

BEE COLONY OPTIMIZATION ALGORITHM WITH BIG VALLEY LANDSCAPE EXPLOITATION
FOR JOB SHOP SCHEDULING PROBLEMS

Li-Pei Wong Chin Soon Chong
Chi Yung Puan

Malcolm Yoke Hean Low

School of Computer Engineering Singapore Institute of Manufacturing Technology
Nanyang Technological University 71 Nanyang Drive

Nanyang Avenue, SINGAPORE 639798 SINGAPORE 638075

ABSTRACT

Scheduling is a crucial activity in semiconductor manufac-
turing industry. Effective scheduling in its operations leads
to improvement in the efficiency and utilization of its
equipment. Job Shop Scheduling is an NP-hard problem
which is closely related to some of the scheduling activities
in this industry. This paper presents an improved Bee Col-
ony Optimization algorithm with Big Valley landscape ex-
ploitation as a biologically inspired approach to solve the
Job Shop Scheduling problem. Experimental results com-
paring our proposed algorithm with Shifting Bottleneck
Heuristic, Tabu Search Algorithm and Bee Colony Algo-
rithm with Neighborhood Search on Taillard JSSP bench-
mark show that it is comparable to these approaches.

1 INTRODUCTION

Semiconductor manufacturing industry is a complex yet
dynamic business. Some major activities in the semicon-
ductor production are wafer fabrication, wafer probe,
product assembly and final testing. These activities are
highly capital intensive and need to be performed in an un-
predictable environment, as the activities are sensitive to
disruption factors such as frequent facilities maintenance,
rework, machine downtime etc. To compete in a versatile
environment where the product life cycle is considerably
short, semiconductor manufacturers are trying different
methods to improve productivity and minimize the cycle
time of their products. Solutions to such problems play an
important role in ensuring that scarce resources are allo-
cated effectively to competing activities, so as to maximize
their utilization and efficiency.
 Job Shop Scheduling Problem (JSSP) is closely related
to activities in semiconductor manufacturing industry such
as part routing, part processing operations and coordination
of part handling as discussed by Gupta and Sivakumar
(2006), and Cavalieri et al. (1999). It is NP-hard in nature
(Lenstra et al. 1977). In a typical JSSP, a sequential job al-

location on resources (machines) that optimizes a particu-
lar objective function is to be determined. While many al-
gorithms exist to solve the JSSP (Blazewicz et al. 1996,
Lee et al. 1997), the Bee Colony Optimization (BCO) algo-
rithm has recently been adapted (Chong et al. 2006, Chong
et al. 2007). The bee inspired algorithms are generalized
from the foraging behaviors of bees where waggle dance is
used as a communication medium to attract other bees to a
food source. When the behaviors are applied algorithmi-
cally on complex and dynamic problems, the algorithm ap-
pears to be self-organized, flexible and robust in discover-
ing solutions to the problems (Bonabeau and Meyer 2001).

The bee inspired algorithms have also been attempted
in various areas including the dynamic server allocation in
Internet hosting center (Nakrani and Tovey 2004), hex
game playing program (Rijswijck 2007), Traveling Sales-
man Problem (Lucic and Teodorovic 2002, Lucic and
Teodorovic 2003, Wong et al. 2008), and Telecommunica-
tion Network Routing (Wedde et al. 2004). A survey that
discusses bee inspired algorithms and their applications to
some generalized assignment problems can be found in
Baykosoglu et al. (2007).

In this paper, a BCO algorithm with Big Valley land-
scape (BCBV) is presented. Besides the foraging behav-
iors, bees in the proposed algorithm are equipped with the
ability to explore the search space which appears in a Big
Valley structure as discussed in the works by Reeves
(1999), Nowicki and Smutnicki (2005), and Boese et al.
(2008). An effective search around the Big Valley structure
will help in locating the best solution in the space. The
BCBV algorithm is tested on Taillard JSSP benchmark and
compared against the Shifting Bottleneck Heuristic (SBP),
Tabu Search Algorithm (TSA), and Bee Colony Algorithm
with Neighborhood Search (BCNS) (see Sections 5.1 and
5.2 for details).
 This paper starts with a discussion on JSSP in Section
2. Section 3 explains the Big Valley landscape structure. A
discussion on the BCBV algorithm is presented in Section

2050 978-1-4244-2708-6/08/$25.00 ©2008 IEEE

Proceedings of the 2008 Winter Simulation Conference
S. J. Mason, R. R. Hill, L. Mönch, O. Rose, T. Jefferson, J. W. Fowler eds.

Wong, Puan, Low, and Chong

4. Experiments and results are presented in Section 5. Fi-
nally, this paper ends with a conclusion.

2 JOB SHOP SCHEDULING PROBLEM (JSSP)

As presented by Adams et al. (1988), JSSP is defined by a
set J of n jobs, J = {1, 2, …, n}. These jobs are to be proc-
essed on a set of m machines, M = {1, 2, …, m}. O is a set
of operations, O = {0, O11, …, O1m, On1, …, Onm, z} where
Oij denotes the j-th operation of job Ji. 0 and z denotes two
fabricated operations which represent the “first” and “ulti-
mate” operation. Thus, |O| = (n*m)+2. Each operation Oij is
associated with tij and �ij which denote its earliest start time
and processing time respectively. Apart from these, the fol-
lowing constraints have to be fulfilled:

� Each job Ji in set J is composed of a set Ai which
consists of ordered pairs of operations, con-
strained by the precedence relations in (1).

 ijiijijijji AOOtt ���� ��),(,)1()1(� (1)
� Each machine Mr in set M is composed of a set Er

which describes the set of all pairs of operations
to be performed on machine r. Each operation Oij
will be processed for �ij without interruption and
each machine can handle at most one operation at
a time. These constraints are shown in (2).

 MrEOO
tt

tt

rklij

ijijkl

klklij

����
	

	
�

�

��

��
,),(

�

�
 (2)

� For every operation in O, tij must be greater than
or equal to 0. This constraint guarantees the com-
pletion of all jobs as shown in (3).

 OOt ijij ��� ,0 (3)
Although there are many metrics that can be consid-

ered as the objective function of JSSP, makespan (Cmax) is
the most common and will be the focus in this paper. Cmax
is defined as the longest duration for which all operations
of all jobs are completed.

2.1 Disjunctive Graph Representation, Critical
Path and Its Block Decomposition

A common representation for JSSP is the disjunctive
graph. A disjunctive graph is a collection of nodes (verti-
ces) and edges (arcs). Nodes are linked by the edges of the
graph. Hence, a disjunctive graph G is defined as
 � �DisjConj EEOG �� , (4)
where O is the set of operations as defined in Section 2.
EConj is a set of directed conjunctive edges representing the
precedence constraints of each job as described in (1). EDisj
is a set of bi-directional disjunctive edges representing the
capacity constraints of each machine as described in (2).
These disjunctive edges link all the operations that need to
be handled by a particular machine. An example of the dis-

junctive graph based on a 3-job x 3-machine JSSP in Table
1 is shown in Figure 1. Each row of the table represents a
pre-defined machine precedence order for each job with
the processing time in parentheses. A solution can be ob-
tained by converting bi-directional disjunctive edges to be-
come directed edges. To make sure that a feasible solution
is obtained, the conversion is performed such that no cycle
exists in the graph. This will eventually turn the disjunctive
graph to a directed graph as shown in Figure 2.

Table 1. An Example of 3-job x 3-machine JSSP.
Job Machine (Processing time)
1 2 (3) 1 (13) 3 (6)
2 1 (8) 2 (4) 3 (12)
3 3 (10) 2 (5) 1 (5)

Legend:

Directed
Conjunctive Edge
Bi-directional
Disjunctive Edge

� ij - Processing time of Oij

Oij - j-th operation of job i Oij
�ij

O12
13

O21

8
O22

4
O23

12

O31

10
O32

5

0
0

z
0

O11

3

O33

5

O13

6

Figure 1: A Disjunctive Graph for 3-job x 3-machine JSSP
Instance in Table 1.

Legend:

Directed
Conjunctive Edge
Directed
Disjunctive Edge

�ij - Processing time of Oij
Oij - j-th operation of job i Oij

�ij

O12
13

O21

8
O22

4
O23

12

O31

10
O32

5

0
0

z
0

O11

3

O33

5

O13

6

Figure 2: A Directed Graph (Feasible Solution) for 3-job x
3-machine JSSP Instance in Table 1.

M1

M2

M3

O ij = j -th operation of job i

O 31 O 23 O 13

O 21 O 33 O 12

O 32 O 22 O 11

time

Figure 3: Gantt Chart for the Directed Graph in Figure 2.

2051

Wong, Puan, Low, and Chong

 The longest path (or critical path) in the directed graph
provides the makespan for the JSSP. The critical path in
Figure 2 is given by: 0 � O31 � O32 � O22 � O11 � O12
� O13 � z. The sum of all the processing times is 0 + 10 +
5 + 4 + 3 + 13 + 6 + 0 = 41. To better illustrate the critical
path found in Figure 2, a Gantt chart is shown in Figure 3
where the operations in the critical path are shaded.
 A critical path consists of a set of operations which
cannot be delayed so that all the jobs will be completed on
time. The critical path can be decomposed into a set of r
blocks, B = {b1, b2, … br} as described by Grabowski et al.
(1986), and Nowicki and Smutnicki (1996). Each block
contains an order set of operations/nodes which are proc-
essed on the same machine bk = {dk1, dk2, …, dki} where
d�O. At the same time, two consecutive blocks must con-
tain operations/nodes which are processed on different ma-
chines. The following example illustrates the block de-
composition of the critical path found in Figure 3.
 As stated earlier, one of the critical paths for the 3-job
x 3-machine JSSP instance in Table 1 is given by {O31,
O32, O22 , O11 , O12 , O13 }. By performing block decompo-
sition, four blocks are identified where r = 4, B = {b1, b2 ,
b3, b4}. The content of each block is as follows: b1 =
{O31,}, b2 = {O32, O22, O11}, b3 = {O12}, b4 = {O13}. This
block decomposition is the central idea in the implementa-
tion of the neighborhood operator which will be discussed
in Section 4.3.
 In the subsequent section, the Big Valley landscape
structure will be discussed. The discussion will include
how the landscape looks and its characteristics.

3 THE BIG VALLEY LANDSCAPE STRUCTURE

A landscape can be described as a structure of the neigh-
borhood generated by a heuristic operator used to traverse
the search space of the problem in view of the objective
function. Reeves (1999) suggested that when a heuristic
search approach is applied to a combinatorial optimization
problem that defines a unique search space, a “landscape”
will be created. In addition, it is found that different land-
scapes will be created by different search operators used in
the search space exploration. A landscape consists of many
local optima or false peaks which will be changing with
respect to the heuristic search operators. The existence of
these local optima or false peaks often obstruct the search
from locating global optimum as illustrated in Figure 4.

However, these landscape structures can assist the
search of global optimum instead of obstructing it. One
such landscape structure is the “Big Valley” structure ob-
served by Boese et al. (2008) in the 2-opt operator for
Traveling Salesman Problem (TSP). Similar landscape
structure has since been extended to flow shop scheduling
problem (FSP) by Reeves (1999), and also in JSSP by
Nowicki and Smutnicki (2005).

In the Big Valley landscape structure, local optima
tend to exist close to one another in clusters, with each
cluster centered on the global optimum forming a valley
structure as illustrated in Figure 4. The formation of the
Big Valley landscape has strong implication for how heu-
ristic search should be performed. The Big Valley structure
suggests that the determination of new start points for
search should be based on previous local optimum rather
than based on a random point in the search space. This is
because good candidate solutions are often found to be
close to other good solutions. By exploring and exploiting
the areas near to these local optima effectively, the search
will be directed towards the global optimum eventually.

global minimum

clusters of local minimum

objective
function ridge of local

optima

shoulder of local
optima

state
space current

state
initial
state

Figure 4: A Landscape with the Big Valley Feature.

3.1 Big Valley Landscape Analysis

To investigate the Big Valley landscape structure, a plot
from a sample of 1500 solutions collected through a run of
BCBV algorithm on the ta_01 (15-job x 15-machine) prob-
lem is generated as shown in Figure 5. ta_01 is one of the
datasets in Taillard JSSP benchmark which will be dis-
cussed in Section 5.1. The solutions are plotted using the
percentage makespan difference, � (see Section 5.1) versus
their heuristic distance (see Section 4.4.1) from a fixed lo-
cal optimum.
 In Figure 5, solutions are concentrated in four separate
clusters at different distances from a fixed local optimum.
The clusters are formed by the neighborhood operator (see
Section 4.3.2) which is integrated in BCBV. Figure 5 also
shows that the clusters are some heuristic distance away
from one another. Search should be performed intensely
within clusters to find new local optima with better
makespan since they are most probable to occur close to
one another. The clustering approach by neighborhood op-
erator and intensive searching around different clusters
which are certain heuristic distance apart is implemented in
BCBV algorithm. Details about the analysis on the Big
Valley landscape can be obtained in Reeves (1999), and
Nowicki and Smutnicki (1996).

2052

Wong, Puan, Low, and Chong

Figure 5: � versus Distance from a Local Optimum.

4 BCO WITH BIG VALLEY LANDSCAPE

This section first describes the natural foraging model of a
typical bee colony. Next, an algorithmic framework of
BCBV is presented. It is followed by an overview of the
foraging model used in constructing feasible solutions for
JSSP, and the waggle dance model used in finding good
solutions. Finally, a discussion on the Big Valley landscape
exploitation in BCO is provided.

4.1 Bee Colony

The foraging behavior in a bee colony remains mysterious
for many years until von Frisch (1974) translated the lan-
guage embedded in bee waggle dances. Waggle dance op-
erates as a communication tool among bees. Through the
waggle dance, bees could describe the distance, direction,
and description of the food source to other bees. Distance
is conveyed by the type and duration of the waggle dance.

Suppose a bee found a rich food source, a figure-eight
pattern is shown in the dance. This figure-eight dance con-
sists of a straight waggle run followed by a turn to the right
back to the starting point, and then another straight waggle
run followed by a turn to the left and back to the starting
point again. Via these informative dances, the bee has ac-
tually informed its hive mates about the direction and dis-
tance of the food source. von Frisch (1974) also suggested
that bees could describe the type of flower which is richest
to forage through the use of pollen. Once a bee has associ-
ated itself with the particular scent of pollen from a waggle
dance, it will ignore flowers with other scents at the indi-
cated location. Such a mechanism achieves a kind of short-
term memory to differentiate and identify food sources and
will be explored through the addition of a Taboo list in the
BCO model in this paper. Further discussions about wag-
gle dance can be found in Dyer (2002), and Biesmeijer and
Seeley (2005).

4.2 BCBV Algorithm

The BCBV algorithm uses a similar model based on bees’
foraging behaviors as shown in Figure 6. The BCBV starts
with a set of feasible schedules generated by dispatching
rules, which will be discussed in Section 4.3.1. A combina-
tion of foraging and performing waggle dance constitutes
one cycle (or iteration). The foraging model will be dis-
cussed in Sections 4.3.2 and 4.3.3. The waggle dance
model, which includes how a bee observes, selects and per-
forms a waggle dance, is implemented using a linked list
WL and will be discussed in Section 4.4.

The BCBV algorithm is executed for Nmax iterations
and the best solution found during the searching process
will be presented as the final schedule at the end of a run.

procedure BCBV

Cmax_best � �
Niter � 0
GenerateInitialSolution() [see section 4.3.1]
while Niter <> Nmax do

for each forager bee fi do
if WL<>{ }

fi.ObserveNSelectDance() [see section 4.4.2 & 4.4.3]
end if
fi.Cmax� fi.Forage() [see section 4.3.2 & 4.3.3]
if fi.Cmax< Cmax_best

Cmax_best � fi.Cmax
fi.PerformWaggleDance() [see section 4.4.1]

end if
end for
Niter� Niter+1

end while
end procedure BCBV

Figure 6: Algorithmic Framework of BCBV.

4.3 Foraging Model with Neighborhood Search

The foraging model starts with a group of bees construct-
ing a set of feasible solutions by using a set of dispatching
rules for JSSP with the use of disjunctive graph representa-
tion as mentioned in Section 2.

4.3.1 Generate Initial Feasible Solution

The dispatching rules that are applied in the BCBV algo-
rithm include Shortest Processing Time, Longest Process-
ing Time, Most Work Remaining, Least Work Remaining,
Work in Next Queue, Last In First Out, First In First out,
Shortest Processing Time+Work in Next Queue, Shortest
Processing Time+Most Work Remaining and Random
Dispatching Rules. In the Random Dispatching Rules, bees
are allowed to randomly pick one of the listed rules to con-
struct a feasible solution. These rules are applied in a round
robin fashion for all the bees. Implementation details of the
listed rules can be found in the work by Yamada (2003).

6

8

10

12

14

16

18

0 5 10 15 20 25 30 35 40 45

Distance From Local Optimum

� (%)

2053

Wong, Puan, Low, and Chong

The set of feasible solutions generated by the dispatch-

ing rules will be used to generate other feasible solutions.
Other than this, bees may also generate new solution from
their own solution found in previous iteration or based on
the dance (solution) that they followed. These three sets of
feasible solutions will serve as a foundation to produce
other solutions for the rest of the algorithm via a neighbor-
hood operator. The mechanism of the operator will be ex-
plained in the subsequent section.

4.3.2 Neighborhood Operator

Each feasible solution, Sx, has it own critical path which
can be identified via the disjunctive graph. To produce a
set of moves based on Sx, a neighborhood operator C(Sx),
which is based on the block structure described in Section
2, is defined in (5):
 BbbCSC j

r

j jjx ���
�

,)()(
1� (5)

where Cj is defined as in (6), (7), and (8):

 � �� �
�
�
�

�
��

� �

otherwise
Bandbdd

bC ii

,
11,,

)(11)1(1
11

 (6)

� � � �� �

� �� �
	
�

	
�

�

�
��

��

�
�

otherwise
jBandbdd
jBandbdddd

bC jjj

jjiijjj

jj

,
2,,
3,,,,

)(21

)1(21

 for j=2, …, r-1 (7)

 � �� �
�
�
�

�
��

�
otherwise

Bandbdd
bC rrr

rr ,
11,,

)(21 (8)

 The generation of C(Sx) is adapted from the work by
Nowicki and Smutnicki (1996). (6) suggests that swapping
is allowed on the last two operations in the first block. (7)
suggests that swapping is allowed on the first two (and last
two) in every intermediate blocks (b2, …, br-1). (8) suggests
that the swapping is allowed on the first two operations in
the last block. Once the neighborhood operation ends,
C(Sx) contains a set of moves that can be used to generate
new feasible solutions. Of all the moves in C(Sx), moves
that are able to generate better Cmax when compared to the
current Cmax (improving moves) are placed into the set MI ,
and moves that have been recently visited (Taboo moves)
are placed in the set MT. A bee will then decide which
move to select based on the strategies that will be dis-
cussed in Section 4.3.3.

4.3.3 Move Selection Strategies

Recall that bees could remember scent and avoid searching
patches of flowers with different scents through the pollen
identification ability (refer to Section 4.1). To aid these
bees in making a better decision in selecting a move, a
similar short-term memory is given to the artificial bees in

the model. This short-term memory is developed via the
use of a Taboo list. Each time a move is selected, its in-
verse move will be added to the Taboo list. Should the in-
verse move be encountered in the next search, its selection
is avoided if possible. The aim of the Taboo list is to direct
the search process away from recently visited solutions so
that more of the unexplored search space can be reached.
Hence, more solutions can be evaluated. Besides Taboo
list, another strategy is introduced to aid the bees to select a
better move. Using this strategy, a bee will select at ran-
dom a move from MI should one exist, else it will select at
random a non-improving move.

The combination of the neighborhood operator, Taboo
list and move selection strategy form the foraging model
shown in Figure 7. It corresponds to the Forage() method
in Figure 6.

Step 1: Find a set of moves from a feasible solution, Sx by us-

ing operator C (Sx).
Step 2: Identify MI and MT from C (Sx).
Step 3: If ��� TI MM

Randomly pick a move from MI – MT.
Go to Step 7.

Step 4: If ��� TI MM
Randomly pick a move from MI � MT.
Go to Step 7.

Step 5: If ��TM
Randomly pick a move from TM .
Go to Step 7.

Step 6: Random pick a move from C(Sx).
Step 7: Add the inverse of selected move to MT
Step 8: Return the selected move.

Figure 7: Algorithm for Forage().

4.4 Waggle Dance with Exploitation of Big Valley
Landscape

Upon returning to the hive after foraging, a bee will need
to perform waggle dance in order to convey information
about its discovery to other hive mates. At any one time, a
bee will perform waggle dance if its Cmax is smaller than
the current best Cmax among all the bees. Note that in our
implementation, the solutions representing the dances by
the bees are accumulated in an unbounded list, WL. Accu-
mulation of these dances (solutions) over time will create a
landscape which consists of multiple local optima as dis-
cussed in Section 3. To manage the landscape effectively,
approaches stated in Sections 4.4.1 to 4.4.3 are proposed.

4.4.1 Dance Accumulation Strategy

Since WL is unbounded, it might accumulate too many
dances such that a unique landscape could not be identi-
fied. To maintain a finite set of unique peaks (local op-
tima), a replacement approach is introduced. This approach
compares the similarity of the newly generated solution

2054

Wong, Puan, Low, and Chong

(denoted as Sp) with each solution in WL (denoted by Sq
where Sq�WL) using a distance metric D.
 The role of D is to compare the similarity between two
solutions. It measures the number of bit difference between
the directed disjunctive arcs representation of two solutions
as defined in (9). The EDisj of both Sp and Sq are represented
as a total-ordering bitmap which consists of a string of
booleans.

 � �
)(

)(),(

pDisj

qDisjpDisj

SE
SESEdiff

D � (9)

 The solution Sq that is within a distance of replacement
threshold DR from Sp will be replaced, if one exists. If there
are two or more solutions in the list that meet the threshold,
all of them will be replaced accordingly. Otherwise, Sp will
be appended to WL.

Step 1: If Sp.Cmax < Cmax_best

Search through WL and accumulate Sp in WL by re-
placing solutions which are within the replace-
ment threshold, DR.

Sp.CtElite � 0.
Step 2: For each entry Sq in WL

If Sq.CtElite > NAttempt
WL.remove(Sq)

Figure 8: Algorithm for PerformWaggleDance().

To make sure that every solution in WL is searched in-

tensively by bees, a counter, CtElite, is associated to each
solution. CtElite is incremented whenever the associated so-
lution (dance) is used (followed) by another bee. When a
solution is used for NAttempt (a predefined value) times, the
entry will be removed from the list. By using the above
strategy, exploitation of different peaks in the Big Valley
landscape is preserved. Figure 8 shows the algorithm for
the dance accumulation strategy which corresponds to the
PerformWaggleDance() method in Figure 6.

4.4.2 Dance Observation Strategy

Before a bee leaves its hive to start the foraging process, it
decides if it will observe and follow a dance shown by pre-
vious dancer with a probability of Pfollow. In the BCO algo-
rithm suggested by Chong et al. (2006), Pfollow is adjusted
dynamically via a profitability lookup table. A different
strategy is adopted in BCBV. Pfollow is adjusted based on
the profitability rating of a bee, Pfi and the average profit-
ability of the waggle dance list, PfWL. Pfi and PfWL are de-
fined in (10), and (11) respectively:

ii C
Pf

max

1
� (10)

 � �
�

n

i iWL Cn
Pf

1
max

11 (11)

where Ci
max is the makespan of the schedule generated by a

forager fi (Chong et al., 2007) and n is the number of danc-

ing bee. Pfollow is determined by (12) where the 0.9 and 0.6
are obtained after a series of parameter tuning tests.

�
�
� �

�
otherwise

PfPf
P WLi

follow ,00.0
*90.0,60.0 (12)

4.4.3 Dance Selection Strategy

After a bee has decided to observe and follow a dance, the
next step is to select a dance from WL. Some selection
strategies tested in the development of the BCBV algo-
rithm are:

� Most Recently Added (MRA) – the most recently
added solution to WL is selected.
� Round Robin (RR) – the solution is selected in a
round robin manner, one after another in succession.
� Roulette Wheel (ROUL) – the solution is selected
based on the Ci

max. A more profitable dance will have
a higher chance to be selected.
� Random Improving Move (RIM) – the solution
that is better than the current makespan in WL is se-
lected in an unbiased manner.

 These strategies are aimed at exploring the Big Valley
landscape more effectively. As initial experiments show
that RR gives the best results on a set of benchmark data-
set, it is adopted in the BCBV model in this paper. Figure 9
shows the algorithm which corresponds to the Obser-
veNSelectDance() method in Figure 6.

Step 1: Pfollow � 0.00
Step 2: Sx � solution found at previous iteration.
Step 3: If Pfi < 0.90 * PfWL

Pfollow �0.60
Step 4: Generate a random number r � [0,1].
Step 5: If r < Pfollow

Sx � Pick a solution from WL using a dance selec-
tion strategy.

Step 6: Return Sx.
Figure 9: Algorithm for ObserveNSelectDance().

5 EXPERIMENTS AND RESULTS

In this section, the benchmark problems, benchmark algo-
rithms and some experimental results will be presented.
The experiments are conducted on a 16-node Linux cluster
where each node has two Dual Core Xeon 3.0GHz proces-
sors with 4GB RAM.

5.1 Benchmark Problems

The Taillard JSSP dataset used in this paper is obtained
from the library of JSSP sample instances maintained by
Taillard, E. (http://mistic.heig-vd.ch/taillard/). Our experi-
ments focus on the first 50 problem instances (ta_01-ta_50)
for which only 19 optimal solutions have been found to
date. The sizes of these problems range from 15 to 30 jobs

2055

Wong, Puan, Low, and Chong

and 15 to 20 machines. The performance measure used is
the percentage difference in makespan � of a solution
found, Cmax, from the known optimum/upper bound, Copti-

mal, calculated as in (13):
 � = � �� �optimaloptimal CCC /max � (13)

5.2 Benchmark Algorithms

To evaluate the performance of the proposed bee colony
algorithm, we include three other meta-heuristics in our
experimental study. The first is the TSA by Nowicki and
Smutnicki (1996) which is considered to be one of the best
in the class of optimization algorithms for the JSSP. The
second is the SBP for the JSSP proposed by Adams et al.
(1988). The third is the BCNS by Chong et al. (2007).

5.3 Parameter Settings

As TSA and SBP are deterministic algorithms, results for
these two algorithms are taken after one run. In contrast,
the experimental results for BCNS and BCBV are the av-
erages over five runs due to their stochastic characteristic.

Table 2: Parameter Setting for the Algorithms.
Parameter TSA SBP BCNS BCBV

Nmax �T �T 2000 2000
Population, l n.a. n.a. No. of

Jobs
10

Alpha, � n.a. n.a. 1.0 n.a.
Beta, � n.a. n.a. 1.0 n.a.
Rating, �ij n.a. n.a. 0.99 n.a.
Waggle dance scaling
factor, A

n.a. n.a. 100 n.a.

Probability to perform
waggle dance, p

n.a. n.a. 0.001 n.a.

Max. no. of Elite Solu-
tion

20 n.a. 20 �

Max size of Taboo List 8 n.a. n.a. 15
Waggle dance replace-
ment threshold, DR

n.a. n.a. n.a. 0.15

Waggle dance recruit-
ment counter, NAttempt

n.a. n.a. n.a. 50

�T denotes the experiments are allowed to run until termination.

Table 3: Impact of Different DR Settings in BCBV.
�(%) DR

Min Max Mean
0.05 4.88 12.17 9.11
0.15 3.84 11.13 8.02
0.25 4.54 11.36 8.38
0.35 4.49 11.14 8.92
0.45 4.41 13.17 8.86

 Due to the different natures of the four algorithms, it is
difficult to allocate the exact same amount of computation
time and resource to each of them. For a meaningful com-

parison, both TSA and SBP were allowed to run until ter-
mination. Both BCNS and BCBV were allowed to run for
2000 iterations. The parameter settings for all four algo-
rithms are presented in Table 2. The parameter settings are
obtained after a series of tuning experiments.
 Table 3 shows the impacts of different DR settings on
BCBV on a set of five representative problems from Tail-
lard dataset. They include ta_04, ta_13, ta_29, ta_40,
ta_41. The average � as well as the maximum and mini-
mum � of the five problems are shown in the table.
 DR controls the number of distinct peaks (local op-
tima) in the landscape stored in WL. When DR is set too
low (e.g. 0.05), too many solutions are stored in WL lead-
ing to slow convergence of the search. When DR is set too
high (e.g. 0.45), only a few solutions are stored in WL lead-
ing to insufficient diversification in the search. Setting DR
to 0.15 gives the best result for the five problem instances.

5.4 Experimental Results

Table 4 summarizes the performance results of the four al-
gorithms investigated. Besides the average, minimum and
maximum �, the number of best solutions found amongst
the four algorithms on the 50 problem instances is also re-
ported. From the results presented in Table 4, TSA records
the closest results to the optimal and find the best results
for 37 out of 50 problem instances. In comparison with
TSA, BCBV gave similar performances for both the mean
and maximum �. BCBV also obtained a lower � and found
more best solutions compared to BCNS and SBP. While
both bee heuristics underperform TSA, they offer a compa-
rable performance after 2000 iterations and their perform-
ance can be improved when more iterations are used. From
the CPU time (speed) perspective, our experimental results
show that BCBV is 2.6 times slower than TSA.

Table 4: Performance of TSA, SBP, BCNS and BCBV on
50 Problem Instances in Taillard JSSP Benchmark.

Category TSA SBP BCNS BCBV
Mean � (%) 6.93 11.77 9.16 8.43
Min � (%) 1.04 5.29 2.84 4.01
Max � (%) 13.66 20.63 16.22 13.93
Best Solutions Found 37 0 2 11

5.5 Long Running Behaviors of BCBV

To see the long running performance of BCBV algorithm
against BCNS and TSA, the averaged � over five problems
versus the number of iterations is plotted in Figure 10. The
same set of five problems as mentioned in Section 5.3 is
used. A snapshot is taken at every 1000-th iteration where
the average � for each algorithm is calculated.
 To investigate whether TSA, BCNS and BCBV have a
similar starting point, a snapshot on the average � is taken
at the initial stage. Results show that � is 24.10% for TSA,

2056

Wong, Puan, Low, and Chong

22.02% for BCNS, and 21.14% for BCBV, which shows
that these three algorithms have similar starting points.

5

10

15

20

25

1 11 21 31 41 51 61 71 81 91

Iterations ('000)

� (%)

BCNS TSA BCBV
Figure 10: Long Running Behaviors of TSA, BCNS and
BCBV.

 The TSA algorithm converges very quickly to find its
best solution, leveling off at approximately 31000 itera-
tions and showing no performance improvement thereafter.
This is due to the termination of the algorithm by its stop-
ping condition when its elite solution list becomes empty.
The graph for TSA is extended beyond its termination
point for comparison with BCBV and BCNS. The BCNS
algorithm converges much slower (in terms of number of
iterations) and takes approximately 85000 iterations to
reach the performance level of the TSA algorithm. Con-
verging slower than TSA, the BCBV algorithm starts to
outperform TSA at approximately 13000-th iteration and
its solutions continued to improve before leveling off at
approximately 37000-th iteration. The trend of BCBV and
BCNS suggests that by taking such an evolutionary ap-
proach, the quality of the solutions obtained may improve
further given a longer running time. This characteristic is
important if the objective is to obtain very high quality so-
lutions given ample computational facilities and time.

6 CONCLUSION

A Bee Colony Optimization algorithm with Big Valley
landscape exploitation has been proposed to solve JSSP
problem. The algorithm is based on the foraging behavior
of honey bees where the waggle dance is used as a com-
munication medium among bees. To have an effective ex-
ploitation and exploration on the landscape structures, ac-
cumulation and selection strategies are introduced on the
solution list WL with waggle dances that represents peaks
in a landscape. Experimental results on the Taillard JSSP
benchmark show that BCBV is able to achieve comparable
performance to TSA, SBP and BCNS using small number
of iterations. Given ample computation time, BCBV is able
to deliver performance better than TSA, SBP and BCNS.

 For future works, we will continue to explore other
features of the Big Valley landscape as well as parameter
tuning to improve the performance of the BCBV algo-
rithm. We will also incorporate other bee related features
such as the direction of waggle dance and scout bees in or-
der to make the algorithm more comprehensive.

ACKNOWLEDGMENT

The authors would like to thank Science University of Ma-
laysia and Ministry of Higher Education of Malaysia for
the scholarship awarded to Li-Pei Wong to pursue his
Ph.D. in Nanyang Technological University, Singapore.

REFERENCES

Adams, J., E. Balas, and D. Zawack. 1988. The shifting
bottleneck procedure for job shop scheduling. Man-
agement Science 34(3):391-401.

Baykosoglu, A., L. Ozbakir, and P. Tapkan. 2007. Artifi-
cial bee colony algorithm and its application to gener-
alized assignment problem. In Swarm Intelligence:
Focus on Ant and Particle Swarm Optimization, 532-
564. Austria: Itech Education and Publishing.

Biesmeijer, J. C. and T. D. Seeley . 2005. The use of wag-
gle dance information by honey bees throughout their
foraging careers. Behavioral Ecology and Sociobiol-
ogy 59(1):133-142.

Blazewicz, J., W. Domschke, and E. Pesch. 1996. The job
shop scheduling problem: Conventional and new solu-
tion techniques. European Journal of Operational Re-
search 93(1):1-33.

Boese, K. D., A. B. Kahng, and S. Muddu. 1994. A new
adaptive multi-start technique for combinatorial global
optimizations. Operations Research Letters 16(2):101-
113.

Bonabeau, E., and C. Meyer. 2001. A whole new way to
think about business. Harvard Business Review, 106-
114.

Cavalieri, S., F. Crisafulli, and O. Mirabella. 1999. A ge-
netic algorithm for job-shop scheduling in a semicon-
ductor manufacturing system. In Proceedings of the
25th Annual Conference of the IEEE Industrial Elec-
tronics Society, 957-961.

Chong, C. S., M. Y. H. Low, A. I. Sivakumar, and K. L.
Gay. 2006. A bee colony optimization algorithm to job
shop scheduling. In Proceedings of the 2006 Winter
Simulation Conference, 1954-1961.

Chong, C. S., M. Y. H. Low, A. I. Sivakumar, and K. L.
Gay. 2007. Using a bee colony Algorithm for
neighborhood search in job shop scheduling problems.
In Proceedings of 21st European Conference on Mod-
eling and Simulation (ECMS 2007).

Dyer, F. C. 2002. The biology of the dance language. An-
nual Review of Entomology 47, 917-949.

2057

Wong, Puan, Low, and Chong

Grabowski, J., E., Nowicki, and S. Zdrzalka. 1986. A block
approach for single-machine scheduling with release
dates and due dates. European Journal of Operational
Research 26(2):278-285.

Gupta, A. K., and A. I. Sivakumar. 2006. Job shop sched-
uling techniques in semiconductor manufacturing. In-
ternational Journal of Advanced Manufacturing Tech-
nology 27(11-12):1163-1169.

Lee, C. Y., L. Lei, and M. Pinedo. 1997. Current trends in
deterministic scheduling. Annals of Operations Re-
search 70(0):1-41.

Lenstra, J. K., A. H. G. Rinnooy Kan, and P. Brucker.
1977. Complexity of machine scheduling problems.
Annals of Discrete Mathematics 1:343-362.

Lucic, P., and D. Teodorovic. 2002. Transportation model-
ing: an artificial life approach. In Proceedings of 14th
IEEE International Conference on Tools with Artifi-
cial Intelligence 2002 (ICTAI 2002), 216-223.

Lucic, P. and D. Teodorovic. 2003. Computing with Bees:
Attacking Complex Transportation Engineering Prob-
lems. International Journal on Artificial Intelligence
Tools 12(3):375-394.

Nakrani, S., and C. Tovey. 2004. On honey bees and dy-
namic server allocation in Internet hosting centers.
Adaptive Behavior 12(3-4):223-240.

Nowicki, E., and C. Smutnicki. 1996. A fast taboo search
algorithm for the job shop problem. Management Sci-
ence 42(6):797-813.

Nowicki, E., and C. Smutnicki. 2005. An advanced tabu
search algorithm for the job shop problem. Journal of
Scheduling 8(2):145-159.

Reeves, C. R. 1999. Landscapes, operators and heuristic
search. Annals of Operations Research 86(0):473-490.

van Rijswijck, J. 2000. Are bees better than fruitflies? Ex-
periments with a hex playing program. In Advances in
Artificial Intelligence, Lecture Notes in Computer Sci-
ence 1822/2000. 13-25. Berlin/Heidelberg: Springer.

von Frisch, K. 1974. Decoding the language of the bee.
Science 185(4152):663-668.

Wedde, F. H., M. Farooq, and Y. Zhang. 2004. Beehive:
An efficient fault-tolerant routing algorithm inspired
by honey bee behavior. In Ant Colony, Optimization
and Swarm Intelligence, Lecture Notes in Computer
Science 3172:83-94. Berlin/Heidelberg: Springer.

Wong, L. P., M. Y. H. Low, and C. S. Chong. 2008. A bee
colony optimization algorithm for traveling salesman
problem. In Proceedings of 2nd Asia International
Conference on Modelling & Simulation, 818-823.

Yamada, T. 2003. Studies on metaheuristics for jobshop
and flowshop scheduling problems. Ph.D. Thesis.
Kyoto University.

AUTHOR BIOGRAPHIES

LI-PEI WONG obtained his Bachelor degree and Master
degree in Computer Science from Science University of
Malaysia in 2001 and 2004. He is currently pursuing his
PhD in Computer Science at the Nanyang Technological
University (NTU), Singapore. His current research interest
includes scheduling and optimization in the area of manu-
facturing, logistic, timetabling, and supply chain. His email
address is <wonglipei@pmail.ntu.edu.sg>.

CHI YUNG PUAN is a Fourth Year Undergraduate Stu-
dent currently enrolled in the Computer Science Course
(CSC) at the School of Computer Engineering in Nanyang
Technological University (NTU), Singapore. His current
research interest is in artificial intelligence agents for the
modeling and simulation and optimization of complex sys-
tems. His work and research in his Final Year Project:
“Bee Colony Optimization: A Biologically Inspired Ap-
proach to Job Shop Scheduling” has been largely adapted
into this paper. His email address is
<puan0001@ntu.edu.sg>.

Dr. MALCOLM YOKE HEAN LOW is an Assistant
Professor in the School of Computer Engineering at the
Nanyang Technological University (NTU), Singapore.
Prior to this, he was with the Singapore Institute of Manu-
facturing Technology, Singapore (SIMTech). He received
his Bachelor and Master of Applied Science in Computer
Engineering from NTU in 1997 and 1999 respectively. He
was awarded a Gintic (now SIMTech) Postgraduate Schol-
arship in 1999. In 2002, he received his D.Phil. degree in
Computer Science from Oxford University. His current re-
search interest is in the application of parallel and distrib-
uted computing for the modeling, simulation, analysis and
optimization of complex systems. His email address is
<yhlow@ntu.edu.sg>.

Dr. CHIN SOON CHONG obtained his degree in Electri-
cal and Electronics Engineering from the City University
of London, UK. He joined Singapore Institute of Manufac-
turing Technology (SIMTech), and is currently in the
Planning Operation Management Group. He obtained his
Master of Engineering in Computer Integrated Manufactur-
ing from Nanyang Technological University, Singapore.
He has been involved in simulation, scheduling and opti-
mization related projects in logistic and manufacturing IT
domains. The projects include cargo container operation
simulation, printing process simulation, manufacturing cy-
cle-time modeling, scheduling and optimization for MNCs.
His current research interest includes simulation, planning,
scheduling, optimization in the area of manufacturing, lo-
gistic, and supply chain. He can be reached via email at
<cschong@simtech.a-star.edu.sg>.

2058

