the behaviors are applied algorithmi-
cally on complex and dynamic problems, the algorithm ap-
pears to be self-organized, flexible and robust in discover-
ing solutions to the problems (Bonabeau and Meyer 2001). 

The bee inspired algorithms have also been attempted 
in various areas including the dynamic server allocation in 
Internet hosting center (Nakrani and Tovey 2004), hex 
game playing program (Rijswijck 2007), Traveling Sales-
man Problem (Lucic and Teodorovic 2002, Lucic and 
Teodorovic 2003, Wong et al. 2008), and Telecommunica-
tion Network Routing (Wedde et al. 2004). A survey that 
discusses bee inspired algorithms and their applications to 
some generalized assignment problems can be found in 
Baykosoglu et al. (2007).  

In this paper, a BCO algorithm with Big Valley land-
scape (BCBV) is presented. Besides the foraging behav-
iors, bees in the proposed algorithm are equipped with the 
ability to explore the search space which appears in a Big 
Valley structure as discussed in the works by Reeves 
(1999), Nowicki and Smutnicki (2005), and Boese et al. 
(2008). An effective search around the Big Valley structure 
will help in locating the best solution in the space. The 
BCBV algorithm is tested on Taillard JSSP benchmark and 
compared against the Shifting Bottleneck Heuristic (SBP), 
Tabu Search Algorithm (TSA), and Bee Colony Algorithm 
with Neighborhood Search (BCNS) (see Sections 5.1 and 
5.2 for details).  
 This paper starts with a discussion on JSSP in Section 
2. Section 3 explains the Big Valley landscape structure. A 
discussion on the BCBV algorithm is presented in Section 
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4. Experiments and results are presented in Section 5. Fi-
nally, this paper ends with a conclusion.  

2 JOB SHOP SCHEDULING PROBLEM (JSSP) 

As presented by Adams et al. (1988), JSSP is defined by a 
set J of n jobs, J = {1, 2, …, n}. These jobs are to be proc-
essed on a set of m machines, M = {1, 2, …, m}. O is a set 
of operations, O = {0, O11, …, O1m, On1, …, Onm, z} where 
Oij denotes the j-th operation of job Ji. 0 and z denotes two 
fabricated operations which represent the “first” and “ulti-
mate” operation. Thus, |O| = (n*m)+2. Each operation Oij is 
associated with tij and �ij which denote its earliest start time 
and processing time respectively. Apart from these, the fol-
lowing constraints have to be fulfilled: 

� Each job Ji in set J is composed of a set Ai which 
consists of ordered pairs of operations, con-
strained by the precedence relations in (1). 

 ijiijijijji AOOtt ���� �� ),(, )1()1( �  (1) 
� Each machine Mr in set M is composed of a set Er 

which describes the set of all pairs of operations 
to be performed on machine r. Each operation Oij 
will be processed for �ij without interruption and 
each machine can handle at most one operation at 
a time. These constraints are shown in (2). 
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� For every operation in O, tij must be greater than 
or equal to 0. This constraint guarantees the com-
pletion of all jobs as shown in (3). 

 OOt ijij ��� ,0  (3) 
Although there are many metrics that can be consid-

ered as the objective function of JSSP, makespan (Cmax) is 
the most common and will be the focus in this paper. Cmax 
is defined as the longest duration for which all operations 
of all jobs are completed. 

2.1 Disjunctive Graph Representation, Critical 
Path and Its Block Decomposition 

A common representation for JSSP is the disjunctive 
graph. A disjunctive graph is a collection of nodes (verti-
ces) and edges (arcs). Nodes are linked by the edges of the 
graph. Hence, a disjunctive graph G is defined as  
 � �DisjConj EEOG �� ,  (4) 
where O is the set of operations as defined in Section 2. 
EConj is a set of directed conjunctive edges representing the 
precedence constraints of each job as described in (1). EDisj 
is a set of bi-directional disjunctive edges representing the 
capacity constraints of each machine as described in (2). 
These disjunctive edges link all the operations that need to 
be handled by a particular machine. An example of the dis-

junctive graph based on a 3-job x 3-machine JSSP in Table 
1 is shown in Figure 1. Each row of the table represents a 
pre-defined machine precedence order for each job with 
the processing time in parentheses. A solution can be ob-
tained by converting bi-directional disjunctive edges to be-
come directed edges. To make sure that a feasible solution 
is obtained, the conversion is performed such that no cycle 
exists in the graph. This will eventually turn the disjunctive 
graph to a directed graph as shown in Figure 2. 
   

Table 1. An Example of 3-job x 3-machine JSSP. 
Job Machine (Processing time) 
1 2 (3) 1 (13) 3 (6) 
2 1 (8) 2 (4) 3 (12) 
3 3 (10) 2 (5) 1 (5) 
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Figure 1: A Disjunctive Graph for 3-job x 3-machine JSSP 
Instance in Table 1. 
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Figure 2: A Directed Graph (Feasible Solution) for 3-job x 
3-machine JSSP Instance in Table 1. 
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Figure 3: Gantt Chart for the Directed Graph in Figure 2. 
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 The longest path (or critical path) in the directed graph 
provides the makespan for the JSSP. The critical path in 
Figure 2 is given by: 0 � O31 � O32 � O22 � O11 � O12 
� O13 � z. The sum of all the processing times is 0 + 10 + 
5 + 4 + 3 + 13 + 6 + 0 = 41. To better illustrate the critical 
path found in Figure 2, a Gantt chart is shown in Figure 3 
where the operations in the critical path are shaded.  
 A critical path consists of a set of operations which 
cannot be delayed so that all the jobs will be completed on 
time. The critical path can be decomposed into a set of r 
blocks, B = {b1, b2, … br} as described by Grabowski et al. 
(1986), and Nowicki and Smutnicki (1996). Each block 
contains an order set of operations/nodes which are proc-
essed on the same machine bk = {dk1, dk2, …, dki} where 
d�O. At the same time, two consecutive blocks must con-
tain operations/nodes which are processed on different ma-
chines. The following example illustrates the block de-
composition of the critical path found in Figure 3. 
 As stated earlier, one of the critical paths for the 3-job 
x 3-machine JSSP instance in Table 1 is given by {O31, 
O32, O22 , O11 , O12 , O13 }. By performing block decompo-
sition, four blocks are identified where r = 4, B = {b1, b2 , 
b3, b4}. The content of each block is as follows: b1 = 
{O31,}, b2 = {O32, O22, O11}, b3 = {O12}, b4 = {O13}. This 
block decomposition is the central idea in the implementa-
tion of the neighborhood operator which will be discussed 
in Section 4.3. 
 In the subsequent section, the Big Valley landscape 
structure will be discussed. The discussion will include 
how the landscape looks and its characteristics. 

3 THE BIG VALLEY LANDSCAPE STRUCTURE 

A landscape can be described as a structure of the neigh-
borhood generated by a heuristic operator used to traverse 
the search space of the problem in view of the objective 
function. Reeves (1999) suggested that when a heuristic 
search approach is applied to a combinatorial optimization 
problem that defines a unique search space, a “landscape” 
will be created. In addition, it is found that different land-
scapes will be created by different search operators used in 
the search space exploration. A landscape consists of many 
local optima or false peaks which will be changing with 
respect to the heuristic search operators. The existence of 
these local optima or false peaks often obstruct the search 
from locating global optimum as illustrated in Figure 4.  

However, these landscape structures can assist the 
search of global optimum instead of obstructing it. One 
such landscape structure is the “Big Valley” structure ob-
served by Boese et al. (2008) in the 2-opt operator for 
Traveling Salesman Problem (TSP). Similar landscape 
structure has since been extended to flow shop scheduling 
problem (FSP) by Reeves (1999), and also in JSSP by 
Nowicki and Smutnicki (2005). 

In the Big Valley landscape structure, local optima 
tend to exist close to one another in clusters, with each 
cluster centered on the global optimum forming a valley 
structure as illustrated in Figure 4. The formation of the 
Big Valley landscape has strong implication for how heu-
ristic search should be performed. The Big Valley structure 
suggests that the determination of new start points for 
search should be based on previous local optimum rather 
than based on a random point in the search space. This is 
because good candidate solutions are often found to be 
close to other good solutions. By exploring and exploiting 
the areas near to these local optima effectively, the search 
will be directed towards the global optimum eventually. 

 
 

global minimum 

clusters  of  local minimum 

objective 
function ridge of local 

optima 

shoulder of local 
optima

state 
space current 

state 
initial 
state  

Figure 4: A Landscape with the Big Valley Feature. 

3.1 Big Valley Landscape Analysis 

To investigate the Big Valley landscape structure, a plot 
from a sample of 1500 solutions collected through a run of 
BCBV algorithm on the ta_01 (15-job x 15-machine) prob-
lem is generated as shown in Figure 5. ta_01 is one of the 
datasets in Taillard JSSP benchmark which will be dis-
cussed in Section 5.1. The solutions are plotted using the 
percentage makespan difference, � (see Section 5.1) versus 
their heuristic distance (see Section 4.4.1) from a fixed lo-
cal optimum. 
 In Figure 5, solutions are concentrated in four separate 
clusters at different distances from a fixed local optimum. 
The clusters are formed by the neighborhood operator (see 
Section 4.3.2) which is integrated in BCBV. Figure 5 also 
shows that the clusters are some heuristic distance away 
from one another. Search should be performed intensely 
within clusters to find new local optima with better 
makespan since they are most probable to occur close to 
one another. The clustering approach by neighborhood op-
erator and intensive searching around different clusters 
which are certain heuristic distance apart is implemented in 
BCBV algorithm. Details about the analysis on the Big 
Valley landscape can be obtained in Reeves (1999), and 
Nowicki and Smutnicki (1996). 
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Figure 5: � versus Distance from a Local Optimum. 

4 BCO WITH BIG VALLEY LANDSCAPE 

This section first describes the natural foraging model of a 
typical bee colony. Next, an algorithmic framework of 
BCBV is presented. It is followed by an overview of the 
foraging model used in constructing feasible solutions for 
JSSP, and the waggle dance model used in finding good 
solutions. Finally, a discussion on the Big Valley landscape 
exploitation in BCO is provided. 

4.1 Bee Colony 

The foraging behavior in a bee colony remains mysterious 
for many years until von Frisch (1974) translated the lan-
guage embedded in bee waggle dances. Waggle dance op-
erates as a communication tool among bees. Through the 
waggle dance, bees could describe the distance, direction, 
and description of the food source to other bees. Distance 
is conveyed by the type and duration of the waggle dance. 

Suppose a bee found a rich food source, a figure-eight 
pattern is shown in the dance. This figure-eight dance con-
sists of a straight waggle run followed by a turn to the right 
back to the starting point, and then another straight waggle 
run followed by a turn to the left and back to the starting 
point again. Via these informative dances, the bee has ac-
tually informed its hive mates about the direction and dis-
tance of the food source. von Frisch (1974) also suggested 
that bees could describe the type of flower which is richest 
to forage through the use of pollen. Once a bee has associ-
ated itself with the particular scent of pollen from a waggle 
dance, it will ignore flowers with other scents at the indi-
cated location. Such a mechanism achieves a kind of short-
term memory to differentiate and identify food sources and 
will be explored through the addition of a Taboo list in the 
BCO model in this paper. Further discussions about wag-
gle dance can be found in Dyer (2002), and Biesmeijer and 
Seeley (2005). 

4.2 BCBV Algorithm 

The BCBV algorithm uses a similar model based on bees’ 
foraging behaviors as shown in Figure 6. The BCBV starts 
with a set of feasible schedules generated by dispatching 
rules, which will be discussed in Section 4.3.1. A combina-
tion of foraging and performing waggle dance constitutes 
one cycle (or iteration). The foraging model will be dis-
cussed in Sections 4.3.2 and 4.3.3. The waggle dance 
model, which includes how a bee observes, selects and per-
forms a waggle dance, is implemented using a linked list 
WL and will be discussed in Section 4.4. 

The BCBV algorithm is executed for Nmax iterations 
and the best solution found during the searching process 
will be presented as the final schedule at the end of a run. 

 
procedure BCBV 

Cmax_best � � 
Niter � 0 
GenerateInitialSolution( ) [see section 4.3.1] 
while Niter <> Nmax  do 

for each forager bee fi do 
if WL<>{ } 

fi.ObserveNSelectDance( ) [see section 4.4.2 & 4.4.3] 
end if 
fi.Cmax� fi.Forage( ) [see section 4.3.2 & 4.3.3] 
if  fi.Cmax< Cmax_best 

Cmax_best � fi.Cmax 
fi.PerformWaggleDance( ) [see section 4.4.1] 

end if 
end for 
Niter� Niter+1 

end while 
end procedure BCBV 

Figure 6: Algorithmic Framework of BCBV. 

4.3 Foraging Model with Neighborhood Search 

The foraging model starts with a group of bees construct-
ing a set of feasible solutions by using a set of dispatching 
rules for JSSP with the use of disjunctive graph representa-
tion as mentioned in Section 2.  

4.3.1 Generate Initial Feasible Solution 

The dispatching rules that are applied in the BCBV algo-
rithm include Shortest Processing Time, Longest Process-
ing Time, Most Work Remaining, Least Work Remaining, 
Work in Next Queue, Last In First Out, First In First out, 
Shortest Processing Time+Work in Next Queue, Shortest 
Processing Time+Most Work Remaining and Random 
Dispatching Rules. In the Random Dispatching Rules, bees 
are allowed to randomly pick one of the listed rules to con-
struct a feasible solution. These rules are applied in a round 
robin fashion for all the bees. Implementation details of the 
listed rules can be found in the work by Yamada (2003). 
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The set of feasible solutions generated by the dispatch-

ing rules will be used to generate other feasible solutions. 
Other than this, bees may also generate new solution from 
their own solution found in previous iteration or based on 
the dance (solution) that they followed. These three sets of 
feasible solutions will serve as a foundation to produce 
other solutions for the rest of the algorithm via a neighbor-
hood operator. The mechanism of the operator will be ex-
plained in the subsequent section.  

4.3.2 Neighborhood Operator 

Each feasible solution, Sx, has it own critical path which 
can be identified via the disjunctive graph. To produce a 
set of moves based on Sx, a neighborhood operator C(Sx), 
which is based on the block structure described in Section 
2, is defined in (5): 
 BbbCSC j

r

j jjx ���
�

,)()(
1�  (5) 

where Cj is defined as in (6), (7), and (8): 
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 The generation of C(Sx) is adapted from the work by 
Nowicki and Smutnicki (1996). (6) suggests that swapping 
is allowed on the last two operations in the first block. (7) 
suggests that swapping is allowed on the first two (and last 
two) in every intermediate blocks (b2, …, br-1). (8) suggests 
that the swapping is allowed on the first two operations in 
the last block. Once the neighborhood operation ends, 
C(Sx) contains a set of moves that can be used to generate 
new feasible solutions. Of all the moves in C(Sx), moves 
that are able to generate better Cmax when compared to the 
current Cmax (improving moves) are placed into the set MI , 
and moves that have been recently visited (Taboo moves) 
are placed in the set MT. A bee will then decide which 
move to select based on the strategies that will be dis-
cussed in Section 4.3.3. 

4.3.3 Move Selection Strategies 

Recall that bees could remember scent and avoid searching 
patches of flowers with different scents through the pollen 
identification ability (refer to Section 4.1). To aid these 
bees in making a better decision in selecting a move, a 
similar short-term memory is given to the artificial bees in 

the model. This short-term memory is developed via the 
use of a Taboo list. Each time a move is selected, its in-
verse move will be added to the Taboo list. Should the in-
verse move be encountered in the next search, its selection 
is avoided if possible. The aim of the Taboo list is to direct 
the search process away from recently visited solutions so 
that more of the unexplored search space can be reached. 
Hence, more solutions can be evaluated. Besides Taboo 
list, another strategy is introduced to aid the bees to select a 
better move. Using this strategy, a bee will select at ran-
dom a move from MI should one exist, else it will select at 
random a non-improving move.  

The combination of the neighborhood operator, Taboo 
list and move selection strategy form the foraging model 
shown in Figure 7. It corresponds to the Forage() method 
in Figure 6. 

 
Step 1: Find a set of moves from a feasible solution, Sx by us-

ing operator C (Sx). 
Step 2: Identify MI and MT from C (Sx). 
Step 3: If ��� TI MM  

Randomly pick a move from MI  – MT. 
Go to Step 7. 

Step 4: If ��� TI MM  
Randomly pick a move from MI � MT. 
Go to Step 7. 

Step 5: If ��TM  
Randomly pick a move from TM . 
Go to Step 7. 

Step 6: Random pick a move from C(Sx). 
Step 7: Add the inverse of selected move to MT 
Step 8: Return the selected move. 

Figure 7: Algorithm for Forage(). 

4.4 Waggle Dance with Exploitation of Big Valley 
Landscape 

Upon returning to the hive after foraging, a bee will need 
to perform waggle dance in order to convey information 
about its discovery to other hive mates. At any one time, a 
bee will perform waggle dance if its Cmax is smaller than 
the current best Cmax among all the bees. Note that in our 
implementation, the solutions representing the dances by 
the bees are accumulated in an unbounded list, WL. Accu-
mulation of these dances (solutions) over time will create a 
landscape which consists of multiple local optima as dis-
cussed in Section 3. To manage the landscape effectively, 
approaches stated in Sections 4.4.1 to 4.4.3 are proposed.  

4.4.1 Dance Accumulation Strategy 

Since WL is unbounded, it might accumulate too many 
dances such that a unique landscape could not be identi-
fied. To maintain a finite set of unique peaks (local op-
tima), a replacement approach is introduced. This approach 
compares the similarity of the newly generated solution 

2054



Wong, Puan, Low, and Chong  
 

(denoted as Sp) with each solution in WL (denoted by Sq 
where Sq�WL) using a distance metric D.  
 The role of D is to compare the similarity between two 
solutions. It measures the number of bit difference between 
the directed disjunctive arcs representation of two solutions 
as defined in (9). The EDisj of both Sp and Sq are represented 
as a total-ordering bitmap which consists of a string of 
booleans.  

 � �
)(

)(),(

pDisj

qDisjpDisj

SE
SESEdiff

D �  (9) 

 The solution Sq that is within a distance of replacement 
threshold DR from Sp will be replaced, if one exists. If there 
are two or more solutions in the list that meet the threshold, 
all of them will be replaced accordingly. Otherwise, Sp will 
be appended to WL. 
  
Step 1: If Sp.Cmax  < Cmax_best 

Search through WL and accumulate Sp in WL by re-
placing solutions which are within the replace-
ment threshold, DR.  

Sp.CtElite � 0. 
Step 2: For each entry Sq in WL 

If Sq.CtElite  > NAttempt 
WL.remove(Sq) 

Figure 8: Algorithm for PerformWaggleDance(). 
 
To make sure that every solution in WL is searched in-

tensively by bees, a counter, CtElite, is associated to each 
solution. CtElite is incremented whenever the associated so-
lution (dance) is used (followed) by another bee. When a 
solution is used for NAttempt (a predefined value) times, the 
entry will be removed from the list. By using the above 
strategy, exploitation of different peaks in the Big Valley 
landscape is preserved. Figure 8 shows the algorithm for 
the dance accumulation strategy which corresponds to the 
PerformWaggleDance() method in Figure 6. 

4.4.2 Dance Observation Strategy 

Before a bee leaves its hive to start the foraging process, it 
decides if it will observe and follow a dance shown by pre-
vious dancer with a probability of Pfollow. In the BCO algo-
rithm suggested by Chong et al. (2006), Pfollow is adjusted 
dynamically via a profitability lookup table. A different 
strategy is adopted in BCBV. Pfollow is adjusted based on 
the profitability rating of a bee, Pfi and the average profit-
ability of the waggle dance list, PfWL. Pfi and PfWL are de-
fined in (10), and (11) respectively: 
 

ii C
Pf

max

1
�  (10) 

 � �
�

n

i iWL Cn
Pf

1
max

11  (11) 

where Ci
max is the makespan of the schedule generated by a 

forager fi (Chong et al., 2007) and n is the number of danc-

ing bee. Pfollow is determined by (12) where the 0.9 and 0.6 
are obtained after a series of parameter tuning tests. 

 
�
�
� �

�
otherwise

PfPf
P WLi

follow ,00.0
*90.0,60.0  (12) 

4.4.3 Dance Selection Strategy 

After a bee has decided to observe and follow a dance, the 
next step is to select a dance from WL. Some selection 
strategies tested in the development of the BCBV algo-
rithm are: 

� Most Recently Added (MRA) – the most recently 
added solution to WL is selected. 
� Round Robin (RR) – the solution is selected in a 
round robin manner, one after another in succession. 
� Roulette Wheel (ROUL) – the solution is selected 
based on the Ci

max. A more profitable dance will have 
a higher chance to be selected. 
� Random Improving Move (RIM) – the solution 
that is better than the current makespan in WL is se-
lected in an unbiased manner. 

 These strategies are aimed at exploring the Big Valley 
landscape more effectively. As initial experiments show 
that RR gives the best results on a set of benchmark data-
set, it is adopted in the BCBV model in this paper. Figure 9 
shows the algorithm which corresponds to the Obser-
veNSelectDance( ) method in Figure 6. 

 
Step 1: Pfollow � 0.00 
Step 2: Sx � solution found at previous iteration. 
Step 3: If Pfi < 0.90 * PfWL 

Pfollow �0.60 
Step 4: Generate a random number r � [0,1]. 
Step 5: If r < Pfollow 

Sx � Pick a solution from WL using a dance selec-
tion strategy. 

Step 6: Return Sx. 
Figure 9: Algorithm for ObserveNSelectDance(). 

5 EXPERIMENTS AND RESULTS 

In this section, the benchmark problems, benchmark algo-
rithms and some experimental results will be presented. 
The experiments are conducted on a 16-node Linux cluster 
where each node has two Dual Core Xeon 3.0GHz proces-
sors with 4GB RAM. 

5.1 Benchmark Problems 

The Taillard JSSP dataset used in this paper is obtained 
from the library of JSSP sample instances maintained by 
Taillard, E. (http://mistic.heig-vd.ch/taillard/). Our experi-
ments focus on the first 50 problem instances (ta_01-ta_50) 
for which only 19 optimal solutions have been found to 
date. The sizes of these problems range from 15 to 30 jobs 
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and 15 to 20 machines. The performance measure used is 
the percentage difference in makespan � of a solution 
found, Cmax, from the known optimum/upper bound, Copti-

mal, calculated as in (13): 
 � = � �� �optimaloptimal CCC /max �  (13) 

5.2 Benchmark Algorithms 

To evaluate the performance of the proposed bee colony 
algorithm, we include three other meta-heuristics in our 
experimental study. The first is the TSA by Nowicki and 
Smutnicki (1996) which is considered to be one of the best 
in the class of optimization algorithms for the JSSP. The 
second is the SBP for the JSSP proposed by Adams et al. 
(1988). The third is the BCNS by Chong et al. (2007). 

5.3 Parameter Settings 

As TSA and SBP are deterministic algorithms, results for 
these two algorithms are taken after one run. In contrast, 
the experimental results for BCNS and BCBV are the av-
erages over five runs due to their stochastic characteristic. 
 

Table 2:  Parameter Setting for the Algorithms. 
Parameter TSA SBP BCNS BCBV 

Nmax �T �T 2000 2000 
Population, l n.a. n.a. No. of 

Jobs 
10 

Alpha, � n.a. n.a. 1.0 n.a. 
Beta, � n.a. n.a. 1.0 n.a. 
Rating, �ij n.a. n.a. 0.99 n.a. 
Waggle dance scaling 
factor, A 

n.a. n.a. 100 n.a. 

Probability to perform 
waggle dance, p 

n.a. n.a. 0.001 n.a. 

Max. no. of Elite Solu-
tion 

20 n.a. 20 � 

Max size of Taboo List 8 n.a. n.a. 15 
Waggle dance replace-
ment threshold, DR 

n.a. n.a. n.a. 0.15 

Waggle dance recruit-
ment counter, NAttempt 

n.a. n.a. n.a. 50 

�T denotes the experiments are allowed to run until termination. 
 

Table 3:  Impact of Different DR  Settings in BCBV. 
�(%) DR  

Min Max Mean 
0.05 4.88 12.17 9.11 
0.15 3.84 11.13 8.02 
0.25 4.54 11.36 8.38 
0.35 4.49 11.14 8.92 
0.45 4.41 13.17 8.86 

  
 Due to the different natures of the four algorithms, it is 
difficult to allocate the exact same amount of computation 
time and resource to each of them. For a meaningful com-

parison, both TSA and SBP were allowed to run until ter-
mination. Both BCNS and BCBV were allowed to run for 
2000 iterations. The parameter settings for all four algo-
rithms are presented in Table 2. The parameter settings are 
obtained after a series of tuning experiments. 
 Table 3 shows the impacts of different DR settings on 
BCBV on a set of five representative problems from Tail-
lard dataset. They include ta_04, ta_13, ta_29, ta_40, 
ta_41. The average � as well as the maximum and mini-
mum � of the five problems are shown in the table.  
 DR controls the number of distinct peaks (local op-
tima) in the landscape stored in WL. When DR is set too 
low (e.g. 0.05), too many solutions are stored in WL lead-
ing to slow convergence of the search. When DR is set too 
high (e.g. 0.45), only a few solutions are stored in WL lead-
ing to insufficient diversification in the search. Setting DR 
to 0.15 gives the best result for the five problem instances. 

5.4 Experimental Results 

Table 4 summarizes the performance results of the four al-
gorithms investigated. Besides the average, minimum and 
maximum �, the number of best solutions found amongst 
the four algorithms on the 50 problem instances is also re-
ported. From the results presented in Table 4, TSA records 
the closest results to the optimal and find the best results 
for 37 out of 50 problem instances. In comparison with 
TSA, BCBV gave similar performances for both the mean 
and maximum �. BCBV also obtained a lower � and found 
more best solutions compared to BCNS and SBP. While 
both bee heuristics underperform TSA, they offer a compa-
rable performance after 2000 iterations and their perform-
ance can be improved when more iterations are used. From 
the CPU time (speed) perspective, our experimental results 
show that BCBV is 2.6 times slower than TSA. 
 
Table 4: Performance of TSA, SBP, BCNS and BCBV on 
50 Problem Instances in Taillard JSSP Benchmark. 

Category TSA SBP BCNS BCBV 
Mean � (%) 6.93 11.77 9.16 8.43 
Min � (%)  1.04 5.29 2.84 4.01 
Max � (%)  13.66 20.63 16.22 13.93 
Best Solutions Found 37 0 2 11 

5.5 Long Running Behaviors of BCBV 

To see the long running performance of BCBV algorithm 
against BCNS and TSA, the averaged � over five problems 
versus the number of iterations is plotted in Figure 10. The 
same set of five problems as mentioned in Section 5.3 is 
used. A snapshot is taken at every 1000-th iteration where 
the average � for each algorithm is calculated. 
 To investigate whether TSA, BCNS and BCBV have a 
similar starting point, a snapshot on the average � is taken 
at the initial stage. Results show that � is 24.10% for TSA, 
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22.02% for BCNS, and 21.14% for BCBV, which shows 
that these three algorithms have similar starting points. 
 

5

10
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20

25

1 11 21 31 41 51 61 71 81 91

Iterations ('000)

� (%)

BCNS TSA BCBV  
Figure 10: Long Running Behaviors of TSA, BCNS and 
BCBV. 
  
 The TSA algorithm converges very quickly to find its 
best solution, leveling off at approximately 31000 itera-
tions and showing no performance improvement thereafter. 
This is due to the termination of the algorithm by its stop-
ping condition when its elite solution list becomes empty. 
The graph for TSA is extended beyond its termination 
point for comparison with BCBV and BCNS. The BCNS 
algorithm converges much slower (in terms of number of 
iterations) and takes approximately 85000 iterations to 
reach the performance level of the TSA algorithm. Con-
verging slower than TSA, the BCBV algorithm starts to 
outperform TSA at approximately 13000-th iteration and 
its solutions continued to improve before leveling off at 
approximately 37000-th iteration. The trend of BCBV and 
BCNS suggests that by taking such an evolutionary ap-
proach, the quality of the solutions obtained may improve 
further given a longer running time. This characteristic is 
important if the objective is to obtain very high quality so-
lutions given ample computational facilities and time. 

6 CONCLUSION 

A Bee Colony Optimization algorithm with Big Valley 
landscape exploitation has been proposed to solve JSSP 
problem. The algorithm is based on the foraging behavior 
of honey bees where the waggle dance is used as a com-
munication medium among bees. To have an effective ex-
ploitation and exploration on the landscape structures, ac-
cumulation and selection strategies are introduced on the 
solution list WL with waggle dances that represents peaks 
in a landscape. Experimental results on the Taillard JSSP 
benchmark show that BCBV is able to achieve comparable 
performance to TSA, SBP and BCNS using small number 
of iterations. Given ample computation time, BCBV is able 
to deliver performance better than TSA, SBP and BCNS.    

 For future works, we will continue to explore other 
features of the Big Valley landscape as well as parameter 
tuning to improve the performance of the BCBV algo-
rithm. We will also incorporate other bee related features 
such as the direction of waggle dance and scout bees in or-
der to make the algorithm more comprehensive.  
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